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a b s t r a c t

Measurement of image quality is of fundamental importance to numerous image and video processing

applications. Objective image quality assessment (IQA) is a two-stage process comprising of the

following: (a) extraction of important information and discarding the redundant one, (b) pooling the

detected features using appropriate weights. These two stages are not easy to tackle due to the complex

nature of the human visual system (HVS). In this paper, we first investigate image features based on

two-dimensional (2D) mel-cepstrum for the purpose of IQA. It is shown that these features are effective

since they can represent the structural information, which is crucial for IQA. Moreover, they are also

beneficial in a reduced-reference scenario where only partial reference image information is used for

quality assessment. We address the second issue by exploiting machine learning. In our opinion, the

well established methodology of machine learning/pattern recognition has not been adequately used

for IQA so far; we believe that it will be an effective tool for feature pooling since the required weights/

parameters can be determined in a more convincing way via training with the ground truth obtained

according to subjective scores. This helps to overcome the limitations of the existing pooling methods,

which tend to be over simplistic and lack theoretical justification. Therefore, we propose a new metric

by formulating IQA as a pattern recognition problem. Extensive experiments conducted using

six publicly available image databases (totally 3211 images with diverse distortions) and one video

database (with 78 video sequences) demonstrate the effectiveness and efficiency of the proposed

metric, in comparison with seven relevant existing metrics.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Images and videos produced by different imaging and visual

communication systems can be affected by a wide variety of

distortions during the process of acquisition, compression, proces-

sing, transmission and reproduction. This generally leads to visual

quality degradation due to the added noise or loss of image

information. Therefore there is need to establish a criteria to measure

the perceived image quality. Since the opinion of human observers is

the ultimate benchmark of quality, subjective assessment is the most

accurate and reliable way of assessing visual quality, if the number of

subjects is sufficiently large. The International Telecommunication

Union Recommendation (ITU-R) BT.500 [92] has formally defined

subjective assessment as the most reliable way of IQA. However,

subjective assessment is cumbersome, expensive, and unsuitable for

in-service and real-time applications. Furthermore, since it is also

affected by the mood and environment of the subjects, it may give

less consistent results when the subject pool is not big enough. With

the prospects to overcome these limitations, objective IQA has

attracted significant attention over the past decade and has wide-

spread applications. For instance, measuring image quality enables to

adjust the parameters of image processing techniques in order to

maximize image quality or to reach a given quality in applications

like image coding [79]. Another practical use of IQA can be found in

the area of information hiding [1] where secret messages are

embedded into images so that an unauthorized user cannot detect

the hidden messages. Because such an embedding process will

degrade image quality, an IQA metric can help in guiding the opti-

mization process between the desired quality and the strength of

message to be embedded. It is also widely used to evaluate/compare

the performance of processing systems and/or optimize the choice of

parameters in the processing algorithm. For example, the well-

known IQA metric SSIM (structural similarity index measure) [11]

has been recently used as the optimization criterion in H.264 video

coding algorithm [90,91].

However, objective IQA is a challenging problem [12,60,61,

77,85,88] due to the inherent complex nature of the HVS and the
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combined effect of multiple factors involved in it. The Peak signal to

Noise Ratio (PSNR) is still the most widely used IQA metric but is

often criticized [87] for its inability to match HVS’s perception. As a

result significant research effort has been put into devise alternatives

to PSNR. The reader is referred to [12,60,85,88] for recent review of

developments in the field of visual quality assessment.

Broadly speaking, objective IQA can be handled [12,60,85] by

two approaches: (i) the vision modeling approach and (ii) the

signal processing based approach. The vision modeling approach,

as the name implies, is based on modeling various components of

the human visual system (HVS). The HVS-based metrics aim to

simulate the processes of the HVS from the eye to the visual

cortex. These metrics are intuitive and appealing since they

attempt to account for the properties of the HVS relevant to

perceptual quality assessment. The first image and video quality

metrics were developed by Mannos and Sakrison [31] and Lukas

and Budrikis [4]. Later the well-known HVS-based metrics are the

Visual Differences Predictor (VDP) [6], the Sarnoff JND (just

noticeable difference) metric [7], Moving Picture Quality Metric

[8] and Winkler’s perceptual distortion metric [10]. Although the

HVS-based metrics are attractive in theory, they may suffer from

some drawbacks [11]. The HVS comprises of many complex

processes, which work in conjunction rather than independently,

to produce visual perception. However, the HVS-based metrics

generally utilize results from psychophysical experiments, which

are typically designed to explore a single dimension of the HVS at

a time. In addition, these experiments usually use simple patterns

such as spots, bars, and sinusoidal gratings, which are much

simpler than those occurring in real images. For instance, psy-

chophysical experiments characterize the masking phenomenon

of the HVS by superposing a few simple patterns. In essence, these

metrics suffer from drawbacks, which mainly stem from the

use of simplified models describing the HVS. Moreover these

metrics generally depend on the modeling of the HVS character-

istics, which are not fully understood yet. While our knowledge

about the HVS has been improving over the years, we are still far

from a complete understanding of the HVS and its intricate

mechanisms. Moreover, due to the complex and highly non-linear

nature of the HVS, these metrics can be complicated and time-

consuming to be used in practice. Their complexity may lead to

high computational cost and memory requirement, even for

images of moderate size. Owing to these limitations, the second

type namely the signal processing based approach has gained

popularity during recent years [60,85]. In the following sections of

this paper, we will first discuss the signal processing based

approach in more detail and then propose a new IQA metric

based on it.

2. Signal processing based approach for IQA

The signal processing based approach [60] is based on the

extraction and analysis of features in images. Feature extraction

exploits various signal processing techniques to obtain suitable

image representation for image quality assessment. These can be

either structural image elements such as contours, or specific

distortions that are introduced by a particular processing step,

compression technology or transmission link, such as blocking,

blurring and ringing artifacts. Metrics developed with this

approach can also take into account the relevant psychophysical

aspects of the HVS. With the signal processing based approach,

IQA can be considered as a two stage process: (a) feature extrac-

tion and (b) feature pooling. As we have already stated, both these

issues are not straightforward owing to the complex and highly

non-linear nature of the HVS as well as the relatively limited

understanding of its intricate mechanisms.

