Polarization-electric-field (P-E) interaction results in rendering the stress tensor non-symmetric and in a nonlinear force term in the equilibrium equation. In this paper, an attempt is made to study these (P-E) nonlinear effects on the static response of laminated composite plates with piezo actuators. Further, this paper also focuses on finding the most effective piezo lay-up and ply orientation which gives the maximum deflections. Four different piezo lay-up configurations and three ply orientations are considered. It has been observed from the study that width-wise strips show more transverse bending and twisting. However, full length piezo layers show maximum longitudinal bending. The results of nonlinear analysis show a more considerable softening trend in deformations than that of the linear analysis in the case of longitudinal bending and twisting. In the case of transverse bending this nonlinear effect shows a hardening trend. Further, it has been observed that the influence of P-E nonlinearity depends on the stiffness of the core material, the geometric arrangement of piezo patches, the boundary conditions and the actuation voltage. © 2010 IOP Publishing Ltd.