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Neurobiology of Disease

The Inflammasome Sensor, NLRP3, Regulates CNS
Inflammation and Demyelination via Caspase-1 and
Interleukin-18
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Inflammation is increasingly recognized as an important contributor to a host of CNS disorders; however, its regulation in the brain is not
well delineated. Nucleotide-binding domain, leucine-rich repeat, pyrin domain containing 3 (NLRP3) is a key component of the inflam-
masome complex, which also includes ASC (apoptotic speck-containing protein with a card) and procaspase-1. Inflammasome formation
can be triggered by membrane P2X, R engagement leading to cleavage-induced maturation of caspase-1 and interleukin-1f3 (IL-13)/IL-
18. This work shows that expression of the Nirp3 gene was increased >100-fold in a cuprizone-induced demyelination and neuroinflam-
mation model. Mice lacking the Nirp3 gene (NIrp3 ~'~) exhibited delayed neuroinflammation, demyelination, and oligodendrocyte loss
in this model. These mice also showed reduced demyelination in the experimental autoimmune encephalomyelitis model of neuroin-
flammation. This outcome is also observed for caspl ~'~ and IL-18 ~'~ mice, whereas IL-18 '~ mice were indistinguishable from
wild-type controls, indicating that Nlrp3-mediated function is through caspase-1 and IL-18. Additional analyses revealed that, unlike the
IL-1B8 ™'~ mice, which have been previously shown to show delayed remyelination, NIrp3 ~'~ mice did not exhibit delayed remyelination.
Interestingly, IL-18 "'~ mice showed enhanced remyelination, thus providing a possible compensatory mechanism for the lack of a
remyelination defect in NIrp3 ~'~ mice. These results suggest that NLRP3 plays an important role in a model of multiple sclerosis by
exacerbating CNS inflammation, and this is partly mediated by caspase-1 and IL-18. Additionally, the therapeutic inhibition of IL-18

might decrease demyelination but enhance remyelination, which has broad implications for demyelinating diseases.

Introduction
CNS inflammation (neuroinflammation) is a key component
of many neurological diseases including multiple sclerosis
(MS), Parkinson’s disease, and Alzheimer’s disease. MS results
from neuroinflammation characterized by lymphocyte/mac-
rophage infiltration, microglial and astrocytic activation, en-
hanced cytokine/chemokine production, demyelination, and
axonal loss (Sospedra and Martin, 2005; Pittock and Lucchi-
netti, 2007). Understanding the mechanisms by which neuroin-
flammation affects demyelination is important for therapeutic
development.

Several families of innate immune receptors or sensors
have been identified, with the nucleotide-binding domain,
leucine-rich repeat containing (NLR) family receiving signif-
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icant attention because of its genetic linkage to human immu-
nologic diseases and its role in immune regulation (Harton et
al., 2002; Ting et al., 2006). NLR family, Pyrin-domain con-
taining 3 (NLRP3) (also Cryopyrin, NALP3, PYPAF1, CIASI)
represents a core component of a caspase-1-activating inflam-
masome complex, composed of an NLR protein, the adaptor
molecule apoptotic speck-containing protein with a card (ASC),
and procaspase-1 (Sutterwala et al., 2006a,b). Activated caspase-1
in turn cleaves >70 substrates including the proinflammatory
cytokines interleukin-13 (IL-18) and IL-18 (Shao et al., 2007;
Keller et al., 2008). NLRP3 forms an inflammasome in response
to bacterial RNA and toxins (Kanneganti et al., 2006a,b), viruses
(Allen et al., 2009; Thomas et al., 2009), ATP (Mariathasan et al.,
2006), uric acid (Martinon et al., 2006), hyaluronan (Yamasaki et
al., 2009), amyloid- 3 (Halle et al., 2008), asbestos, silica (Dostert
et al., 2008; Hornung et al., 2008), and alum (Hornung et al.,
2008; Li et al., 2008). NLRP3 gene mutations have been identified
in dominantly inherited autoinflammatory syndromes collec-
tively referred to as Cryopyrin-associated periodic syndromes
(CAPS) (Neven et al., 2004; Ting and Davis, 2005; Jha and Ting,
2009) characterized by hyperactivation of the inflammasome
complex and increased IL-13 (Neven et al., 2004; Goldbach-
Mansky et al., 2006). CAPS symptoms are treatable with the IL-1
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receptor antagonist (Rigante et al., 2006). Recently, two studies
reported MS-like lesions including periventricular infiltrates and
corpus callosum demyelination in CAPS patients, suggesting a
possible link between NLRP3 and neuroinflammation and demy-
elination (Lequerre et al., 2007; Compeyrot-Lacassagne et al.,
2009). However, the role of NLRP3 in CNS inflammation and
demyelination is not understood.

In this study, we used the cuprizone-induced demyelination
model to evaluate the role of NLRP3 in CNS inflammation. This
model has several advantages: (1) it exhibits type III and IV MS
neuropathology characterized by microglial infiltration and as-
trogliosis without T-cell infiltrates (Lucchinetti et al., 2000; Liu et
al., 2010), (2) it is easily induced by administering cuprizone
through the chow, (3) the disease course follows a predictable
time course and pathology, and (4) remyelination can be initiated
by withdrawing the cuprizone (Matsushima and Morell, 2001).
Using the cuprizone model, we studied mice deficient in genes
encoding NLRP3 (Nilrp3~'"), IL-18 (IL-18 '), IL-18 (IL-
187'7), and caspase-1 (caspl ~' ) asa way to examine the role of
the NLRP3 inflammasome complex in CNS inflammation and
demyelination in vivo. We found a significant role for the NLRP3
inflammasome pathway in the activation of neuroinflammation.
In addition, we also describe a role for IL-18 in demyelination
and remyelination.