Regarding the issue of feature extraction, several methods/

features have been proposed in literature including local variance

and correlation [11], the Singular Value Decomposition [14–16],

frequency domain transforms like DCT and wavelets [86], wave

atoms transform [19], discrete orthogonal transforms [20], con-

tourlet transform [21], Riesz transform [22], etc. In contrast to

this, the issue of feature pooling is a relatively less investigated

topic. Currently, methods like simple summation based fusion,

Minkowski combination, linear or weighted combination, etc. are

still widely used. These pooling techniques, however, impose

constraints on the relationship between the features and the

quality score. For example, a simple summation or averaging of

features implicitly constraints the relationship to be linear.

Similarly, the use of Minkowski summation for spatial pooling

of the features/errors implicitly assumes that errors at different

locations are statistically independent. Hence, there has been

some research into developing alternative pooling schemes. The

method presented in [24] involves weighting quality scores as a

monotonic function of quality. The weights are determined by

local image content, assuming the image source to be a local

Gaussian model and the visual channel to be an additive Gaussian

model. However, these assumptions are arbitrary and lack justi-

fication. The visual attention (VA) model has also been explored

[27] for feature pooling and is based on the premise that certain

regions in images attract more eye attention than the others. The

strategy of feature pooling using VA while intuitive may suffer

from drawbacks due to the fact that it is not always easy to

automatically find regions that attract attention. Furthermore,

improvement in quality prediction using VA is not yet clearly

established and still open to scrutiny [26,27]. Overall, feature

pooling is done largely using ad-hoc methods and therefore calls

for further investigation and analysis. In our opinion, machine

learning is an attractive alternative for feature pooling. Today the

field of machine learning and pattern recognition finds applica-

tions not only in the traditional fields like speech recognition

[29,67] but also in new and emerging research areas (for example,

isolated word recognition [23] using lip reading). Machine learning

has also been used for many image processing applications such as

image classification [56]; image segmentation [3,52], which is often

used in many video and computer vision applications such as object

localization/tracking/recognition, signal compression, and image

retrieval [47]; image watermarking [54]; handwriting recognition

[9]; age estimation from facial images [17]; object detection [59];

sketch recognition [69]; texture classification [75], etc. We refer the

reader to [43,80] for comprehensive reviews of the applications of

machine learning in image processing.

In summary, while the existing features have demonstrated

reasonable success for IQA, some of them lack clear physical

meaning while others may not be able to tackle a wide range of

image distortions. Therefore, there is need to explore new image

features for more efficient IQA. In addition the existing feature

pooling methods also suffer from drawbacks as already men-

tioned. To overcome the aforesaid problems, in this paper we

propose a new IQA metric. Firstly, we explore the 2D mel-

cepstrum based image features and provide a comprehensive

analysis to justify their use for IQA. Secondly, given the strong

theoretical foundations and proven success of machine learning

in numerous applications, we employ it for feature pooling.

Because the required weights/parameters for pooling the features

will be determined by training with sufficient data, it can help

to overcome the limitations of the existing pooling schemes. As

opposed to the existing pooling methodologies, which usually

make apriori assumptions about the mapping (relationship)

between features and quality score, the related model parameters

can be estimated in a more convincing manner with the use of

machine learning. Stated differently, use of machine learning in
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an IQA metric can help to avoid assumptions on the relative

significance and relationship of different distortion statistics

(i.e. feature changes), since the weight adjustment would be done

via proper training with substantial ground truth.

The remainder of this paper is organized as follows. Section 3

of this paper discusses the details of the proposed visual quality

metric detailing the feature extraction and pooling procedure

with proper analysis and justification. We describe the databases,

the training and test methodology in Section 4. Substantial

experimental results and the related analysis are presented in

Section 5. We explore the possibilities for reduced-reference IQA

in Section 6. Finally, Section 7 gives the concluding remarks.

3. The proposed visual quality metric

In this section, we describe the details of the proposed metric

whose block diagram is shown in Fig. 1. The first step is to extract

the 2D mel-cepstral features from both the reference and dis-

torted images. Then, the difference (or similarity) is computed

between the two feature vectors. Finally, machine learning is used

to fuse the elements of the feature vector into a single number

that represents the objective quality score. Thus, we formulate

IQA as a supervised pattern recognition problem.

3.1. Feature extraction using 2D mel-cepstral features

An error (or distortion) in a different context may not have the

same perceptual impact on quality. For example, low pass filter-

ing (i.e. blur) has lesser effect on the smooth areas in an image

while it has a higher impact on edges. Due to this, it is important

to distinguish/differentiate error in different image components.

This is the reason why the PSNR (or related metrics like MSE) is

less effective: it does not separate/differentiate the signal com-

ponents and assigns equal weights to all the pixel errors irre-

spective of their perceptual impact. Therefore, the motivation

behind feature extraction for IQA is to separate/differentiate the

image signal into its components since their contribution to the

perceived quality is different. This is a crucial step towards

effective IQA because the separation of the components will then

allow us to treat (i.e. weigh) them appropriately according to their

perceptual significance. In this paper, we use the mel-cepstral

analysis for images to extract meaningful components from the

image signal.

Mel-cepstral analysis is one of the most successful and widely

used feature extraction techniques in speech processing applica-

tions including speech and sound recognition [67]. Inspired by its

success in various areas of audio/speech processing, we propose

its exploitation to assess the quality of images objectively. The 2D

mel-cepstrum has been proposed recently [68]. We now describe

the feature extraction with 2D mel-cepstrum and outline its

possible advantages in the context of IQA. The proposed scheme

is the first attempt in the existing literature to explore the 2D

mel-cepstrum for IQA.

The 2D cepstrum ĉ(p, q) of a 2D image y(n1,n2) is defined as

ĉðp,qÞ ¼ F�1
2 ðlogð9Yðu,vÞ92ÞÞ ð1Þ

where (p,q) denotes 2D cepstral frequency [5] coordinates, Y(u,v)

is the 2D Discrete Fourier transform (DFT) of the image y(n1,n2)

(size N by N) and defined as

Yðu,vÞ ¼
1

N

X

N�1

n1 ¼ 0

X

N�1

n2 ¼ 0

yðn1,n2Þe
�j2pðun1 þvn2=NÞ

F�1
2 denotes the 2D Inverse Discrete Fourier transform (IDFT)

given by

F�1
2 ¼

1

N

X

N�1

u ¼ 0

X

N�1

v ¼ 0

Yðu,vÞej2pðun1 þvn2=NÞ

Energy of natural images drops at high frequencies (i.e. natural

images have more low frequency as compared to high frequency).

