Recognition of touching characters in mathematical expressions is a challenging problem in the field of document image analysis. Various approaches for recognizing touching maths symbols have been reported in literature, but they mainly dealt with printed expressions and handwritten numeral strings. In this work, a new segmentation-free approach is proposed which matches convex shape portions of symbols occurring in various layout such as subscript, superscript, fraction etc. and is able to perform spotting of symbols present in a handwritten expression. Our contribution lies in the design of a novel feature which can handle touching symbols effectively in the presence of handwriting variations. This recognition-based approach helps in spotting symbols in an expression even in the presence of clutter created by the presence of other symbols. © Springer Nature Singapore Pte Ltd. 2019.