Materials and Methods

Mice. Nlrp3 '~ mice were provided by Millennium Pharmaceuticals
through Drs. Fayaz Sutterwala and Richard Flavell (Yale University, New
Haven, CT) and were further backcrossed to C57BL/6 mice for a total of
nine generations. Caspl '~ and IL-13 '~ were kindly provided by Dr.
Richard Flavell (Yale University, New Haven, CT) and Dr. David Chaplin
(University of Alabama, Birmingham, AL) (Shornick et al., 1996), re-
spectively. C57BL/6 mice [wild type (WT)] were purchased from the
National Cancer Institute (Bethesda, MD) and The Jackson Laboratory.
IL-18 '~ breeder mice were purchased from The Jackson Laboratory
and bred in-house to generate mice for the cuprizone studies. All mice
were 8—10 weeks of age before the start of treatment. All animal proce-
dures conducted were approved by the Institutional Animal Care and
Use Committee of University of North Carolina at Chapel Hill.

Cuprizone treatment. Eight- to 10-week-old male mice were fed
0.2% cuprizone [oxalic bis(cyclohexylidenehydrazide)] (Sigma-Aldrich)
mixed into ground chow ad libitum for 6 weeks to induce progressive
demyelination. Untreated control mice were maintained on a diet of
normal pellet chow. During cuprizone treatment, mice showed lethargic
movement, weight loss (supplemental Fig. 1, available at www.jneurosci.
org as supplemental material), ruffled hair, and altered gait as described
previously (Arnett et al., 2001; Franco-Pons et al., 2007). For remyelina-
tion studies, mice were fed cuprizone mixed into ground chow ad libitum
for 6 weeks followed by regular chow to allow for remyelination (Arnett
etal., 2001).

Induction of experimental autoimmune encephalomyelitis. Myelin oli-
godendrocyte glycoprotein (MOG)-induced experimental autoimmune
encephalomyelitis (EAE) using the MOGs;_s5 peptide was performed as
previously described (Zhang et al., 2010). Animals were scored daily by
two independent investigators.

Tissue preparation. Mice were deeply anesthetized and intracardially
perfused with PBS followed by 4% paraformaldehyde (PFA). Brains were
removed, postfixed in PFA, and embedded in paraffin. Coronal sections
(5 um) were cut at the fornix region of the corpus callosum. All analyses
were restricted to the midline corpus callosum as described previously
(Arnett et al., 2001). Some analyses were also performed lateral to the
midline to confirm results at the midline.

Staining. To examine demyelination, paraffin sections were rehy-
drated through a graded series of alcohol washes and stained with Luxol
fast blue—periodic acid/Schift base (LFB-PAS) (Sigma-Aldrich) as de-
scribed previously (Arnett et al., 2002). Sections were read by three
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blinded readers and graded on a scale from 0 (complete myelination) to
3 (complete demyelination). Higher scores indicate greater pathology. For
the detection of microglia/macrophages, tissue sections were rehydrated and
permeabilized with 0.1% Triton/PBS for 20 min at room temperature (RT)
and then incubated with Ricinus communis agglutinin-1 (RCA-1) lectin
(1:500; Vector) at 37°C for 1 h. Only RCA-17 cells with observable
4',6'-diamidino-2-phenylindole (DAPI)-stained nuclei were included in
the quantification.

Immunohistochemistry. Immunohistochemistry was performed on 5
pum paraffin embedded sections that were deparaffinized and rehydrated
through alcohols as described previously (Arnett et al., 2002). For the
detection of mature oligodendrocytes, the sections were processed by
boiling in antigen unmasking solution (1:100; Vector) for 13 min in a
microwave. These sections were permeabilized with 0.1% Triton/PBS
for 20 min and incubated with 2% normal goat serum (NGS) in 0.1%
Triton/PBS for 20 min at RT. Subsequently, the sections were incu-
bated with rabbit anti-mouse polyclonal antibody, anti-glutathione
S-transferase 7 subunit (GSTr) (1:500; Assay Designs), at 4°C overnight.
Sections were then washed in PBS and incubated with the appropriate
biotinylated antibody against primary antibody (1:100; Vector) and
Texas Red-conjugated avidin (1:500; Vector). To detect astrocytes, sec-
tions were incubated with 5% NGS in 0.1% Triton/PBS for 20 min at RT.
Subsequently, the sections were washed and incubated with rabbit anti-
cow monoclonal antibody to glial fibrillary acidic protein (GFAP) (1:100;
Dako) and goat anti-rabbit fluorescein-conjugated secondary antibody
(1:100; Vector). To detect microglia, sections were processed by boiling
in antigen unmasking solution (1:100; Vector) for 13 min in a micro-
wave. These sections were permeabilized with 0.1% Triton/PBS for 10
min at RT. Subsequently, the sections were washed and incubated with
goat anti-mouse polyclonal antibody to ionized calcium binding adaptor
molecule-1 (Iba-1) (1:100; Abcam) and rabbit anti-goat biotin-
conjugated secondary antibody (1:500; Vector). After PBS washes, the
sections were incubated with Alexa 594-conjugated avidin (1:500; In-
vitrogen) for 1 h at RT. For the detection of 2,3’ -cyclic nucleotide phos-
phodiesterase (CNPase), the sections were processed by boiling in
antigen unmasking solution (1:100; Vector) for 13 min in a microwave.
These sections were permeabilized with 0.1% Triton/PBS for 20 min and
incubated with 5% NGS in 0.1% Triton/PBS for 20 min at RT. Subse-
quently, the sections were incubated with chicken polyclonal antibody to
CNPase (1:500; Millipore Bioscience Research Reagents) at RT for 1 h.
Sections were then washed in PBS and incubated with rabbit polyclonal
to chicken IgY biotin (1:500; Abcam) for 1 h at RT. After PBS washes, the
sections were incubated with Alexa 594-conjugated avidin (1:500; In-
vitrogen) for 1 h at RT. Immunopositive cells with an observable DAPI-
stained nucleus were counted blindly twice. Cell counts are averages of at
least 9 and up to 14 mice per time point.

Terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick
end labeling. To identify apoptotic cells in the brain, the terminal deoxy-
nucleotidyl transferase-mediated biotinylated UTP nick end labeling
(TUNEL) assay was used. Briefly, 5 um paraffin embedded sections were
rehydrated and permeabilized as described previously. TUNEL was per-
formed using the in situ cell death detection kit (Roche). For the colocal-
ization of TUNEL with GST# " or RCA " cells, sections were stained for
GST7r or RCA before TUNEL staining.

Imaging. All cell counts were taken from the midline of the corpus
callosum, confined to an area of 0.033 mm? taken with a 50X oil-
immersion objective. An Olympus BX-40 microscope with camera
(Optronics Engineering) and Scion Image acquisition software was used
for taking images.

Reverse transcription-PCR and quantitative real-time reverse transcription-
PCR. Total RNA was isolated from a dissected region of the brain
containing the corpus callosum of wild-type and Nlrp3 ~/~ mice at
several points during and after cuprizone treatment. RNA isolation
was performed using Trizol reagent (Invitrogen) under RNase-free
conditions.

Protein analysis. Total protein was extracted from the forebrains of
cuprizone-treated and untreated control C57BL/6 mice. Briefly, corpus
callosi were homogenized on ice in 600 wl of radioimmunoprecipitation
assay buffer containing protease inhibitors. The homogenate was centri-
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Figure1. Increasesin NLRP3 expression coincide with peak disease symptoms in the cuprizone model. a, Nlrp3 mRNA increases
during cuprizone-induced demyelination. Nirp3 transcript was detected by real-time quantitative PCR and the quantity at 0 week
was set to 1. Mrp3 mRNA increased progressively reaching a maximum of ~120-fold after 5 weeks of cuprizone treatment
concurrent with microglia/macrophage recruitment. b, Increase in IL-1/3 release is concurrent with the increase in Nlrp3 expres-
sion during demyelination. IL-13 release was measured by ELISA. ¢, Microglial recruitment to the corpus callosum was reduced in
Nirp3 ="~ mice. Microglia were detected by RCA lectin staining (red). DAPI was used to label nuclei (blue). d, Astrogliosis was
reduced in Nlrp3 '~ mice. GFAP (green) was used to detect astrocyte accumulation in the corpus callosum. The inset shows
isotype control for GFAP antibody. RCA * or GFAP * cells with an observable DAPI-stained nucleus were counted blindly twice. Cell
counts are averages of between 9and 14 mice per time point. e, Microglial infiltration was quantitated and found to be significantly
reducedin Mlrp3 '~ mice (white bars) during demyelination ( p = 0.02at 3 weeks,p = 0.05at 3.5 weeks, p = 0.01at 4 weeks).
f, Astrocyte accumulation was quantitated and found to be significantly reduced in Nlrp3 ~/~ mice during demyelination
(p = 0.03 at 3 weeks, p = 0.001 at 4 weeks). g, Microglial recruitment to the corpus callosum was reduced in Nlrp3 ~/~
mice. Microglia were detected by Iba1 staining (red). DAPI was used to label nuclei (blue). h, Microglial infiltration in Figure
1g was quantitated and found to be significantly reduced in Nirp3 ~/~ mice (white bars) ( p = 0.014 at 3.5 weeks). In e,
f,and h, *p < 0.05, **p << 0.01, ***p < 0.005; n = 9—14. Error bars indicate SEM. Representative images for 9 —14 mice
per time point are shown.
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fuged at 10,000 X g for 15 min at 4°C. Super-
natants were used for additional analyses.
Protein concentrations were determined us-
ing a Coomassie (Bradford) protein assay kit
(Pierce). IL-1B levels were determined by
ELISA (optiEIA ELISA; BD Biosciences). Tu-
mor necrosis factor-a (TNF-a) levels were
determined by ELISA (optiEIA ELISA; BD
Biosciences).

Statistical analysis. Data are expressed as
mean * SEM. Unpaired Student’s ¢ tests were
used to statistically evaluate significant differ-
ences. Differences were considered statistically
significant if p < 0.05.

Results

Nirp3 expression is increased in the
cuprizone model of demyelination
Nirp3 transcript expression in the CNS of
cuprizone-treated C57BL/6 mice was exam-
ined by real-time quantitative PCR ampli-
fication. Nlrp3 expression was found to
increase progressively to >120-fold by
the 4 week time point of a course of
cuprizone-induced demyelination (Fig.
la). This increase coincided with the peak
of inflammatory cell infiltration, demyeli-
nation, and mature oligodendrocyte death.
Protein lysates from corpus callosi of
cuprizone-treated Nlrp3 '~ and control
mouse brains analyzed by IL-18 ELISA
showed a similar increase in IL-18 pro-
tein as NIrp3 mRNA, supporting a func-
tional increase in NLRP3 activity (Fig.
1b). This corroborates results from a pre-
vious study that quantified the number of
IL-18™ cells during cuprizone-induced
demyelination and remyelination (Mason
etal., 2001). Baseline cytokine levels were
similar in Nlrp3 '~ and control mouse
brains as measured by IL-18 and TNF-«
ELISA (supplemental Fig. 2, available at
www.jneurosci.org as supplemental ma-
terial). The lack of a difference in IL-183
levels between Nirp3 ~/~ and control mice
is not surprising as this has been reported
previously by others (Mayer-Barber et al.,
2010). Many proteases can cleave pro-IL-
1B, such as by Fas ligand (Miwa et al.,
1998), human mast cell chymase (Omoto
etal.,2006), trypsin and plasmin (Matsus-
hima et al., 1986), proteinase 3 (Coeshott
et al., 1999), neutrophil elastase (Black et
al., 1988), cathepsin G (Hazuda et al,,
1990), and matrix metalloproteinases
(Schonbeck et al., 1998). However, the use
of IL-18 ™'~ mice indicates that this cyto-
kine is not a determining factor in the de-
myelination phase of the cuprizone
model, which supports a previous publi-
cation (Mason et al., 2001). A lack of a
difference in TNF-a is typical of NLRP3-
deficient mice (Mariathasan et al., 2006;
Sutterwala et al., 2006a).
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Recruitment of microglia and
astrocytes is delayed in

