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Summary

Centrosome asymmetry has been implicated in stem cell fate

maintenance in both flies and vertebrates [1, 2]. Drosophila

neuroblasts, the neural precursors of the fly’s central ner-

vous system [3], contain molecularly and physically asym-

metric centrosomes, established through differences in

pericentriolar matrix (PCM) retention [4–7]. For instance,

the daughter centriole maintains PCM and thus microtu-

bule-organizing center (MTOC) activity through Polo-medi-

ated phosphorylation of Centrobin (Cnb) [7, 8]. The mother

centriole, however, quickly downregulates PCM and moves

away from the apical cortex, randomly migrating through

the cytoplasm until maturation sets in at prophase [4–6, 8].

How PCM downregulation is molecularly controlled is

currently unknown, but it involves Pericentrin (PCNT)-like

protein (PLP) to prevent premature Polo localization and

thus MTOC activity [9]. Here, we report that the centriolar

protein Bld10, the fly ortholog of Cep135, is required to

establish centrosome asymmetry in Drosophila neuroblasts

through shedding of Polo from the mother centrosome.

bld10 mutants fail to downregulate Polo and PCM, gener-

ating two active, improperly positioned MTOCs. Failure to

shed Polo and PCM causes spindle alignment and centro-

some segregation defects, resulting in neuroblasts incor-

rectly retaining the older mother centrosome. Since

Cep135 is implicated in primary microcephaly, we speculate

that perturbed centrosome asymmetry could contribute to

this rare neurodevelopmental disease.

Results and Discussion

In a gene candidate approach to identify molecules required

for centrosome asymmetry in Drosophila neuroblasts, we

identified Bld10/Cep135 as a potential centrosome dematura-

tion regulator. Bld10 is a ubiquitous centriolar protein, local-

izing to centrioles in Drosophila larval neuroblasts and other

cell types ([10] and data not shown).

To investigate centrosome asymmetry, we performed live

imaging experiments in intact third-instar larval brains (see

the Supplemental Experimental Procedures and [11]), labeling

centrosomes with the centriolar markers DSas6::GFP [12] or

DSas4::GFP [13] and mCherry::Jupiter [14]. jupiter encodes

for a microtubule binding protein, sharing properties with

several structural microtubule-associated proteins (MAPs)

[15], and is ideally suited to visualize microtubule dynamics

and microtubule-organizing center (MTOC) activity. In agree-

ment with previous findings [4–6], we found that wild-type

(WT) interphase neuroblasts contained one apical MTOC

only. The second MTOC appeared during prophase in close

proximity to the basal cortex. By prometaphase, both

MTOCs reached maximal activity and intensity (Figures 1A

and 1B, time point 0:00). However, in bld10 mutant interphase

neuroblasts (bld10c04199/Df(3L)Brd15; see the Supplemental

Experimental Procedures and [10]), we observed two centro-

somes of similar size and MTOC activity close together on

the apical cortex. The two centrosomes progressively sepa-

rated from each other until they reached their respective posi-

tions on the apical and basal cortex by prometaphase (Figures

1C and 1D, time point 0:00). Thus, in contrast to the wild-type,

bld10 mutant neuroblasts show symmetric centrosome

behavior. bld10’s centrosome asymmetry defect could be

rescued with bld10::GFP [12] (Figure 1E), and immunohisto-

chemistry experiments confirmed our live imaging results

(data not shown).

The bld10c04199 allele is predicted to produce a truncated

protein, retaining Bld10’s N terminus [10]. We generated a

newN-terminal deletion allele (bld10DN; see the Supplemental

Experimental Procedures and Figures S1A and S1B) [16] that

showed the same centrosome asymmetry phenotype (Figures

S1C and S1D). In addition, we also found neuroblasts contain-

ing monopolar and multipolar spindles (Figures S1D–S1H),

which are not observed with the bld10c04199 allele. This sug-

gests that bld10c04199 is a separation-of-function allele, specif-

ically disrupting centrosome asymmetry. Unless otherwise

noted, all of the experiments described in the following sec-

tions were performed with the bld10c04199 allele.