Due to this, the effect of high frequency components is sup-

pressed as the bigger values of low frequency coefficients will

tend to dominate. Furthermore, the number of coefficients is very

large (equal to image size). Therefore the direct use of frequency

coefficients will be less effective in determining image quality. To

overcome this we use 2D mel-cepstrum in which non-uniform

weighting is employed to group the frequency coefficients.

Specifically, in 2D mel-cepstrum the DFT domain data are divided

into non-uniform bins in a logarithmic manner and the energy of

each bin is computed as

Gðm,nÞ ¼
X

k,lABðm,nÞ

wðk,lÞ Yðk,lÞ ð2Þ

where B(m,n) is the (m,n)th cell of the logarithmic grid corre-

sponding to weight w(k,l). Cell or bin sizes are smaller at low

frequencies compared to high-frequencies. A representative grid

diagram is shown in Fig. 2(a) where cell sizes can be taken to

represent the weights w(k,l). As can be seen, cell sizes are smaller

at lower frequencies compared to the higher frequencies, which

are assigned higher weights. The equivalent diagrammatic repre-

sentation of the non-uniform normalized weighting is shown in

Fig. 2(b) where white means weight is 1 and black denotes weight

is 0. The smallest value used in Fig. 2(b) is 0.005.

This approach is similar to the mel-cepstrum computation in

speech processing where the weights are assigned using a mel

scale in accordance with the perception of the human ear. In our

earlier work [34], we have demonstrated the effectiveness of mel

features for the quality assessment of noise suppressed speech.

Although the weights used in case of speech signals (1D signal)

are not the same as for the image (2D signal), nevertheless both

are similar in concept. Like speech signals, most natural images

contain more low frequency information. Therefore, as mentioned,

there is more signal energy at low-frequencies compared to high

Objective
Quality
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2D Mel- 
cepstral
Feature

Extraction

Reference
image

Distorted
image

Reference feature vector

xr

Distorted feature vector

xd

Difference

or

Similarity

Vector

Machine

Learning
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Mapping

2D Mel- 
cepstral
Feature

Extraction

x

Fig. 1. Block diagram of the proposed scheme.
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frequencies. Logarithmic division of the DFT grid emphasizes high

frequencies. Finally, the 2Dmel frequency cepstral coefficients ĉ(p,q)

are computed using DCT or inverse DFT (IDFT) as

ĉðp,qÞ ¼ F�1
2 ðlogð9Gðm,nÞ92ÞÞ ð3Þ

Note that in Eq. (3) we use the absolute value of the bin energy

G(m,n) (magnitude) and discard phase for reasons given later in

Section 6B.

We now analyze why the 2D mel-cepstral features form a good

image representation for quality assessment. Psychovisual studies

have shown that edges, texture and smooth components in

images have different influence on the HVS’s perception. The

HVS is more sensitive to image areas containing edges [81,82].

Further, image content recognition is widely believed to rely on

the perception of image details, such as sharp edges, which are

conveyed by high spatial frequencies [83,84]. Therefore edges and

other higher frequency components are perceptually significant

Fig. 3. (a) Original Lena image, (b) blurred image, (c) JPEG compressed image, (d) 2D mel-cepstrum of (a), (e) 2D- mel-cepstrum of (b) and (f) 2D mel-cepstrum of (c).

White indicates a value of 1 (the highest strength) whereas black corresponds to 0 (zero strength).

Fig. 2. (a) Non-uniform grid representation with smaller cell sizes at low frequencies compared to high frequencies and (b) representation of the normalized weights for

emphasizing high frequencies (white corresponds to 1 and black corresponds to 0).

M. Narwaria et al. / Pattern Recognition 45 (2012) 299–313302



[13,50,51,71]. Due to this such features have also been used for

IQA. For instance, the well known metric SSIM has been improved

[28] by incorporating edge information. Some other IQA metrics

based on edge information can be found in [30,32,48,64,73].

Recently image contours/edges have also been explored for image

utility assessment [2], which is related to IQA. It follows that

edges/contours are more important for HVS’s perception i.e. any

change in the high frequency components is expected to have a

larger impact on perceived image quality. Therefore, accounting

for the difference in perception of edges, texture and smooth

components by the HVS is beneficial for IQA. The 2D mel-

cepstrum precisely achieves this using unequal weights for

different frequency components as shown in Fig. 2. As a result,

high frequency components (which correspond to strong edges)

can be further emphasized. Apart from this, the lower frequency

components (like weak edges and texture), which have relatively

less influence on the HVS are assigned smaller weights. The said

non-uniformity therefore results in better representative image

features. It also accounts for the masking property of the HVS: in

the presence of a strong edge, the weaker edge is masked i.e. its

influence is reduced. In other words, the stronger edges tend to

dominate, i.e. they have higher weight or impact. This is also the

reason why the 2D mel-cepstrum representation is suitable for

face recognition [33,35] (since it highlights edges and other facial

features in the face image).

To give an illustration, we show the original ‘Lena’ image,

its blurred version and JPEG compressed version in Fig. 3(a),

(b) and (c), respectively. The corresponding 2D mel-cepstrum of

the images is shown below the respective images. We observe

that blurring mainly damages the high frequency components.

This can be visualized through its 2D mel-cepstrum where the

strength of high frequency components is reduced. We can also

see that the strength of lower frequency components is increased

since blur makes the image more uniform. In the extreme case, if

all pixels have the same value then we will see only one white

spot exactly in the center of the 2D mel-cepstrum (i.e. the DC

component). The case of JPEG compression is different in that it

causes blockiness and can introduce false structure or edges in

the image. This can again be captured from the 2D mel-cepstrum

features because the strength/magnitude of frequency compo-

nents changes due to distortions. Therefore, a comparison

between the 2D mel-cepstrum features of the reference and

distorted image is expected to give a good indication of change

in image spatial content (or structural change).