NIrp3 ™'~ mice

To explore whether NLRP3 has a role dur-
ing cuprizone-induced inflammation, we
used mice lacking the Nirp3 gene. WT and
Nirp3~'~ mice showed similar reduction
in weight during the course of cuprizone
treatment (supplemental Fig. 1, available
at www.jneurosci.org as supplemental
material). We first examined whether de-
letion of this gene in mice had an effect on
microglial accumulation and astrogliosis
(Fig. 1c—f). Microglia are resident im-
mune cells of the CNS (Hanisch and Ket-
tenmann, 2007). Activated microglia can
phagocytose cellular debris, present an-
tigens to T-cells, and release cytokines
and chemokines (Hanisch and Ketten-
mann, 2007; Napoli and Neumann,
2009). Activated microglia and astrocytes
perform several overlapping roles during
neuroinflammation (Dong and Benveniste,
2001). Microglial populations at the cor-
pus callosum were identified by RCA-1
lectin (Fig. 1¢) and Iba-1 staining (Fig. 1g).
Astroglial populations at the corpus callo-
sum were identified by GFAP staining
(Fig. 1d). Untreated, age-matched (0
week) NIrp3 '~ mice and C57BL/6 (WT)
controls showed no difference in the
quantitation of microglia and astrocytes
at the corpus callosum (Fig. 1c—h). A his-
tological representation of these data is
shown in Figure 1, ¢, d, and g. Quantita-
tion is shown in Figure 1, ¢, f, and h. At 3,
3.5, and 4 weeks of cuprizone treatment,
there was a progressive and significant
(p = 0.02 at 3 weeks, p = 0.05 at 3.5
weeks, p = 0.01 at 4 weeks) reduction in
microglial infiltration in Nlrp3 /" mice
relative to WT controls as measured by
RCA staining (Fig. le). Similarly, there
was a progressive and statistically signifi-
cant reduction in astrogliosis in the
Nirp3~'~ mice at weeks 3 and 4 of cupri-
zone treatment (Fig. 1f) (p = 0.03 at 3
weeks, p = 0.001 at 4 weeks). These results
indicate that NLRP3 enhances microglia
accumulation and astrogliosis in the af-
fected tissues. After 5 weeks of cuprizone

treatment, microglial accumulation and astrogliosis between
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Figure 2.  Microglial infiltration and astrogliosis in Nirp3 '~ are delayed in regions lateral to the midline corpus callosum
relative to control WT mice after 3 weeks of cuprizone-induced demyelination. a, Microglial infiltration and astrogliosis were also
studied in two separate fields on the left-hand side (LHS) and right-hand side (RHS), respectively, lateral to the midline corpus
callosum as outlined by gray boxes in the schematic. b, Microglial recruitment on the LHS to the midline corpus callosum was
reducedin Nlrp3 ~'~ mice. ¢, Microglial infiltration on the LHS was quantitated and found to be significantly reducedin Nirp3 ~/~
mice (white bars) during demyelination ( p = 0.0008 at 3 weeks). d, Astrogliosis on the LHS to the midline corpus callosum was
reducedin Nlrp3 ~/~ mice. e, Astrogliosis was quantified on the LHS and was reduced in Nlrp3 ~/~ mice ( p = 0.028 at 3 weeks).
f, Microglial recruitment on the RHS to the midline corpus callosum was reduced in Nlrp3 ~'~ mice. g, Microglial infiltration on the
RHS was quantitated and found to be significantly reduced in Nirp3 ~/~ mice (white bars) during demyelination ( p = 0.036 at 3
weeks). h, Astrogliosis on the LHS to the midline corpus callosum was reduced in Nlrp3 ~/~ mice. i, Astrogliosis was quantified on
the LHS and was reducedin Nlrp3 '~ mice ( p = 0.05 at 3 weeks). Microglia were detected by RCA lectin staining (red). DAPI was
used to label nuclei (blue). GFAP (green) was used to detect astrocyte accumulation in the corpus callosum. RCA * or GFAP * cells
with an observable DAPI stained nucleus were counted blindly twice. There was no statistically significant difference within
genotypes on the LHS or RHS that would suggest any laterality. Cell counts are averages of between four and six mice per time
point. *p << 0.05, ***p << 0.005. Error bars indicate SEM.

Figure 2a. Both microglial infiltration and astrogliosis were sig-
nificantly reduced in Nlrp3 ™'~ mice compared with C57BL/6

Nirp3 ™'~ and C57BL/6 control animals were similar (Fig. le,f).
This is consistent with other studies of the cuprizone model
wherein the removal of inflammatory genes has not affected neu-
ropathology after this time point (Arnett et al., 2001; Mason et al.,
2001). As an additional assessment of microglial cells, Iba-1 stain-
ing at 3.5 weeks of cuprizone treatment showed a similar reduc-
tion in microglial infiltration as RCA in Nlrp3 ™'~ mice relative to
WT controls (Fig. 1) ( p = 0.014 at 3.5 weeks). In addition to the
midline corpus callosum, microglial infiltration and astrogliosis
were also studied in two separate fields lateral to the midline
corpus callosum as outlined by gray boxes in the schematic in

controls, similar to the reduction observed at the midline corpus
callosum (Fig. 2b—i).