The lack of centrosome asymmetry in bld10 mutant neuro-

blasts could be due to aberrant centriole migration. For

example, the mother centriole could either fail to migrate

through the cytoplasm or migrates back to the apical cortex

to mature. We tested this hypothesis, measuring centriole

migration as a function of time and observed that centriolar

migration in wild-type and bld10 mutant neuroblasts occur in

two distinct phases: (1) centrioles steadily separated from

each other, followed by (2) a sudden increase in intercentriolar

distance, which peaked when centrioles reached a separation

distance ofw4–6 mm in the wild-type and bld10 mutants (Fig-

ure 1F). Centrioles in bld10 mutants did not require more time

to reach this threshold distance (Figure 1G) and did not return

to the apical cortex to mature (Figure 1C). We conclude that

bld10’s centrosome asymmetry defect is not due to aberrant

centriole migration.

To get mechanistic insight into bld10’s phenotype, we used

live imaging tomeasure the dynamic localization of three GFP-

tagged pericentriolar matrix (PCM) markers: g-tubulin (g-Tub),

Mini spindles (Msps; CKAP5 in vertebrates) and centrosomin

(Cnn; CDK5Rap2 in vertebrates) [17–19]. Wild-type neuro-

blasts showed robust localization of g-Tub, Msps, and Cnn

to the apical centrosome during interphase. After centrosome

splitting, all three PCM markers were downregulated from the

basal centrosome (shedding phase) but reaccumulated during

prophase (maturation phase; Figure 2A and Movie S1). bld10

mutant neuroblasts also correctly localized g-Tub, Msps,

andCnn to the apical interphase centrosome. However, similar

to the MTOC marker Jupiter, g-Tub, Msps, and Cnn were not

downregulated from the separating centriole (Figure 2B and*Correspondence: clemens.cabernard@unibas.ch



Movie S2). We measured centrosome size and plotted a

centrosome asymmetry index (see the Supplemental Experi-

mental Procedures), starting at centrosome splitting until

metaphase. Wild-type centrosomes developed a clear size

asymmetry during the shedding phase and reduced it during

the maturation phase (Figure 2C). bld10 mutant centrosomes

stayed similar in size, manifested in an asymmetry index below

1.5 (Figure 2D). Centrosome size and intensity measurements

also revealed that in most wild-type neuroblasts, g-Tub, Msps,

and Cnn were removed from the basal centrosome w15 min

after centrosome splitting (Figure 2E). Basal wild-type centro-

somes were essentially devoid of g-Tub after that time,
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Figure 1. Bld10 Is Required for Centrosome Asymmetry

(A and C) Wild-type (A) and bld10 mutant (C) third-instar larval neuroblasts expressing the centriolar marker DSas4::GFP (top row) and the MTOC marker

Cherry::Jupiter (middle row). The green and red lines below the image sequences represent Cherry::Jupiter intensity values of the apical (green box) and

basal (red box) centrosomes, respectively.

(B and D) Radial centrosome distribution plot of wild-type (B) and bld10 mutants (D) depicting the maximal deviation of the apical (green) and basal (red)

MTOC in relation to the cell division axis, denoted with the 0� line. Green and red arrows highlight the apical (green)-basal (red) polarity and division axis.

(E) Quantification of centrosome asymmetry phenotype in wild-type, bld10 mutant, and rescued (bld10 mutants, expressing bld10::GFP) neuroblasts ex-

pressing Cherry::Jupiter only.

(F) Average centriolar distance just before centriole separation reaches a maximum. Error bar indicate the SD.

(G) Time to reach average centriolar distance. The difference is statistically not significant (n.s.; p = 0.5748).

Int., intensity; a.u., arbitrary units; MTOC, microtubule-organizing center. Time is shown as hr:min. Scale bar, 5 mm. See also Figure S1.

Centrosome Asymmetry in Fly Neural Stem Cells
1549



A

B

F

C

D

E

G H I

Figure 2. bld10 Mutant Centrosomes Are Able to Mature but Fail to Downregulate PCM

(A and B) Wild-type (A) and bld10 mutant (B) neuroblasts expressing the pericentriolar marker g-tub::GFP and the MTOC marker Cherry::Jupiter. Colored

insert boxes refer to the shedding phase (light blue), the maturation phase (light pink), and the phase in between (light yellow). Since the basal centrosome

sheds almost all PCM, we cannot reliably measure its size once shedding is completed (light yellow). In all panels, the green and red dashed boxes label the

apical daughter and the basal mother centrosome (CS), respectively. Asterisks denote intensity measurements with uncertainty (green line, apical CS; red

line, basal CS).

(C and D) Asymmetry index graph (size of apical or bigger CS divided by the basal or smaller CS) of a representative wild-type (C) or bld10 mutant (D)

neuroblast.

