Header menu link for other important links
Visual saliency guided video compression algorithm
R. Gupta, M. Thapar Khanna,
Published in
Volume: 28
Issue: 9
Pages: 1006 - 1022
Recently Saliency maps from input images are used to detect interesting regions in images/videos and focus on processing these salient regions. This paper introduces a novel, macroblock level visual saliency guided video compression algorithm. This is modelled as a 2 step process viz. salient region detection and frame foveation. Visual saliency is modelled as a combination of low level, as well as high level features which become important at the higher-level visual cortex. A relevance vector machine is trained over 3 dimensional feature vectors pertaining to global, local and rarity measures of conspicuity, to yield probabilistic values which form the saliency map. These saliency values are used for non-uniform bit-allocation over video frames. To achieve these goals, we also propose a novel video compression architecture, incorporating saliency, to save tremendous amount of computation. This architecture is based on thresholding of mutual information between successive frames for flagging frames requiring re-computation of saliency, and use of motion vectors for propagation of saliency values. © 2013 Elsevier B.V. All rights reserved.
About the journal
JournalSignal Processing: Image Communication