Demyelination is delayed in cuprizone-treated Nlrp3 ~'~ mice
A second component of the cuprizone model that is relevant to
human diseases is the demyelination process. To assess whether
NLRP3 plays a role in demyelination and in the loss of mature
oligodendrocytes, Nlrp3 '~ mice along with age-matched WT
control mice were treated with cuprizone for 3, 3.5, 4, and 5
weeks. Representative scoring of the extent of demyelination as
measured by LFB-PAS staining is shown in Figure 3a. Slides were



Jha et al. @ NLRP3 Regulates CNS Inflammation and Demyelination

a b e WT
oNIrp3™

Score 0 Score 3

=gl ="

(%]

LFB score

No Complete 0
Demyelination Demyelination 0 3

(2]
o

B
T

owT
B Nirp3™”

T

EAE
3Wk

Clinical scores
T

=
T

0.0+
0 5 10 15 20 25
Wks of EAE

Figure3.

35 4 5
Wks of cuprizone treatment

NLRP3 exacerbates demyelination in the corpus callosum during cuprizone-induced demyelination and experimental
autoimmune encephalomyelitis. a, The schematic depicts the scale for scoring of demyelination. Each slide was scored by three

J. Neurosci., November 24, 2010 - 30(47):15811-15820 * 15815

data indicate that NLRP3 delays demy-
elination but does not obviate this pro-
cess, suggesting the existence of other
compensatory mechanisms. This is con-
sistent with studies of other inflamma-
tory genes in the cuprizone model
(Arnett et al., 2001, 2002; Mason et al.,
2001; Plant et al., 2007). A TUNEL assay
was used to assess differences in cell death
after 3 weeks of cuprizone-induced demy-
elination. NIrp3 ™/~ mice showed rela-
tively less apoptotic cells compared with
C57BL/6 controls at the midline corpus
callosum (Fig. 4¢, inset). These apoptotic
cells were identified as mature oligoden-
drocytes by colocalization with the oligo-
dendrocyte marker GSTw (Fig. 4c).
Double staining for apoptotic TUNEL ™
cells with the microglial marker RCA
showed that microglia were not undergo-
ing apoptosis (Fig. 4d) as described previ-
ously (Arnett et al, 2001). As an
additional analysis of oligodendrocytes
and myelination, a CNPase stain was per-
formed and showed similar results as the
LFB and GSTr data (Fig. 4e).

Nirp3~"

Myelin
Nuclei

independent blinded readers on a score of 0 (no demyelination) to 3 (complete demyelination). All scores are restricted to the

midline corpus callosum (boxed area). b, Nlrp3 '~ mice (open circles) show delayed demyelination compared with WT controls
(filled circles). Demyelination was quantitated by LFB-PAS staining. Each circle represents the averaged observed LFB score from
three readers for one mouse. The mean value of each data set is depicted by a red line ( p = 0.003 at 3 weeks, p = 0.012 at 3.5
weeks, p = 0.025 at 4 weeks). ¢, Clinical scores for EAE showed significantly reduced disease in Nlrp3 ~/~ mice relative to WT
controls. d, CNPase staining of paraffin-embedded 5 jum spinal cord sections from Nirp3 ~/~ and WT control mice during EAE
showed delayed loss of myelin in Nlrp3 ~/~ mice. *p << 0.05, ***p << 0.005. Error bars indicate SEM.

read by three blinded readers on a scale of 0 (no demyelination)
to 3 (complete demyelination). WT mice showed significant de-
myelination initiating at the 3 week time point and continuing to
the end of the study at the 5 week time point (Fig. 3b). Nlrp3 '~
mice showed a significant delay in demyelination at the 3, 3.5, and
4 week time points when compared with WT controls (Fig. 3b)
(p = 0.003 at 3 weeks, p = 0.012 at 3.5 weeks, p = 0.025 at 4
weeks). To assess whether the role of NLRP3 in exacerbating
demyelination disease severity and demyelination is found in an-
other disease model, we used EAE, a model of T-cell-mediated
demyelination for multiple sclerosis. At the 3 week time point,
Nirp3~'~ mice showed significantly reduced disease scores (Fig.
3¢) and retained more myelin as determined by the CNPase stain
for myelin (Fig. 3d) when compared with wild-type controls. A
more comprehensive study of this gene in EAE is beyond the
scope of this report and will be reported elsewhere.

LFB is a screening assay for myelin that requires additional
verification with more specific stains such as GSTr, a marker of
the mature oligodendrocyte population. Before cuprizone treat-
ment (0 week), Nirp3 ~/~ mice and WT controls showed no dif-
ference in mature oligodendrocyte populations at the corpus
callosum as shown in Figure 4a. After 3, 3.5, and 4 weeks of
cuprizone treatment, the reduction of mature oligodendrocytes
was attenuated in NIrp3 ~/~ mice relative to C57BL/6 controls. A
quantitation of the composite data is shown in Figure 4b (p =
0.004 at 3 weeks, p = 0.02 at 3.5 weeks, and p = 0.002 at 4 weeks).
After 5 weeks of cuprizone treatment, Nlrp3 ~/~ and WT con-
trol mice showed no difference in demyelination and mature
oligodendrocyte depletion (Figs. 3b, 4a,b). Together, these

Demyelination, mature oligodendrocyte
death, astrogliosis, and microglial
infiltration during cuprizone-induced
demyelination are independent of IL-13
The above results indicate the importance
of NLRP3 in pathology associated with
the cuprizone model; hence we examined
the role of an inflammasome end product (i.e., IL-18) in this
model. A previous study of IL-18 '~ mice showed delayed re-
myelination but no difference in demyelination in the cuprizone
model, although this latter issue was only peripherally addressed
in that report (Mason et al., 2001). To elaborate on these results,
we performed a more extensive analysis of cuprizone-induced
demyelination in IL-18 '~ mice. IL-18 '~ mice showed no dif-
ference in demyelination (Fig. 5a) ( p = 0.07 at 3 weeks, p = 0.55
at 4 weeks), loss of GST# ™ mature oligodendrocyte (Fig. 5b)
(p = 0.29 at 3 weeks, p = 0.16 at 4 weeks), accumulation of
microglia (Fig. 5¢) (p = 0.56 at 3 weeks, p = 0.15 at 4 weeks)
or astrogliosis (Fig. 5d) (p = 0.80 at 3 weeks, p = 0.26 at 4
weeks) during demyelination. This indicates that all of the
measured neuropathology observed in the cuprizone model is
IL-1B independent.

