We illustrate the principle of a cryptographic switch for a quantum scenario, in which a third party (Charlie) can control to a continuously varying degree the amount of information the receiver (Bob) receives, after the sender (Alice) has sent her information through a quantum channel. Suppose Charlie transmits a Bell state to Alice and Bob. Alice uses dense coding to transmit two bits to Bob. Only if the 2-bit information corresponding to the choice of the Bell state is made available by Charlie to Bob can the latter recover Alice's information. By varying the amount of information Charlie gives, he can continuously alter the information recovered by Bob. The performance of the protocol as subjected to the squeezed generalized amplitude damping channel is considered. We also present a number of practical situations where a cryptographic switch would be of use. © 2012 Springer Science+Business Media, LLC.