Real-time multiple event analysis is important for reliable situational awareness and secure operation of the power system. Multiple sequential events can induce complex superimposed pattern in the data and are challenging to analyze in real time. This paper proposes a method for accurate detection, temporal localization, and classification of multiple events in real time using synchrophasor data. For detection and temporal localization, a Teager-Kaiser energy operator (TKEO) based method is proposed. For event classification, a time series classification based method using energy similarity measure (ESM) is proposed. The proposed method is tested for simulated multiple event cases in the IEEE-118 bus system using DigSilent/PowerFactory and real PMU data for the Indian grid. © 2005-2012 IEEE.