Header menu link for other important links
X
Stability analysis of rimming flow inside a horizontally rotating cylinder in the presence of an insoluble surfactant
Published in American Institute of Physics Inc.
2017
Volume: 29
   
Issue: 12
Abstract
Two-dimensional base state solutions for rimming flows and their stability analysis to small axial perturbations are analyzed numerically. A thin liquid film which is uniformly covered with an insoluble surfactant flows inside a counterclockwise rotating horizontal cylinder. In the present work, a mathematical model is obtained which consists of coupled thin film thickness and surfactant concentration evolution equations. The governing equations are obtained by simplifying the momentum and species transport equations using the thin-film approximation. The model equations include the effect of gravity, viscosity, capillarity, inertia, and Marangoni stress. The concentration gradients generated due to flow result in the surface tension gradient that generates the Marangoni stress near the interface region. The oscillations in the flow due to inertia are damped out by the Marangoni stress. It is observed that the Marangoni stress has stabilizing effect, whereas inertia and surface tension enhance the instability growth rate. In the presence of low diffusion of the surfactant or large value of the Péclet number, the Marangoni stress becomes more effective. The analytically obtained eigenvalues match well with the numerically computed eigenvalues in the absence of gravity. © 2017 Author(s).
About the journal
JournalData powered by TypesetPhysics of Fluids
PublisherData powered by TypesetAmerican Institute of Physics Inc.
ISSN10706631
Open AccessNo