To summarize, the following are the major advantages of the

2D mel-cepstrum, which can be exploited for IQA:

� The non-uniform weighting is consistent with the edge mask-

ing property of the HVS. Because it is possible to emphasize

the high frequency components apart from retaining the lower

frequency ones, a more informative and comprehensive repre-

sentation can be obtained. Specifically, it provides more details

about features like edges and contours, which are important

for the HVS’s perception of image quality. Therefore, it is more

effective compared to other transforms since more discrimi-

natory and meaningful image signal components can be

extracted.

� Since several DFT values are grouped together in each bin, the

resultant 2-D mel-cepstrum sequence computed using the

IDFT has smaller dimensions than the original image. It can

therefore be viewed as a perceptually motivated dimension

reduction tool, which can preserve image structure. That is, it

can be considered as a good tradeoff between retaining

important image information and achieving dimensionality

reduction. In other words, perceptually important frequencies

are enhanced and the feature size is also reduced. For an N by

N image, using the 2D mel-cepstrum we can obtain the

dimension reduced data M by M with MoN.

� We obtain decorrelated features, so the redundant information is

discarded. This results in a compact numerical representation of

the image signal to characterize its quality. Thus, the advantage of

2D mel features is that they produce representations that are

statistically independent and comprise an orthogonal space.

� Another advantage of 2D mel-cepstral feature is that small

change in the features corresponds to small change in perceptual

quality and vice-versa. This implies that they can also capture

small changes or differences of pixel intensity (magnitude) more

efficiently. This property is especially crucial for quality predic-

tion of images with near threshold (i.e. just noticeable) distor-

tions as will be demonstrated later in Section 5 of the paper.

� The reader will notice from Eq. (3) that 2D mel-cepstrum

involves the logarithms of the squared bin energies denoted by

9G(m,n)92. This reduces the dynamic range of the values and is

consistent with the so-called ‘‘suprathreshold effect’’ of the

HVS. Suprathreshold effect [55,57,72,76] means that the abil-

ity to perceive variations in the distortion level decreases as

the degree of distortion increases. The logarithm operation

essentially accomplishes this desirable property as elaborated

later in Eq. (5) and shown graphically in Fig. 4.

� The 2D mel-cepstrum is also associated with clearer physical

meaning because it essentially works in the Fourier (frequency)

domain, which is a well established method for image analysis.

However, in the Fourier or DCT domain one usually discards the

higher frequency components (for example JPEG compression)

in order to achieve dimension reduction. By contrast in 2D mel-

cepstrum, the high frequency DFT and DCT coefficients are not

discarded in an ad-hoc manner. Instead the high frequency

component cells of the 2D DFT grid are multiplied with higher

weights as compared to the low frequency component bins in

the grid resulting in more suitable image representation for IQA.

� The non-uniform weighting shown in Fig. 2 is perceptually

meaningful and can be further exploited to design a reduced-

reference metric as discussed later in Section 6.

Let xr and xd denote the 2D mel-cepstral features of the reference

and distorted images, respectively. The vectors xr and xd can be

thought to represent the timbral texture space [66] of the two image

signals and we use them to quantify perceived similarity between

them. This is similar at the concept level to tasks like computing

music similarity [63], genre classification [65], etc. in the field of

Fig. 4. Illustration of the suprathreshold effect.
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audio/speech processing. Because our aim is to compute quality of

the distorted image with respect to the reference image, we use the

absolute difference between the two feature vectors for computing

quality of the distorted image and define

x¼ 9xr2xd9 ð4Þ

We can see that the elements of x represent the absolute

difference between the 2Dmel-cepstrum coefficients of the reference

and distorted images. This lends x a better physical meaning since its

elements can be thought as the change in frequency components of

the reference image due to distortion, i.e. it accounts for the loss of

image spatial information. Therefore, (4) defines the feature vector of

the distorted image, which will be used to compute its quality.

As aforesaid, suprathreshold effect implies that the same

amount of distortion becomes perceptually less significant as

the overall distortion level increases. Researchers have previously

modeled suprathreshold effect using visual impairment scales

[18] that map error strength measures through concave non-

linearities, qualitatively similar to the logarithm mapping, so that

they emphasize the error at higher quality. The definition of

feature vector in (4) accounts for this effect and can be explained

as follows. Eq. (4) can be written as

x¼ 9x2xd9¼ 9F�1
2 ðlogð9Grðm,nÞ92ÞÞ�F�1

2 ðlogð9Gdðm,nÞ92ÞÞ9

¼ F�1
2 log

9Grðm,nÞ92

9Gdðm,nÞ92

( )" #�

�

�

�

�

�

�

�

�

�

ð5Þ

where Gr(m,n) and Gd(m,n) denote the bin energies from reference

and distorted images, respectively. We can observe from (5) that

the ratio of the squares of absolute bin energies can be regarded

as the distortion measure on which suprathreshold function

(logarithm) has been applied. For a simple intuitive explana-

tion, consider the two quantities logf60=40g ¼ 0:4055 and

logð1020=1000Þ ¼ 0:0198. As we can see, the difference between

the numerator and denominator in the two cases is the same

(it is 20). However, the perceived change is smaller in the second

case. That is lesser sensitivity to changes at larger amplitudes,

which is the suprathreshold effect or the saturation effect as

visually exemplified in Fig. 4.

As mentioned before, high frequencies are assigned more

weight. Therefore x is expected to be an effective feature vector

characterizing the loss of image structure. To illustrate this point

further, we show 7 images in Fig. 5. In this, image (a) is the

original image taken from the LIVE image database (details of the

database are given later). Images (b)–(d) have been obtained by

blurring the original image with increasing blur levels. On the

other hand, images (e)–(g) have been generated by JPEG compres-

sion of the original image with increasing compression levels. As

can be seen, the increasing blurring reduces the high frequency

content of the original image and destroys its spatial information.

Similarly in JPEG compression the high-frequency components

are largely removed owing to non-uniform quantization and

these result in blockiness as shown in the second row of Fig. 5.