Cuprizone-induced microglial accumulation, astrogliosis,
and demyelination are partially dependent on caspase-1
NLRP3 is required for the processing of caspase-1, which in turn
cleaves pro-IL-13 and IL-18 to their mature active forms (Sutter-
wala et al., 2006b). To establish whether NLRP3-dependent CNS
inflammation and demyelination are caspase-1 dependent, we
studied caspl ~/~ mice. Caspl ~'~ mice showed a statistically sig-
nificant difference when compared with WT controls, in the ex-
tent of demyelination as measured by LFB (Fig. 6a) ( p = 0.02 at
3 weeks, p = 0.07 at 4 weeks) and in the number of mature
oligodendrocyte as detected by GST#r immunostaining (p =
0.001 at 3 weeks, p = 0.45 at 4 weeks, and p = 0.39 at 5 weeks)
after cuprizone treatment (Fig. 6b). Caspl '~ mice also showed
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delayed microglial infiltration ( p = 0.008
at 3 weeks, p = 0.05 at 4 weeks, and p =
0.19 at 5 weeks) and astrogliosis ( p = 0.02
at 3 weeks, p = 0.01 at 4 weeks, and p =
0.37 at 5 weeks) when compared with WT
controls (Fig. 6¢,d, respectively). These re-
sults suggest that the phenotype of
caspl ~'~ mice is similar to mice deficient
in the Nlrp3 gene.

Nirp3™"

Demyelination, mature oligodendrocyte

Isotype control
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controls showed delayed demyelination
(Fig. 7a) ( p = 0.04 at 3 weeks) and mature
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cuprizone treatment (Fig. 7b) ( p = 0.00023
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cantly reduced microglial infiltration (Fig.
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Remyelination in the cuprizone model
is IL-18 dependent

Regulation of oligodendrogenesis by pro-
genitors is a potential therapeutic inter-
vention for the functional loss after
demyelination in MS. Previous studies in
the cuprizone model have shown that re-
myelination is dramatically reduced in IL-
18" mice (Mason et al., 2001); thus, we
investigated whether NLRP3 via its regu-
lation of IL-18 processing may regulate
oligodendrogenesis and remyelination.
To assess the role of NLRP3 in remyelination, Nlrp3 '~ mice
along with age-matched C57BL/6 control (WT) mice were
treated with cuprizone for 6 weeks and then returned to regular
chow to allow for remyelination. Surprisingly, at 8, 10, and 12
weeks of this regimen when remyelination was allowed to occur
for 2, 4, and 6 weeks, there was no difference in mature ODG
repopulation (Fig. 8b) ( p = 0.99 at 8 weeks, p = 0.74 at 10 weeks,
and p = 0.56 at 12 weeks) and myelin staining (Fig. 8a) ( p = 0.99
at 8 weeks, p = 0.36 at 10 weeks, and p = 0.89 at 12 weeks) of the
corpus callosum in Nlrp3 ~/~ mice relative to C57BL/6 controls.
This suggests that remyelination does not appear to be influenced
by the absence of NIrp3. However, a more in-depth investigation
showed that IL-18 '~ mice exhibited a faster remyelination as

Nirp3 ~'~ mice as identified with GST7 staining (red). DAPI was used to label nuclei (blue). The inset shows isotype control. b,
Nirp3 ~'~ mice (white bar) show asignificant delay in the loss of mature oligodendrocytes compared with WT controls (black bars)
(p = 0.004at 3 weeks,p = 0.02at 3.5 weeks, and p = 0.002 at 4 weeks). Mature oligodendrocyte depletion was quantitated by
counting GSTar ™ cells that colocalized with a DAPI-positive nucleus. Each image was scored twice in a blind manner. Average
counts with SE are depicted here. ¢, During demyelination, oligodendrocytes undergo apoptosis and are depleted from the corpus
callosum. Mature oligodendrocytes undergoing apoptosis were detected by TUNEL (indicated by yellow arrows). The inset shows
quantitation of TUNEL * cells. Nlrp3 '~ mice showed relatively less TUNEL ™ cells compared with WT control mice. d, TUNEL *
cellsare not microglia. Double staining for microglia by RCA and apoptotic cells (yellow arrows) by TUNEL showed no colocalization.
e, (NPase staining of paraffin-embedded 5 tum brain sections from Nlrp3 ~/~ and WT control mice during demyelination shows
delayed loss of myelin in the corpus callosum of Nlrp3 ~/~ mice. Representative images for 9 —14 mice per time point are shown.
Inbandd, *p < 0.05, ***p < 0.005. Error bars indicate SEM.

measured by LFB-PAS staining (Fig. 8¢) ( p = 0.00015 at 8 weeks,
p = 0.014 at 10 weeks) and CNPase staining (Fig. 84) for myelin.
These results reveal a previously unknown detrimental role for
IL-18 in remyelination that requires more in-depth analysis that
is beyond this report. We hypothesize that this harmful role of
IL-18 during remyelination might negate the beneficial role of
IL-1p described in the literature. This provides a feasible expla-
nation for why Nlrp3 ™'~ mice that lack both cytokines do not
show a difference from wild-type controls.

