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Scaling Theory of the Mechanical Properties of Amorphous Nano-Films
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Numerical Simulations are employed to create amorphous nano-films of a chosen thickness on a
crystalline substrate which induces strain on the film. The films are grown by a vapor deposition
technique which was recently developed to create very stable glassy films. Using the exact relations
between the Hessian matrix and the shear and bulk moduli we explore the mechanical properties of
the nano-films as a function of the density of the substrate and the film thickness. The existence of
the substrate dominates the mechanical properties of the combined substrate-film system. Scaling
concepts are then employed to achieve data collapse in a wide range of densities and film thicknesses.

Numerical simulations are notorious for their innate
inability to explore large systems of experimental rele-
vance. This shortcoming can be turned into an advan-
tage in the study of nano-systems, providing a precious
system-size dependence of the explored properties. In-
deed, nanometer-thick films with designed compositions
and microstructures occupy a central position in nano-
materials research.
Thin films are everywhere around us and we are very

much dependent on them in our everyday life. Thin films
find huge applications in science and technology and their
importance keeps on growing for a wide range of appli-
cabilities [1–4] in areas such as electronic semiconductor
devices, LEDs, optical coatings, hard coatings on cutting
tools, for both energy, generation, e.g., thin film solar
cells and storage. Amorphous thin films composed of
rare-earth transition metals are heavily used for produc-
ing magnetic data storage devices [5, 6].
Though there have been plenty of experimental stud-

ies on both crystalline and amorphous thin films, there
are very few theoretical and simulation studies [7, 8]. In
particular a systematic investigation of the film-thickness
and substrate density dependence of mechanical proper-
ties of amorphous thin films is still lacking despite their
obvious technological importance. In most of the stud-
ies the main focus is bestowed upon the electronic and
magnetic properties [9–11]. However, it is equally impor-
tant to investigate their mechanical properties as these
devices must be reliable, they must have structural in-
tegrity, and they must retain that integrity over their
lifetime, mechanical failures must not occur.
In this Letter we explore how numerical simulations

can shed new light on the mechanical properties of amor-
phous films grown on crystalline substrates. The central
point of this Letter will be that using scaling concepts
one can provide a predictive theory for the changes in
the mechanical properties when the density of the sub-
strate and the thickness of the film vary.
We will limit our study in this paper to the mechani-

cal properties of thin films on substrates as the substrate

plays a key role in the properties of thin films. The sub-
strate can induce huge stresses [12–14] on the film the
nature of which depends on various factors such as the
geometry of the substrate, lattice mismatch and differ-
ence in thermal expansion coefficients of the film and
substrate etc.
The model discussed in the Letter grows a film of a

binary glass on top of a crystalline substrate. The bi-
nary glass film is made from 65% particles A and 35%
particles B, interacting via Lennard Jones (LJ) poten-
tials with parameters λBB/λAA = 0.88, λAB/λAA = 0.8,
ǫBB/ǫAA = 0.5 and ǫAB/ǫAA = 1.5. This system has
been extensively studied as a model glass former [15–17].
Lengths and energies are given in terms of σAA and ǫAA,
while time units are given by

√

mλ2

AA/ǫAA. Both the
Boltzmann constant kB and the mass of the particles are
taken to be unity throughout. All the pair interactions
are truncated at distance rc where rc/λ = 2.5 with two
continuous derivatives.
The films are grown in our simulations by a vapor de-

position technique [18, 19] which closely mimics the phys-
ical vapor deposition technique in experiments where thin
films are prepared by depositing hot molecules onto a
substrate. In our simulations, we generated a crystalline
substrate having four atomic layers along the z direc-
tion composed of NS = 24× 28× 4 particles interacting
via Lennard-Jones with the characteristic size and en-
ergy: λSS/λAA = 0.8, λSA/λAA = 0.8, λSB/λAA = 0.8,
ǫSS/ǫAA = 1.5, ǫSA/ǫAA = 1.5 and ǫSB/ǫAA = 1.5. The
substrate particles were organized in an hcp planar ar-
rangement, with atoms restrained to their positions by a
harmonic potential with spring constant K = 1000. The
simulation box was kept periodic only in the x and y di-
rections and the x and y box lengths are determined by
the density ρS of the substrate. The volume of the sys-
tem was kept constant, but the length of the simulation
box in the z direction (perpendicular to the substrate)
was sufficiently large to encompass a growing glass film
and a vacuum region into which molecules were gradually
introduced.
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FIG. 1: Visualization of the process of deposition on the crys-
talline substrate of an amorphous film. In green are the sub-
strate particles, and red and blue are particles A and B, re-
spectively.

