Header menu link for other important links
X
Spatio-contextual Gaussian mixture model for local change detection in underwater video
D.K. Rout, B.N. Subudhi, T. Veerakumar,
Published in Elsevier Ltd
2018
Volume: 97
   
Pages: 117 - 136
Abstract
In this article, a local change detection technique for underwater video sequences is proposed to detect the positions of the moving objects. The proposed change detection scheme integrates the Mixture of Gaussian (MoG) process in a Wronskian framework. It uses spatiotemporal modes (an integration of spatio-contextual and temporal modes) arising over the underwater video sequences to detect the local changes. The Wronskian framework takes care of the spatio-contextual modes whereas MoG models the temporal modes arising due to inter-dependency of a pixel in a video. The proposed scheme follows two steps: background construction and background subtraction. It takes initial few frames to construct a background model and thereby detection of the moving objects in the subsequent frames. During background construction stage; the linear dependency test between the region of supports/ local image patch in the target image frame and the reference background model are carried out using the Wronskian change detection model. The pixel values those are linearly dependent are assumed to be generated from an MoG process and are modeled using the same. Once the background is constructed, then the background subtraction and update process starts from the next frame. The efficiency of the proposed scheme is validated by testing it on two benchmark underwater video databases: fish4knowledge and underwaterchangedetection and one large scale outdoor video database: changedetection.net. The effectiveness of the proposed scheme is demonstrated by comparing it with eighteen state-of-the-art local change detection algorithms. The performance of the proposed scheme is carried out using one subjective and three quantitative evaluation measures. © 2017 Elsevier Ltd
About the journal
JournalData powered by TypesetExpert Systems with Applications
PublisherData powered by TypesetElsevier Ltd
ISSN09574174