Discussion

The NLR genes, particularly those associated with the inflamma-
some function, have secured much interest as sensors of PAMPs
(pathogen-associated molecular patterns) as well as DAMPs
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Figure 5.  IL-183 does not appear to be required in demyelination, astrogliosis, microglial

infiltration, and mature oligodendrocyte depletion. a, /-3 ~/~ mice exhibit no difference in
demyelination. Each circle represents the averaged observed LFB score from three readers for
one mouse. Demyelination was quantitated by LFB-PAS staining. /L-78 /" mice (open cir-
cles) show no difference in demyelination compared with WT controls (filled circles) ( p = 0.07
at 3 weeks, p = 0.55 at 4 weeks). b, /L-78 '~ mice (white bars) exhibit no difference in
mature oligodendrocyte number compared with age-matched WT controls (black bars) ( p =
0.29at 3 weeks, p = 0.16 at 4 weeks). Mature oligodendrocytes were measured by the GSTr *
stain at the corpus callosum. ¢, /-3 ~/~ mice (white bars) exhibit no difference in microglial
infiltration compared with age-matched WT controls (black bars) ( p = 0.56 at 3 weeks, p =
0.15 at 4 weeks). Microglia were measured by RCA ™ staining at the corpus callosum after 3 and
4weeks of cuprizone treatment. d, /-3 /™~ mice (white bars) exhibit no difference in astro-
gliosis when compared with age-matched WT controls (black bars) ( p = 0.80at 3 weeks, p =
0.26 at 4 weeks). Astrocytes were measured by the GFAP ™ stain at the corpus callosum after 3
and 4 weeks of cuprizone treatment. GFAP was used to detect astrocyte accumulation in the
corpus callosum. RCA * or GFAP * cells with an observable DAPI-stained nucleus were counted
blindly twice. Cell counts for b—d are averages of between 6 and 10 mice per time point. Error
bars indicate SEM.
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Figure 6.  Roles of caspase-1 in demyelination, mature oligodendrocyte depletion, micro-
glialinfiltration, and astrogliosis. a, Casp7 ~/~ (open circles) and age-matched WT mice (filled
circles) exhibit a difference in the extent of demyelination ( p = 0.02 at 3 weeks, p = 0.07 at 4
weeks). b, Casp7 ~/~ mice (white bars) and age-matched WT controls (black bars) exhibit a
difference in mature oligodendrocyte number ( p = 0.001at 3 weeks, p = 0.45at 4 weeks, and
p = 0.39at5weeks). ¢, CaspT ~~ mice (white bars) exhibit reduced microglial infiltration at
the corpus callosum when compared with age-matched WT controls (black bars) ( p = 0.008 at
3weeks, p = 0.05 at4 weeks, and p = 0.19 at 5 weeks). d, Casp1 /™ mice (white bars) exhibit
reduced astrogliosis at the corpus callosum when compared with age-matched WT controls (black
bars) ( p = 0.02 at 3 weeks, p = 0.01 at 4 weeks, and p = 0.37 at 5 weeks). Demyelination was
quantitated by LFB-PAS staining, mature oligodendrocyte by GST7, microglia by RCA, and astrocytes
by GFAP staining as described in Figure 3. *p << 0.05, **p << 0.01, ***p < 0.005. Error bars indicate
SEM. Cell counts for b— d are averages of between 6 and 12 mice per time point.
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Figure 7.  1L-18 exacerbates demyelination, mature oligodendrocyte depletion, microglial

infiltration, and astrogliosis. a— d, Compared with WT controls (filled circles or bars), /-78 ~/~
mice (open circles or bars) showed reduced demyelination as determined by LFB ( p = 0.04 at
3 weeks) (a), delayed mature oligodendrocyte depletion as determined by GST#r * cells ( p =
0.00023 at 3 weeks) (b), reduced microglial infiltration (RCA ™ cells) ( p = 0.019 at 3 weeks)
(), and reduced astrogliosis (GFAP * cells) at the corpus callosum ( p = 0.004 at 3 weeks) (d).
*p < 0.05, ***p < 0.005. Error bars indicate SEM. Cell counts for b— d are the averages of six to
eight mice per time point.

(damage-associated molecular patterns); however, their roles in
CNS inflammatory disorders have not been extensively studied
(Mariathasan et al., 2006; Martinon et al., 2006; Willingham et al.,
2007). In this report, we provide evidence that NLRP3 has a
role in regulating neuroinflammation and demyelination in a
mouse model of cuprizone-induced demyelination. However,
the outcome is much more complex than anticipated. We
found that one of the end products of the inflammasome,
namely IL-183, has no role in any of the pathologic events that
were investigated. Another inflammasome end product, IL-18, was
found to exacerbate demyelination and inflammation. Conven-
tional inflammasome components including NLRP3, caspase-1, and
IL-18 exacerbated inflammatory readouts such as microglial accu-
mulation and astrogliosis, whereas NLRP3, caspase-1, and IL-18
enhanced demyelination and accelerated the loss of mature oli-
godendrocytes. These data reveal a novel and important role for
NLRP3 that has not been appreciated previously.

NLRP3 is known for its classic role in the formation of a mul-
tiprotein complex with ASC and procaspase-1 that is critical for
caspase-1 cleavage and maturation, which in turn is important
for the processing of pro-IL-13/IL-18 to mature IL-13/IL-18. In
the CNS, IL-1B is released primarily by microglia and macro-
phages (Mason et al., 2001). IL-18 promotes leukocyte infiltra-
tion by inducing expression of many cytokines, chemokines, and
adhesion molecules (Shaftel et al., 2007). The release of TL-1B also
mobilizes neutrophils and other immune cells to aid in resolving
infections and promoting wound healing. Chronic release of
IL-1pB is detrimental as it can contribute to skin rashes, inflam-
matory arthritis, and systemic fever (Goldbach-Mansky et al.,
2006). For this reason, IL-18 production is tightly regulated at the
levels of transcription, translation, and release. Previous studies
examining the role of IL-18 in neuroinflammation have not
yielded consistent findings. IL-13 levels in the CSF of MS patients
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correlate with disease susceptibility, se-
verity, and progression (Kantarci et al.,
2000; de Jong et al., 2002). IL-18 immu-
noreactivity has been found in activated
microglia and macrophages during EAE
in rats (Bauer et al., 1993). Treatment with
either sIL-1R (soluble IL-1 receptor) or
IL-1Ra (IL-1 receptor antagonist) reduces
clinical signs of EAE in rats (Jacobs et al.,
1991; Badovinac et al., 1998). IL-13 is cy-
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dicates that the demyelination observed in
the cuprizone model is IL-18 indepen-
dent even though IL-18 levels increase
concurrent with inflammatory cell infil-
tration during demyelination (Mason et
al., 2001).