We also computed the feature vector for each distorted image

Fig. 5. (a) Original image, (b) low blurring, (c) medium blurring, (d) high blurring, (e) low JPEG compression level, (f) medium JPEG compression level and (g) high JPEG

compression level. The number below each respective image denotes the sum of the elements of the feature vector defined in (4). A higher number denotes more loss of

spatial information i.e. higher distortion.
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with respect to the original image as done in (4). Next, we

obtained the sum of the elements of the respective feature vectors

for each image and the same has been indicated below each

respective image. We find that the sum is large for the heavily

blurred image (Fig. 5(d)) i.e. large loss of spatial information,

while it is small for the less blurred image. A similar trend can be

seen for the JPEG distorted images. That is, we get an indication of

the loss of spatial information due to artifacts like blur and JPEG,

which can damage image structure. Of course a simple summa-

tion of the elements of feature vector alone will be insufficient for

determining overall quality especially in case of complex and

diverse distortion types. Nevertheless, this analysis indicates

that the feature vector x defined in (4) can be expected to be

effective for assessing the extent of structure damage or the

change in image spatial information due to the external perturba-

tion (distortion). Based on the foregoing analysis, we conclude

that x accounts for perceptual properties such as sensitivity to

loss of structure, edge masking and the suprathreshold effect.

Furthermore, x can be used to assess quality independent of the

distortion or image content and the reason is as follows. Different

types of distortions affect visual quality in a largely similar

fashion: by introducing structural changes (or change in spatial

contents) that lead to different extents of perceived quality

degradation. That is, even though x does not take into account

the effects of different distortions explicitly, the perceptual

annoyance introduced by them is expected to be captured

reasonably well. Due to the existence of the underlying common

patterns associated with quality degradation, machine learning

can be exploited to develop a general model by learning through

examples as will be demonstrated by extensive experimental

results in Section 5. Hence x can be used to compute quality in

general situations. Of course, we must still combine/pool the

elements of x with proper weights for which we use machine

learning as explained in the next section.

3.2. Combining features into a perceptual quality score

Appropriate feature pooling is an essential step for perceptual

IQA but there is lack of physiological and psychological knowledge

for the convincing modeling (the psychophysical studies that have

been conducted in the related field are for a single or at most two

visual stimuli (e.g. in frequency, orientation, etc.)), while real-world

images are with many stimuli simultaneously. Therefore, we use

machine learning to tackle the complex issue of feature pooling.

Our aim is to represent the quality score Q as a function of the

proposed feature vector x

Q ¼ f ðxÞ ð6Þ

To estimate f we use a machine learning approach, which is

expected to give a more reasonable estimate compared to the

existing pooling approaches, especially when the number of

features to be pooled is large. In this work, we use the Support

Vector Regression (SVR) to map the high dimensional feature

vector into a perceptual quality score, by estimating the under-

lying complex relationship among the changes in cepstral fea-

tures and the perceptual quality score. Although other choices of

machine learning techniques are possible, in this paper, we have

used SVR because it is a popular and well established technique.

The goal of SVR is to find f, based on training samples. Suppose

that xi is the feature vector of the ith image in the training image

set (i¼1, 2,yl; l is the number of training images). In the A�SV

regression [36,78] the goal is to find a function f(xi) that has the

deviation of at most A from the targets si (being the correspond-

ing subjective quality score) for all the training data, and at the

same time is as flat as possible [36]. The function to be learned is

f(x)¼W
Tj(x)þb, where j(x) is a non-linear function of x,W is the

weight vector and b is the bias term. We find the unknowns W

and b from the training data such that the error

9si�f ðxiÞ9rA ð7Þ

for the ith training sample {xi,si }. In SVR, a kernel function f(x) is

employed to map the data into a higher dimensional space. We

solve the following optimization problem

min
W ,b,x,x

n
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where xi is the upper training error (xn

i is the lower training error)

subjected to the A insensitive tube 9y�(WTf(x)þb)9rA withA-

being a threshold; (1/2)WTWis the regularization term to smooth

the function W
Tj(x)þb in order to avoid overfitting; C40, being

the penalty parameter of the error term. Eq. (8) can be solved

using the dual formulation to obtain the solution (W,b).

It has been shown in [36] that

W ¼
X

nsv

i ¼ 1

ðZn

i �ZiÞjðxiÞ ð9Þ

where Zn

i and Zi (0rZn

i , ZirC) are the Lagrange multipliers used

in the Lagrange function optimization, C is the tradeoff error

parameter and nsv is the number of support vectors. For data

points for which inequality (7) is satisfied, i.e. the points, which

lie within the A tube, the corresponding Zn

i and Zi will be zero so

that the Karush Kuhn Tucker (KKT) conditions are satisfied [36].

The samples that come with nonvanishing coefficients (i.e. non-

zero Zn

i and Zi) are support vectors, and the weight vector W is

defined only by the support vectors (not all training data). The

function to be learned then becomes

f ðxÞ ¼W
TjðxiÞþb¼

X

nsv

i ¼ 1

ðZn

i �ZiÞjðxiÞ
TjðxÞþb

¼
X

nsv

i ¼ 1

ðZn

i �ZiÞKðxi,xÞþb ð10Þ

where K(xi, x)¼j(xi)
Tj(x), being the kernel function. In SVR, the

actual learning is based only on the critical points (i.e. the support

vectors). In the training phase, the SVR system is presented with

the training set {xi, si}, and the unknowns W and b are estimated

to obtain the desired function (10). During the test phase, the

trained system is presented with the test feature vector xj of the

jth test image and predicts the estimated objective score sj (j¼1

to nte; nte is the number of test images). In this paper, we have

used the Radial Basis Function (RBF) as the kernel, which is of the

form K (xi, x)¼exp (�r :xi�x:2) where r is a positive parameter

controlling the radius.

4. Databases and metric verification

Visual quality metrics must be tested on a wide variety of

visual contents and distortion types to make meaningful conclu-

sions about their performance. Evaluating a metric with one

single subjective database might not be sufficient and general

[38]. We have therefore conducted extensive experiments on

totally 7 open databases. As will be shown in Section 5 of this

paper, a metric performing well on one database may not

necessarily do well on all the other databases. In this section,

we describe the databases used for the experiments, and provide

the details of the training and test procedure adopted to verify the

proposed approach.
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4.1. Database description

The LIVE image database [39] includes 29 original 24-bits/

pixel color images. Totally it consists of 982 images (779 distorted

images and 203 reference images). Five types of distortions were

introduced to obtain the distorted images: (1) JPEG-2000 com-

pression, (2) JPEG compression, (3) White Gaussian Noise (WGN),

(4) Gaussian blurring and (5) Rayleigh-distributed bit stream

errors of a JPEG-2000 compressed stream or Fastfading distor-

tions (FF). Subjective quality scores for each image are available in

the form of Differential Mean Opinion Scores (DMOS).