The actual algorithm consisted of depositions of a layer
after layer of A and B particles, about 100 at a time,
very close to the top of the free-surface. Each such depo-
sition was followed by a procedure where the substrate
and any previously deposited particles were maintained
at the temperature TS = 0.1, while simultaneously the
newly added particles were first equilibrated at a hot tem-
perature TH = 0.7, then cooled down to TS at a rate of
3.33 × 10−2, and lastly equilibrated at TS through the
use of two Nosé-Hoover chains [18, 19] thermostat. We
choose TS = 0.1 such that it is well below the reported
glass transition temperature (Tg) of the Kob-Anderson
65 : 35 binary mixture in 3D [20]. The process of depo-
sition on top of the substrate is visualized in Fig 1.

After a prescribed number of particles have been de-
posited, depositions stopped and measurements are car-
ried out after simulating the whole system at Ts for
120000 time units in steps of δt = 0.01. Measurements
were performed 100 times for a total period of 2000 time
units. We define two variables, the deposited film thick-
ness wD (according to substrate configuration) and the
actual film thickness w. The number of particles to be
deposited is determined, at the beginning of a simulation,
by the formula ND = Lx× Ly × wD × 1.2, where wD is
varied from 0.5 to 10.0. However, after deposition the
top surface is not smooth and w is calculated by divid-
ing the xy-area in small blocks and calculating the local
height and averaging it over the blocks.

Having constructed the film of desired thickness over
the substrate, we can compute its mechanical properties.
Thus for example the shear modulus µxy is obtained ex-
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FIG. 2: Upper panel: the xy shear modulus as a function of
film width for different values of the substrate density. Lower
panel: the same modulus as a function of substrate density
for different film widths.

actly as

µxy = µB
xy −

V

T
[〈σ2

xy〉 − 〈σxy〉
2] , (1)

where σxy is the xy component of the fluctuating stress
tensor [21] and µB

xy is the Born term [22] which has the
explicit form

µB
xy =

1

V

∑

j>i

[

y2ij
1

rij

∂U

∂rij
+ x2

ijy
2

ij

(

1

r2ij

∂2U

∂r2ij
−

1

r3ij

∂U

∂rij

)]

+ K

NS
∑

i=1

(yi − yi0)
2, (2)

where yi0 is the reference y-coordinate of the ith

substrate-particle. The molecular dynamics code can be
used now to measure the fluctuation in the stress tensor
as well as the fluctuating inter-particle distances rij . Us-
ing this information both terms in the shear modulus can
be computed. The computation is repeated twenty times
and the shear modulus is averaged over these twenty runs.
The results are shown in Fig. 2 as a function of the film
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FIG. 3: Upper panel: the bulk modulus as a function of film
width for different values of the substrate density. Lower
panel: the same modulus as a function of substrate density
for different film widths.

width w and of the substrate density ρS . Note the dra-
matic effect of the substrate density on the shear modu-
lus, changing it (for small film width) by a factor of four
when the substrate density changes by 25%. Clearly, this
strong effect disappears upon increasing the film thick-
ness and asymptotically the shear modulus converges to
the bulk limit.
Similarly to the shear modulus the bulk modulus is

given by the exact expression

B = BB −
V

T
[〈P 2〉 − 〈P 〉2] , (3)

where P is the fluctuating pressure and BB is the Born
term which has the explicit form

BB =
1

V

∑

j>i

[

(x2

ij + y2ij + z2ij)
1

rij

∂U

∂rij

+ (x2

ij + y2ij + z2ij)
2

(

1

r2ij

∂2U

∂r2ij
−

1

r3ij

∂U

∂rij

)]

+K

NS
∑

i=1

[

(xi − xi0 )
2 + (yi − yi0)

2 + (zi − zi0)
2
]

.(4)
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FIG. 4: The data collapse for the shear modulus (upper panel)
and for the bulk modulus (lower panel).

