Header menu link for other important links
Superconvergence results of iterated projection methods for linear Volterra integral equations of second kind
, G. Nelakanti
Published in Springer
Volume: 57
Issue: 1-2
Pages: 321 - 332
In this paper, we develop the iteration techniques for Galerkin and collocation methods for linear Volterra integral equations of the second kind with a smooth kernel, using piecewise constant functions. We prove that the convergence rates for every step of iteration improve by order O(h2) for Galerkin method, whereas in collocation method, it is improved by O(h) in infinity norm. We also show that the system to be inverted remains same for every iteration as in the original projection methods. We illustrate our results by numerical examples. © 2017, Korean Society for Computational and Applied Mathematics.
About the journal
JournalData powered by TypesetJournal of Applied Mathematics and Computing
PublisherData powered by TypesetSpringer