The IRCCyN/IVC database [40] consists of 10 original color

images with a resolution of 512�512 pixels from which 185

distorted images have been generated, using 4 different processes:

(1) JPEG compression, (2) JPEG2000 compression, (3) LAR (locally

adaptive resolution) coding and (4) blurring. Subjective quality

scores are available in the form of Mean Opinion Scores (MOS).

In the A57 database [41], 3 original images of size 512�512 are

distorted with 6 types of distortions and 3 contrasts. These result in

54 distorted images (3 images�6 distortion types�3 contrasts).

The distortion types used are: (1) quantization of the LH subbands

of a 5-level DWT of the image using the 9/7 filters, (2) additive

Gaussian white noise, (3) baseline JPEG compression, (4) JPEG-2000

compression, (5) JPEG-2000 compression with the Dynamic Con-

trast-Based Quantization algorithm of which applies greater quan-

tization to the fine spatial scales relative to the coarse scales in an

attempt to preserve global precedence and (6) blurring. The sub-

jective scores have been made available in the form of DMOS.

The Tampere Image Database (TID) database [42] involves 25

original reference color images (resolution 512�384), which

have been processed by 17 different types of distortions: additive

Gaussian noise, additive noise in color components, spatially

correlated noise, masked noise, high frequency noise, impulse

noise, quantization noise, Gaussian blur, image denoising, JPEG

compression, JPEG2000 compression, JPEG transmission errors,

JPEG2000 transmission errors, non-eccentricity pattern noise,

local block-wise distortions of different intensity, mean shift

(intensity shift) and contrast change. There are 4 distortion levels

and thus it consists of 1700 (25�17�4) distorted images; there

are 100 images for each distortion type. Subjective quality scores

are reported in the form of MOS.

The Wireless Imaging Quality (WIQ) database [53] consists of

7 undistorted reference images, 80 distorted test images, and quality

scores rated by human observers that have been obtained from two

subjective tests. In each test, 40 distorted images along with the

7 reference images were presented to 30 participants. The quality

scoring was conducted using a Double Stimulus Continuous Quality

Scale (DSCQS). The difference scores between reference and distorted

image were then averaged over all 30 participants to obtain a DMOS

for each image. The test images included in theWIQ database consist

of wireless imaging artifacts, which are not considered in any of the

other publicly available image quality databases.

A publicly available video database [44] was also used in this

study and we refer to this database as the EPFL video database. Six

original video sequences at CIF spatial resolution (352�288

pixels) were encoded with H.264/AVC. For each encoded video

sequence, 12 corrupted bit streams were generated by dropping

packets according to a given error pattern. To simulate burst

errors, the patterns have been generated at six different packet

loss rates (0.1%, 0.4%, 1%, 3%, 5% and 10%) and two channel

realizations have been selected for each packet loss rate. The

packet loss free sequences were also included in the test material,

thus finally 78 video sequences were rated by 40 subjects.

Subjective scores have been made available as MOS.

Finally, we used another publicly available image database

[49]. It is different from all the databases discussed above, with

respect to the distortion type since the distortion is due to

watermarking. It consists of 210 images watermarked in three

distinct frequency ranges. The watermarking technique basically

modulates a noise-like watermark onto a frequency carrier, and

additively embeds the watermark in different regions of the

Fourier spectrum. The subjective scores are reported as MOS.

4.2. Test procedure and evaluation criteria

We evaluate the performance of the proposed scheme in two

different ways. Firstly, we have employed the k-fold cross valida-

tion (CV) strategy [45] for each database separately: the data was

split into k chunks, one chunk was used for test, and the

remaining (k�1) chunks were used for training. The experiment

was repeated with each of the k chunks used for testing. The

average accuracy of the tests over the k chunks was taken as the

performance measure. The splitting of the data into k chunks was

done carefully so that the image contents presenting in one chunk

did not appear in any of the remaining chunks (and this chunk is

used as the test set). One image content is defined as all the

distorted versions of a same original image. As an example,

consider the TID database, which consists of 25 original images.

In this case, the first chunk included all the distorted versions of

the first five original images. The second chunk consisted of

distorted versions of the next five original images and so on.

Thus, in this case there were a total of five chunks each of which

comprised different image contents. With the similar splitting

procedure we obtained 10 chunks for IVC database, seven chunks

for WIQ database and three chunks for A57 database. In this way,

it was ensured that images appearing in the test set are not

present in the training set. As the second way of performance

assessment, we have used the cross database evaluation: the

proposed system was trained from the images in one database

and images from the remaining databases formed the test set.

A 4-parameter logistic mapping between the objective outputs

and the subjective quality ratings was also employed, following

the Video Quality Experts Group (VQEG) Phase-I/II test and

validation method [46], to remove any nonlinearity due to the

subjective rating process and to facilitate the comparison of the

metrics in a common analysis space. The experimental results are

reported in terms of the three criteria commonly used for

performance comparison namely: Pearson linear correlation coef-

ficient CP (for prediction accuracy), Spearman rank order correla-

tion coefficient CS (for monotonicity) and Root Mean Squared

Error (RMSE), between the subjective score and the objective

prediction. For a perfect match between the objective and sub-

jective scores, CP¼CS¼1 and RMSE¼0. A better quality metric has

higher CP and CS and lower RMSE.

We have also compared the performance of the proposed Q

(with k-fold CV) with the following existing visual quality

estimators: PSNR, SSIM [11], MSVD [15], VSNR [55], VIF [57]

and PSNR-HVS-M [74]. For VSNR, VIF, IFC and SSIM implementa-

tion, we have used the publicly accessible Matlab package that

implements a variety of visual quality assessment algorithms

[58]; they are the original codes provided by the image quality

assessment algorithm designers. For PSNR-HVS-M, we used the

code provided by its authors and is publicly available at [70]. The

publicly available LibSVM software package [78] was used to

implement the SVR algorithm. In addition, the results for another

recent metric presented in [20] are also reported; however, since

the code is not publicly available, we derive the results directly

from their paper [20] for only the databases, which had been used

in [20]; also, since two metrics were proposed using geometric

moments [37] with one using Tchebichef moments and the other

using Krawtchouk moments, we only compare with the best

results among the two. Since we have used all publicly accessible
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softwares and databases in this paper as far as possible, the

results reported in this paper can be reproduced for any future

research.