Since IL-18 '~ and WT control mice
showed no difference in demyelination,
we explored the role of caspase-1 in demy-
elination. Caspase-1 has been implicated
in both human and mouse neuroinflammation. Caspase-1 levels
are significantly increased in peripheral blood mononuclear cells
from MS patients (Huang et al., 2004). Moreover, caspase-1 is
known to contribute to the pathology of EAE (Furlan et al., 1999;
Ahmed et al., 2002). Our studies with caspl ~/~ mice showed
delayed microglial infiltration, astrogliosis, a reduction in mature
oligodendrocyte depletion, and a decrease in demyelination. This
suggests a caspase-1/NLRP3-dependent but IL-13-independent
mechanism that leads to increased demyelination and the loss of
mature oligodendrocytes. Several studies have shown that
caspase-1 has numerous targets besides IL-13 and IL-18, with
upward of 70 substrates (Shao et al., 2007; Keller et al., 2008). It is
likely that the activation of these other substrates is responsible
for the role of NLRP3 and caspase-1 in demyelination.

An alternate cytokine that might explain our data is IL-18.
IL-18 is an 18 kDa member of the IL-1 family of cytokines. IL-18
is produced by several immune and nonimmune cells including
monocytes, splenocytes, keratinocytes, microglia, macrophages,
and astrocytes (Conti et al., 1999; Prinz and Hanisch, 1999;
Sugama et al., 2002). In the CNS, IL-18 induces microglial pro-
duction of proinflammatory cytokines such as IL-13 and TNFa«
and MMPs (matrix metalloproteinases). Extravasation of PMNs
(polymorphonuclear leukocytes) and monocytes/macrophages
is amplified by IL-18-dependent upregulation of ICAM-1 (inter-
cellular adhesion molecule-1) on endothelial cells. IL-18 levels
are elevated in demyelinating cerebral lesions of MS patients
(Balashov et al., 1999; Losy and Niezgoda, 2001; Nicoletti et al.,
2001). Moreover, expression of IL-18 and its receptor on oligo-
dendrocytes is greater in brain tissue from patients with active MS
than in patients with silent MS or from neuropathologically nor-
mal subjects (Cannella and Raine, 2004). In EAE, a murine model

8 10
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Figure 8.  Overall remyelination in the cuprizone model is unaffected by NLRP3 but inhibited by IL-18. a, Nirp3 ~/~ (open
circles) and WT mice (filled circles) show no difference in remyelination during the course of cuprizone treatment ( p = 0.99 at 8
weeks, p = 0.36 at 10 weeks, p = 0.89 at 12 weeks). b, Nirp3 ~/~ (white bars) and WT (black bars) mice show no difference in
mature oligodendrocyte repopulation during remyelination ( p = 0.99 at 8 weeks, p = 0.74 at 10 weeks, p = 0.56 at 12 weeks).
¢, IL-18 '~ (open circles) and WT mice (filled circles) show enhanced remyelination during the course of cuprizone treatment
(p=10.00015at8weeks, p = 0.014at 10 weeks).d, /-8 ~/~ mice show enhanced remyelination by CNPase staining compared
with WT mice. **p << 0.01, ***p << 0.005. Error bars indicate SEM.

of MS in which the induction of MBP (myelin basic protein)-
specific CD4 * T-cells secreting cytokines, particularly IFN-y and
TNF-q, results in limb paralysis, elevated IL-18 mRNA is seen in
the CNS of EAE rats at onset and during the disease (Jander and
Stoll, 1998; Wildbaum et al., 1998). However, EAE studies with
mice deficient in IL-18 (IL-18 ~/~) have not always been consis-
tent. Whereas Shi et al. (2000) reported that IL-18 '~ mice are
resistant to EAE, Gutcher et al. (2006) reported that IL-187'~
mice are susceptible to EAE but IL-18 receptor a-deficient mice
(IL-18Ra~'7) are resistant to EAE indicating the role of a ligand
other than IL-18 acting via IL-18Ra to cause EAE. In our hands,
IL-18 "'~ mice replicated the data obtained with Nlrp3 '~ mice
at the 3 week time point of demyelination. IL-18-deficient mice
showed delayed demyelination, indicating an exacerbatory role
for IL-18 in demyelination. In addition, IL-18-deficient mice
show enhanced remyelination, suggesting a role for IL-18 in in-
hibiting remyelination.

These results show that the neuroinflammatory component of
the disease model is mediated by an NLRP3-, caspase-1-, and
IL-18-dependent pathway. However, remyelination is NLRP3 in-
dependent and IL-18 dependent. Thus, the positive effects of
IL-1B and the negative effects of IL-18 on remyelination might
negate each other in Nilrp3 ™'~ mice. Such a possibility is not
without precedence. For example, another study has found that
IL-18 negated the febrile effect associated with IL-13 (Gatti et al.,
2002). In summary, the role of IL-18 in exacerbating neuroin-
flammation along with its inhibitory role in remyelination indi-
cate that inhibition of IL-18 may prove to be a valuable
therapeutic approach for demyelinating diseases such as MS. This
finding has broad implications for inflammation in other acute
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and chronic neuroinflammatory diseases, including stroke and
Alzheimer’s disease.
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