(E) Measured PCM shedding time for g-tub::GFP (green), Cnn::GFP (purple), and Msps::GFP (red) in wild-type neuroblasts. Approximately 15 min after cen-

trosomes split, PCM markers are shed from the basal centrosome. Mean and SD are shown next to individual measurement points.

(legend continued on next page)
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whereas bld10 mutants contained equal amounts of this PCM

marker (Figure 2F). We further compared changes in centro-

some size and found that wild-type apical centrosomes pre-

dominantly grew, whereas basal centrosomes increased

(maturation phase) and decreased (shedding phase) their

size to almost the same extent. bld10 mutant centrosomes

were able to enlarge but showed very little size reduction,

comparable to apical wild-type centrosomes (Figures 2G–2I).

We conclude that bld10 mutant centrosomes are able to

mature but fail to downregulate the PCM markers g-Tub,

Msps, and Cnn.

The results above suggest two possible mechanisms for

centrosome asymmetry: (1) Bld10 could prevent premature

mother centrosome maturation by blocking the precocious

accumulation of PCM proteins. (2) Alternatively, Bld10 could

promote PCM shedding right after centrosomes separate,

thereby preventing the basal mother centrosome to prema-

turely become an MTOC. We devised an in vivo pulse-chase

labeling experiment to distinguish between these two possibil-

ities. To this end, we tagged Cnn at its endogenous locus with

the photoconvertable fluorescent protein mDendra2 [20]

(see the Supplemental Experimental Procedures and [21]). If

Bld10 blocks premature PCM accumulation, mother centrioles

should quickly shed photoconverted Cnn and prematurely

reaccumulate unconverted Cnn in bld10 mutants. Vice versa,

if PCM shedding is compromised, we should be able to follow

the photoconverted centrosomes from the moment they

separate until telophase. We found that apical wild-type

daughter centrioles retained the majority of photoconverted

Cnn::mDendra2 from early interphase until prophase (possibly

longer), indicating that very little Cnn protein gets exchanged.

The basal mother centriole, however, lost photoconverted

Cnn::mDendra2 within approximately 10–15min after centriole

separation (n = 5), confirming that Cnn is shed quickly (Fig-

ure 3A and Movie S3). Interestingly, bld10 centrioles retained

photoconverted Cnn::mDendra2 for at least 45 min after sepa-

ration (n = 7). In some cases, one of the centrioles decorated

with photoconverted Cnn::mDendra2 was even inherited by

the newly formedGMC (Figure 3B andMovie S4). We conclude

that (1) on the apical centrosome, Cnn protein turnover is

absent or significantly reduced during interphase, that (2) on

the basal centrosome, Cnn is shed quickly and replaced with

new Cnn when maturation sets in, and that (3) bld10’s centro-

some asymmetry defect is not due to premature centrosome

maturation. Instead, separating basal centrioles fail to shed

Cnn in particular and possibly PCM proteins in general.

To elucidate the molecular mechanism underlying PCM

shedding, we first analyzed the relationship between Bld10,

Centrobin (Cnb), and Pericentrin (PCNT)-like protein (Plp).

Recently, it was shown that Cnb is necessary and sufficient

for PCM retention on the apical daughter neuroblast centro-

some [8]. However, gain- and loss-of-function experiments

with Cnb did not perturb Bld10’s localization (Figures S2A–

S2C). Similarly, as in thewild-type [7], Cnbwas localized asym-

metrically in bld10 mutants (Figures 4A and 4D). plp mutants

fail to downregulate g-Tub on the mother centrosome [9]. We

found that in plp mutant neuroblasts, the basal centrosome

retained Cnn and MTOC activity during interphase (Figures

S3A and S3B). Interestingly, photoconversion experiments

showed that similar to bld10, Cnn shedding from the basal

centrosome was compromised in plp mutants (n = 4) (Fig-

ure 3C). However, Plp’s localization is not perturbed in bld10

mutant neuroblasts (Figures S2D–S2G), and Bld10 was nor-

mally localized in plp mutants (Figures S2H–S2J). Knockdown

of plp in bld10 mutants (see the Supplemental Experimental

Procedures) did not enhance bld10’s PCM shedding pheno-

type, but due to the occurrence of additional phenotypes (frag-

mented or multiple centrosomes; data not shown), the shed-

ding phenotype could also be partially masked (Figure S3C).

In sum, we conclude that Bld10 is regulating centrosome

asymmetry independently of Cnb and that Plp is also required

to shed Cnn.

Since the mitotic kinase Polo has been implicated in PCM

retention during interphase [8, 9] we assayed Polo localiza-

tion dynamics in wild-type and bld10 mutant neuroblasts.