Most of the existing visual quality metrics work only with the

luminance component of the image/video. Therefore, all experi-

mental results reported in this paper are for the luminance

component only (because the luminance component plays a

more significant role in human visual perception than color

components).

5. Experimental results and analysis

5.1. Performance evaluation

The results for the k-fold CV tests (denoted by Q) for the

individual image databases are given in Table 1. Furthermore, for

an overall comparative performance, the averaged results over

the 5 image databases are given in Table 2. We computed the

average values for two cases. In the first case, the correlation

scores were directly averaged, while in the second case, a

weighted average was computed with the weights depending

on the number of distorted images in each database (refer to

Section 4.1 for such numbers). We can see that the proposed Q

performs better than the other IQA schemes. Recall that for Q we

made sure that the images used for training did not appear in the

test set. It was also found that in general, the proposed scheme

performed well for individual distortion types. We can also

observe from Table 2 that the proposed metric gives the better

overall performance in both averaging cases for the three evalua-

tion criteria.

Another observation from Table 1 is that some existing metrics

are less consistent since they do not perform well for all the

databases. For instance VSNR does well on A57 but its perfor-

mance is relatively low for other databases. VIF performs well on

3 databases but performs rather poorly on A57. By contrast, the

proposed scheme is more consistent in its performance. To gain

more insights into such behavior of quality metrics, we perform

additional analysis using the TID database. In our opinion, the

variation in performance of quality metrics over the different

databases is partly due to the distortion levels. For instance, A57

database mainly contains images with near-threshold distortions

i.e. image quality degradation is just noticeable. On the other

hand, databases like LIVE and IVC consist of images with supra-

threshold distortions i.e. image quality degradation could be

severe and more noticeable to the human eye. We conducted

further tests to verify this. We observed the performance of

different metrics for the 4 distortion levels of the TID database.

The first level (Level 1) denotes just noticeable or near threshold

distortion while the fourth level (Level 4) indicates higher distor-

tions. With a total of 1700 distorted images and 4 distortion

levels, there are 425 images for each distortion level. Table 3

presents the CP values for the prediction performance of different

metrics on the 4 distortion levels. The CS and RMSE values are not

presented here since they lead to similar conclusion as CP values.

We can see that MSVD, VIF, VSNR and PSNR-HVS-M perform

relatively better for the fourth distortion level (i.e. higher amount

of distortion) while they are relatively poor for lower distortion

Table 1

Experimental results for the 5 image databases individually. The three best

metrics have been highlighted by bold font for quick glance.

Criteria Metric LIVE A57 WIQ IVC TID

CP SSIM 0.9473 0.8033 0.7876 0.9018 0.7756

MSVD 0.8880 0.7099 0.7433 0.7975 0.6423

VIF 0.9655 0.6139 0.7559 0.8966 0.8049

VSNR 0.9520 0.9210 0.7623 0.8025 0.6820

PSNR 0.9124 0.6273 0.7601 0.7196 0.5677

PSNR-HVS-M 0.9432 0.8896 0.8191 0.8902 0.5784

Ref. [16] 0.9253 0.6799 – 0.8776 –

Q 0.9684 0.9021 0.9048 0.9511 0.8092

QTID 0.9519 0.9019 0.8489 0.8772 –

QLIVE – 0.8944 0.8473 0.8784 0.7859

QIVC 0.9554 0.9008 0.8472 – 0.7840

Qwatermark 0.9552 0.9011 0.8480 0.8794 0.7881

CS SSIM 0.9500 0.8103 0.7261 0.9017 0.7792

MSVD 0.9102 0.6485 0.6362 0.7734 0.6520

VIF 0.9735 0.6223 0.6918 0.8964 0.7491

VSNR 0.9400 0.9355 0.6558 0.7993 0.7000

PSNR 0.9056 0.6189 0.6257 0.6885 0.5773

PSNR-HVS-M 0.9372 0.8962 0.7568 0.8832 0.5952

Ref. [16] 0.9216 0.7255 – 0.8952 0.6740

Q 0.9599 0.8586 0.8064 0.9171 0.7848

QTID 0.9383 0.8561 0.8410 0.8677 –

QLIVE – 0.8532 0.8396 0.8690 0.7732

QIVC 0.9442 0.8496 0.8420 – 0.7645

Qwatermark 0.9433 0.8551 0.8389 0.8688 0.7690

RMSE SSIM 8.0553 0.1914 13.8160 0.5303 0.8511

MSVD 10.6315 0.1731 15.3228 0.7739 1.0285

VIF 6.0174 0.1940 14.9964 0.5239 0.7945

VSNR 7.0804 0.0957 14.8864 0.7269 0.9851

PSNR 9.0864 0.6189 14.8856 0.8460 1.1047

PSNR-HVS-M 8.0564 0.1156 13.1412 0.5550 1.0947

Ref. [16] – – – – –

Q 5.5731 0.0988 7.6384 0.3649 0.7930

QTID 7.0830 0.1062 12.1058 0.5849 —

QLIVE – 0.1099 12.1305 0.5823 0.8296

QIVC 6.8303 0.1068 12.1688 – 0.8331

Qwatermark 6.8430 0.1066 12.1658 0.5800 0.8261

Table 2

Average performance of metrics over the 5 image databases. The two best metrics have been highlighted by bold font for quick glance.

Type of average Criteria SSIM MSVD VIF VSNR PSNR PSNR-HVS-M Q Qwatermark

Direct averaging CP 0.8431 0.7562 0.8074 0.8240 0.7174 0.8241 0.9071 0.8744

CS 0.8335 0.7241 0.7866 0.8061 0.6832 0.8145 0.8654 0.8550

RMSE 4.6888 5.5839 4.4988 4.7547 5.3083 4.5926 2.8936 4.1043

Weighted averaging CP 0.8404 0.7362 0.8584 0.7842 0.6961 0.7290 0.8743 0.8520

CS 0.8418 0.7435 0.8279 0.7877 0.6936 0.7369 0.8522 0.8356

RMSE 3.5225 4.5175 2.8547 3.3182 4.0592 3.6430 2.5008 3.0691

Table 3

CP values for the 4 distortion levels in TID database. Level 1 indicates lower

distortion while Level 4 corresponds to high distortion. The best three metrics

have been highlighted by bold font for quick glance.

