Header menu link for other important links
X
Study on viscosity of conventional and polymer modified asphalt binders in steady and dynamic shear domain
N. Saboo, , P. Kumar, D. Vikram
Published in Springer Netherlands
2018
Volume: 22
   
Issue: 1
Pages: 67 - 78
Abstract
This study focuses on evaluating the flow behavior of conventional and polymer modified asphalt binders in steady- and dynamic-shear domain, for a temperature range of 20–70 °C, using a Dynamic Shear Rheometer (DSR). Steady-shear viscosity and frequency sweep tests were carried out on two conventional (VG 10 and VG 30) and two polymer (SBS and EVA) modified asphalt binders. Applicability of the Cox–Merz principle was evaluated and complex viscosity master curves were analyzed at five different reference temperatures. Cross model was used to simulate the complex viscosity master curves at different temperatures. It was found that asphalt binders exhibited shear-thinning behavior at all the test temperatures. The critical shear rate increased with increase in temperature and was found to be lowest for plastomeric modified asphalt binder. The Cox–Merz principle was found to be valid in the zero-shear viscosity (ZSV) domain and deviated at higher frequency/shear rate for all the binders. Results from the study indicated that the ratio of ZSV can be successfully used as shift factors for construction of master curves at different reference temperatures. Cross model was found to be suitable in simulating the complex viscosity master curves at all the test temperatures. Analysis of model parameters indicated that a strong relationship exists between ZSV and the critical shear rate. ZSV and critical shear rate varied exponentially with temperature. This relationship was used to propose a simple equation for assessing the shift factors for construction of master curves. © 2017, Springer Science+Business Media B.V.
About the journal
JournalData powered by TypesetMechanics of Time-Dependent Materials
PublisherData powered by TypesetSpringer Netherlands
ISSN13852000