Recently, it was reported that Polo localizes to the apical

centrosome during interphase and is only detectable at the

basal centrosome during prophase, when maturation sets in

[9]. We used a Polo::GFP protein trap line [22] and confirmed

that Polo is stably localized to the apical interphase centro-

some [6, 9]. Surprisingly, we foundweak Polo also on the sepa-

rating mother centrosome (Figure 3D; time frame 20:47).

Subsequently, Polo disappeared from the basal mother

centriole within 10 min (64 min; n = 7), comparable to Cnn,

g-Tub, and Msps shedding times (Figures 3F and 2E). With a

genomic Polo::GFP transgene [23], showing lower fluores-

cence intensity, Polo was found to be localized on both centro-

somes in bld10mutants (Figure 3E). These data suggest that in

wild-type neuroblasts, Polo is not just recruited onto the basal

mother centrosome by prophase as previously reported [6, 9],

but is also subject to shedding during interphase. Polo is

required for PCM retention since in bld10 mutant neuroblasts

treated with the Polo inhibitor BI2536 (see the Supplemental

Experimental Procedures and [8]), both centrosomes lose

MTOC activity (Figure 3G). Thus, we conclude that shedding

of Polo is a requirement for the subsequent shedding of Cnn,

g-Tub, and Msps, enabling basal mother centrosome dematu-

ration and the establishment of centrosome asymmetry.

Finally, we analyzed the consequences of disrupted centro-

some asymmetry. We labeled the daughter centriole with

Cnb::YFP [7] and assayed centrosome segregation. We

confirmed that wild-type neuroblasts faithfully retain the

Cnb+ daughter centriole, whereas the Cnb2 centrosome seg-

regates into the GMC (100%, n = 10; Figures 4A–4C) [7].

bld10 mutants showed correct asymmetric Cnb localization,

but w45% (n = 11) of bld10 mutant neuroblasts wrongly re-

tained the mother centriole and segregated the daughter

centriole into the GMC (Figures 4C–4E). Cnb+ centrosomes

are usually bigger in wild-type and bld10 mutant neuroblasts

(Figure 4F), but centrosome segregation is independent of

MTOC activity and size since bld10 mutant neuroblasts often

retained the smaller centrosome (Figure 4E). We conclude

that centrosome asymmetry is required for faithful centrosome

segregation.

(F) Apical and basal centrosome g-tub::GFP (green) intensity, measured 15 min after centrosomes splitting. Mean and SD are shown next to individual

measurement points.

(G–I) CS growth measurements for g-tub::GFP (green; G), Cnn::GFP (purple; H), and Msps::GFP (red, I). Bar graphs show averaged values and standard

deviation for wild-type and bld10 mutants.

Asterisks in (F)–(I) indicate p < 0.0001. Int., intensity; a.u., arbitrary units; A, apical CS; B, basal CS; MTOC, microtubule-organizing center. Time is shown

as hr:min. Scale bar, 5 mm. See also Movies S1 and S2.

Centrosome Asymmetry in Fly Neural Stem Cells
1551



Since bld10mutant neuroblasts havemispositionedMTOCs

in relation to the apical-basal division axis (Figures 1B and 1D),

we analyzed spindle orientation (see the Supplemental Exper-

imental Procedures). Immunohistochemistry experiments

showed that bld10 mutant neuroblast spindles deviate from

the regular orientation range, with isolated cases of extreme

misalignment (Figures 4G and 4H). Metaphase spindles,

aligned orthogonally to the apical-basal polarity axis, can

induce symmetric neuroblast divisions, resulting in an in-

crease of the neural stem cell pool [14]. However, neuroblast

numbers were unchanged in bld10mutants compared to con-

trol brains (data not shown), and we did not find symmetric
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Figure 3. Neuroblasts Establish Centrosome Asymmetry through Shedding of Polo and PCM Proteins from the Mother Centrosome

The PCMmarker Cnn, endogenously tagged with mDendra2 (white), was coexpressed with the centriolar marker Sas4::GFP (green) to facilitate centrosome

tracking. Photoconversion was performed shortly after telophase, before centrosome separation occurred. Time point 0:00 refers to the first frame after

photoconversion of Cnn::mDendra2.

