Get all the updates for this publication
Extract of Ulmus wallichiana is being used as traditional medicine used for the treatment of fractured bones however the effect of its individual flavonols is not known. The present study was conducted to investigate the effect of its novel flavonol, (2S, 3S)-(+)-30, 40, 5, 7-tetrahydroxydihydroflavonol-6-C-b-D-glucopyranoside named as Ulmoside A (UA), on lipopolysaccharides (LPS) treated neurons. LPS treatment to neuronal cells caused significant cytotoxicity, reactive oxygen species generation, depletion in glutathione and mitochondrial impairment which were significantly inhibited with UA treatment. LPS treatment also caused significant translocation of cytochrome-c, decreased level of Bcl2, increased level of Bax and cleaved caspase-3 in neuronal cells reflecting the involvement of intrinsic apoptotic pathway in neuronal death which was attenuated with UA treatment. Since LPS is a well known pro-inflammatory agent it also offered the significant increase in proinflammatory cytokines (tumor necrosis factors-α & interleukin 1-beta) however, UA treatment did not exhibit significant inhibition against LPS induced inflammatory response. LPS also caused the augmented level of inducible nitric oxide synthase (iNOS) which was also not inhibited with co treatment of UA. We have also observed the significant DNA fragmentation and augmented level of cleaved Poly (ADP-Ribose) polymerase 1 after LPS treatment which was significantly reverted with UA treatment. Findings suggested that UA acts through mitochondria and exhibited its anti-oxidative and anti-apoptotic activities in neuronal cells while no significant anti-inflammatory activity and effect on iNOS were observed. © 2019 Elsevier B.V.
Journal | Data powered by TypesetNeuroToxicology |
---|---|
Publisher | Data powered by TypesetElsevier B.V. |
ISSN | 0161813X |
Open Access | No |