Here, xi0 and zi0 are the reference x- and z-coordinates
of the ith substrate-particle. Both terms are readily com-
puted in the MD code, and the average computed from
twenty independent runs are shown in Fig. 3.
The effect of the substrate is as dramatic for the bulk

modulus as for the shear modulus. Our next task is to
understand these results and turn them into a predictive
theory. Both the shear and the bulk moduli are functions
of two variables, i.e., ρS and w. It is advantageous to
represent both objects as a function of a dimensionless
variable, i.e., x = ρSw

3. Needless to say, we need to
preserve dimensions, so we try a representation in the
form

µxy(ρS , w) = µxy(1, 1)fµ(ρSw
3) , (5)

B(ρS , w) = B(1, 1)fB(ρSw
3) . (6)

The form of the scaling functions fµ and fB can be
gleaned from the data collapse shown in Fig. 4. The
almost perfect data collapse begs the next questions: (i)
what is the slope of the functions fµ(x) and fB(x) in the
limit x → 1 and (ii) what determines the position of the
maximum of these two functions. Obviously, these must
be determined by the parameters of the model.
To understand the slope we examine the potential of
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interaction between the substrate particles. This inter-
action defines a typical scale

r0 ∼
λSS

ρ
1/3
S

. (7)

In Fig. 5 we demonstrate that in the range of substrate
densities considered here the interaction is represented to
a very good approximation as an effective power law [23]

−
1

r2
∂USS(r)

∂r
∼

ǫSS

λ3

SS

(

r

λSS

)

−3ν

, (8)

which serves as a definition of the effective exponent ν
which in our case takes on the value ν = 5.27. In the limit
w → 1 the shear modulus is dominated by the substrate
density, and from dimensional considerations we expect
that [23]

µxy(x → 1) ∼
ǫSS

λ3

SS

ρνS . (9)

Indeed the initial slope in Fig. 4 agrees very well with this
estimate. The argument is identical for the bulk modu-
lus (the same dimensional considerations) and indeed the
initial slopes are the same for both quantities. We thus
end up with the prediction

fµ(x) ∼ fB(x) ∼ xν , for x ≪ xc , (10)

where lnxc is the point of maximum in Fig. 4. The other
limit is obvious, reading as x → ∞

fµ(x) →
µ∞

xy

µxy(1, 1)
, fB(x) →

B∞

B(1, 1)
. (11)

where µ∞

xy and B∞ are the shear and bulk moduli for the
pure glassy phase. Finally we need to understand the
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FIG. 6: The local density of the glassy film as a function of the
z-coordinate (green). The influence length of the substrate is
estimated from here to be ξS ≈ 6. The envelope of the data
is shown in red color.

point of maximum lnxc. This must be determined by the
typical scale, say ξS , characterizing the influence of the
substrate on the properties of the film. This length can be
read straightforwardly from the local density of the film
as a function of the coordinate z. A typical such plot
is shown in Fig. 6, from which we can estimate ξS ≈ 6.
Since ρS ≈ 2, we can estimate lnxc ≈ ln(ρSξ

3

S) ≈ 6 as
seen indeed in Fig. 4.

Having at hand scaling functions one can predict the
values of the shear and bulk moduli for any value of w or
ρS where these properties are not measured. Moreover,
any quantity with the same dimensions is expected to
have a scaling function having the same initial slope and
a maximum at the same value of w3ρS . Other mechanical
properties like the Young modulus and the Poisson ratio
also succumb to scaling concepts, but the presentation of
that theory is beyond the scope of the present Letter and
will be expounded in a forthcoming publication.
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