(A–C) Image sequence of awild-type (A), bld10mutant (B), and plpmutant (C) neuroblast.Wild-type basal centrosomes turn over photoconvertedCnnwithin

15–20 min. In bld10 mutants, both centrosomes retain photoconverted Cnn until telophase. Basal centrosomes in plp mutants retain photoconverted Cnn

for at least 1 hr. The white dashed line represents the cell outline. The lower panels show an intensity plot of converted Cnn::mDendra2 at apical (green

dotted box) and basal (red dotted box) centrioles. Inserts show high-magnification pictures of photoconverted centrosomes.

(D) Polo::GFP (protein trap line [22]) expressed in wild-type neuroblasts. Inserts at time point 20:47 and 20:34 show higher magnifications of the basal

centrosome with enhanced signal intensity. Colored insert boxes refer to the shedding phase (light blue), the maturation phase (light pink), and the phase

in-between (light yellow). Polo intensity is plotted below.

(E) bld10 mutant neuroblast expressing Polo::GFP transgene [23].

(F) Scatter plot showing the measured time to shed Polo in wild-type neuroblasts.

(G) bld10 mutant neuroblast treated with the Polo inhibitor BI2536. Centrioles are labeled with Sas4::GFP (green). MTOCs are labeled with Cherry:Jupiter

(white). MTOC intensity is plotted below.

MTOC, microtubule-organizing center; Int., intensity; a.u., arbitrary units. Time is shown as hr:min. Scale bar, 5 mm. See also Figures S2 and S3 and Movies

S3 and S4.
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neuroblast divisions with live imaging. Instead, our time-lapse

experiments showed that bld10 mutant centrosomes prema-

turely formed misaligned bipolar spindles. Spindle rotation

duringmetaphase corrected this misalignment (Figure 4I). Api-

cal-basal polarity is a prerequisite for correct spindle orienta-

tion (reviewed in [24]), but apical and basal polarity markers

localized normally in bld10 mutants (data not shown). Simi-

larly, the spindle orientation regulators, Partner of Inscuteable

(Pins; LGN/AGS3 in vertebrates) and the NuMA ortholog Mud,

were also correctly localized (data not shown). We conclude

that controlled PCM shedding and maturation is required for

correct centrosome positioning but backup mechanisms

exist, correcting for misaligned metaphase spindles.

Many cell types, including stemand progenitor cells, contain

asymmetric centrosomes and segregate them nonrandomly,

suggesting a connection between centrosome asymmetry

and cell fate [25]. How centrosome asymmetry is regulated is

currently not understood, but centrosome dematuration is a

critical step in establishing centrosome asymmetry [4–9]. We

found that the centriolar protein Bld10/Cep135, known as a

centriole duplication and elongation factor [26–32], is required

to establish centrosome asymmetry. On the basis of our data,

we propose that Plp and Bld10 induce Polo’s removal from the

mother centriole, triggering the shedding of PCM proteins

such as Cnn, g-Tub, and Msps. Polo has been reported to be

closely associated with centrioles [23], ideally positioned to

phosphorylate both centriolar and PCM proteins [33]. Thus,

we propose that Polo-mediated phosphorylation of PCM pro-

teins maintains a stable interaction between the centriole and

surrounding PCM (Figures S3D and S3E).
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Figure 4. Centrosome Asymmetry Is Required for Correct Centrosome Segregation and Spindle Orientation

(A and D) Wild-type (A) and bld10 mutant (D) neuroblasts expressing the daughter centriole specific marker Cnb::YFP (green) and the MTOC marker

Cherry::Jupiter (red). Inserts show a high-magnification picture of the Cnb+ centrioles. Note that at interphase and prophase, only the apical daughter

centrosome contains a Cnb+ centriole.

(B and E) Summary of wild-type (B) and bld10mutant (E) centrosome segregation pattern. Centrosome pairs (green and red dots, connected by gray line) of

individual neuroblasts are displayed.

(C) Percentage of wild-type (blue) and bld10 mutant (yellow) neuroblasts inheriting the Cnb+ centrosome after cell division.

(F) Correlation between centrosome size and Cnb+ localization.

(G and H) Representative picture of a wild-type (G) and bld10mutant (H) neuroblast stained with apical aPKC (green), a-tubulin (white) and basal Mira (red).

Each tickmark (blue, wild-type; yellow, bld10) in the graph represents the orientation of the metaphase spindle with respect to the polarity axis for individual

neuroblasts.

(I) Spindle correction angles are plotted for both wild-type (blue) and bld10 (yellow). Darker shading indicates the mean correction angle (a mean). Lighter

shading represents the maximal correction angle (amax). Wild-type: amax = 43�, amean = 10� 6 8.5�; n = 26. bld10: amax = 83�, a-mean: 27� 6 23�; n = 22.

Nb, neuroblast; GMC, ganglion mother cell. MTOC, microtubule-organizing center. Time in min:sec; Scale bar is 5 mm.
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How Polo localization is regulated is currently not known,

and we did not detect a direct molecular interaction between

Bld10 and Polo (data not shown). Although we do not find cen-

triolar markers to be mislocalized in bld10 mutants (at the

resolution level of confocal microscopy), it is possible that

structural centriole defects, as detected in bld10mutant sper-

matocytes and wing disc cells [10, 31, 34], could affect PCM

turnover rates. However, since Bld10 is not asymmetrically

localized (data not shown), it is difficult to conceive how

such defects specifically compromise the behavior of the

mother but not the daughter centrosome.

Although perturbed centrosome asymmetry does not seem

to undermine neuroblast polarity, the cell cycle, or physical

and molecular asymmetric cell division, we cannot exclude

the possibility that centrosome asymmetry could have long-

term consequences currently beyond our ability to detect.

Interestingly, defects in centrosome maturation or mutations

in Cep135 can cause neurodevelopmental disorders such as

primary microcephaly [2, 35–37]. It will be interesting to

address the questionwhether lack of Cep135 is causingmicro-

cephaly due to compromised centrosome asymmetry and

dematuration.
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29. Dobbelaere, J., Josué, F., Suijkerbuijk, S., Baum, B., Tapon, N., and

Raff, J. (2008). A genome-wide RNAi screen to dissect centriole duplica-

tion and centrosome maturation in Drosophila. PLoS Biol. 6, e224.

30. Ohta, T., Essner, R., Ryu, J.-H., Palazzo, R.E., Uetake, Y., and Kuriyama,

R. (2002). Characterization of Cep135, a novel coiled-coil centrosomal

protein involved in microtubule organization in mammalian cells.

J. Cell Biol. 156, 87–99.

31. Roque, H., Wainman, A., Richens, J., Kozyrska, K., Franz, A., and Raff,

J.W. (2012). Drosophila Cep135/Bld10 maintains proper centriole struc-

ture but is dispensable for cartwheel formation. J. Cell Sci. 125, 5881–

5886.

32. Kleylein-Sohn, J., Westendorf, J., Le Clech,M., Habedanck, R., Stierhof,

Y.-D., and Nigg, E.A. (2007). Plk4-induced centriole biogenesis in human

cells. Dev. Cell 13, 190–202.

33. Grosstessner-Hain, K., Hegemann, B., Novatchkova,M., Rameseder, J.,

Joughin,B.A.,Hudecz,O.,Roitinger, E., Pichler,P., Kraut,N., Yaffe,M.B.,

et al. (2011). Quantitative phospho-proteomics to investigate the polo-

like kinase 1-dependent phospho-proteome. Mol. Cell. Proteomics 10,

008540.

34. Carvalho-Santos, Z., Machado, P., Alvarez-Martins, I., Gouveia, S.M.,

Jana, S.C., Duarte, P., Amado, T., Branco, P., Freitas, M.C., Silva,

S.T.N., et al. (2012). BLD10/CEP135 is a microtubule-associated protein

that controls the formation of the flagellum central microtubule pair.

Dev. Cell 23, 412–424.

35. Gruber, R., Zhou, Z., Sukchev,M., Joerss, T., Frappart, P.-O., andWang,

Z.-Q. (2011). MCPH1 regulates the neuroprogenitor division mode by

coupling the centrosomal cycle with mitotic entry through the Chk1-

Cdc25 pathway. Nat. Cell Biol. 13, 1325–1334.

36. Hussain, M.S., Baig, S.M., Neumann, S., Nürnberg, G., Farooq, M.,

Ahmad, I., Alef, T., Hennies, H.C., Technau, M., Altmüller, J., et al.

(2012). A truncating mutation of CEP135 causes primary microcephaly

and disturbed centrosomal function. Am. J. Hum. Genet. 90, 871–878.

37. Thornton, G.K., and Woods, C.G. (2009). Primary microcephaly: do all

roads lead to Rome? Trends Genet. 25, 501–510.

Centrosome Asymmetry in Fly Neural Stem Cells
1555


	The Centriolar Protein Bld10/Cep135 Is Required to Establish Centrosome Asymmetry in Drosophila Neuroblasts
	Results and Discussion
	Supplemental Information
	Acknowledgments
	References