Metric Level 1 Level 2 Level 3 Level 4

SSIM 0.7564 0.6102 0.6326 0.6766

MSVD 0.4811 0.5844 0.3869 0.6050

VIF 0.5355 0.5197 0.8146 0.8851

VSNR 0.6180 0.6402 0.4687 0.6492

PSNR 0.5742 0.3241 0.3601 0.3601

PSNR-HVS-M 0.4232 0.5036 0.4657 0.5114

Q 0.7649 0.6464 0.6882 0.7655

Qwatermark 0.7579 0.6376 0.6723 0.7401
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levels. Also we find that there is large variation in prediction

accuracies for MSVD, VIF and PSNR-HVS-M as we go from Levels

1 to 4. On the other hand, SSIM, VSNR and Q are more consistent

for the 4 levels with Q being better than the two. Therefore, Q, in

general, not only performs better for each distortion level but is

also more stable and consistent for the 4 levels. We believe this to

be a reason for the better performance of the proposed metric for

all the databases. That is, it achieves a better tradeoff for the

performance on near-threshold and supra-threshold distortions.

This confirms the point we made earlier in Section 3: 2D mel-

cepstrum features can tackle near threshold distortions more

efficiently. Overall, the proposed metric performs consistently

better across databases and this is an important advantage over

the existing metrics.

5.2. Cross database validation

Since the proposed scheme involves training, we further

present the results for the cross-database evaluation in Table 1

where QTID, QLIVE, QIVC and Qwatermark denote that training is done

with TID, LIVE, IVC and watermarked image databases, respec-

tively, while the remaining databases form the test sets. Since the

training and test sets come from different databases, the cross

database evaluation helps to evaluate the robustness of the

proposed scheme to untrained data. We can again see that the

proposed scheme performs quite well with all the 3 test criteria

(CP, CS and RMSE). It is also worth pointing out that QIVC achieves

good results for the TID database since in this case the training set

size (185 images) is relatively smaller than the test set (1700

images). Similar comments can also be made for Qwatermark where

training set consists of 210 images.

As mentioned before, we also used the image database with

watermarked images. This type of distortion is different from

other commonly occurring distortions (like JPEG, Blur, white

noise distortion, etc.) due to the specific processing that images

undergo. We used this database only as a training set to further

confirm the robustness of the proposed scheme to new and

untrained distortions. Similar to the previous notations, Qwatermark

denotes the training with watermarked image database. As can be

seen, Qwatermark performs quite well. This further confirms our

claim that quality degradation due to different distortion types

can be assessed by exploiting the underlying common patterns

characterized by the structure loss. We have also presented the

results for Qwatermark for the 2 averaging cases mentioned before

(see Table 2) and we find that it performs very well especially

given the relatively small training set size and training content

being only watermark distortion.

As the last test in cross database evaluation, we test the

performance of the proposed scheme for a video database. The

trained system is used to predict the quality score of each

individual frame and the overall quality score of the video is

determined as the average of the scores all the frames in the

video. The same procedure was also adopted for evaluating the

other metrics. We present the results in Table 4. We can see that

QTID, QIVC, QLIVE and Qwatermark all perform better than the existing

metrics under comparison. Note that the videos in this database

have been distorted due to H.264/AVC, which is obviously not

present in the image databases. Since the training is done with

image databases, the good performance of the proposed metric

is again indicative of its generalization ability to new visual/

distortion content. The better performance of the proposed metric

for this video database is also important since H.264/AVC is a

recent video coding standard, which is fast gaining industry

appreciation. Although video quality assessment may also involve

temporal factors for quality estimation, the aforesaid procedure of

using the average of frame level quality as the overall video

quality score is still a popular and widely used method. Account-

ing for the temporal factors for video quality assessment is out of

the scope of this paper and is a potential future work. Moreover,

in this paper, we used the video database primarily to evaluate

the proposed metrics performance for untrained contents.

5.3. Metric efficiency evaluation

An important criterion to judge the performance of an IQA

metric is its efficiency in terms of computational time required.

The practical utility of a metric will reduce significantly if it is

slow and computationally expensive in spite of its high prediction

accuracy. In this section, we compare the efficiency (i.e. computa-

tional complexity) of different metrics. We measured the average

execution time required per image in the A57 database (image

resolution is 512�512) on a PC with 2.40 GHz Intel Core2 CPU

and 2 GB of RAM. Table 5 shows the average time required per

image (s), with all the codes implemented in Matlab. We can see

that the proposed metric takes less time than all the metrics

except PSNR and SSIM. This is because the feature extraction

stage in the proposed metric takes the advantage of the Fast

Fourier Transform (FFT) algorithm during the DFT computation.

Note that DFT normally requires O(N2) operations to process N

samples but for FFT this number is only O(N log(N)). Hence the

proposed metric is reasonably efficient in terms of execution time

required (in addition to better prediction accuracies) and as a

result more suitable for real time IQA.

6. Analysis for reduced-reference scenario and

further discussion

6.1. Reduced-reference IQA

Objective IQA metrics can be classified into 3 categories based

on the amount of information used for predicting quality: (1) full-

reference (FR) metrics, which uses complete reference image

Table 4

Experimental results for EPFL video database. The three best metrics have been

highlighted by bold font for quick glance.

Criteria/metric CP CS RMSE

SSIM 0.6878 0.7080 0.9790

MSVD 0.8554 0.8508 0.6987

VIF 0.7519 0.7524 0.8892

VSNR 0.8838 0.8631 0.6310

PSNR 0.6910 0.6869 0.9750

PSNR-HVS-M 0.8865 0.8760 0.6240

QTID 0.9390 0.9293 0.4640

QLIVE 0.9426 0.9321 0.4502

QIVC 0.9411 0.9311 0.4562

Qwatermark 0.9394 0.9304 0.4626

Table 5

Average execution time (ss/image) for different metrics. The three best metrics have been highlighted by bold font for quick glance.

Metrics SSIM MSVD VIF VSNR PSNR PSNR-HVS-M Ref. [95] Proposed

Time (s) 0.0454 0.6036 3.4829 0.4452 0.0037 2.5586 5.9276 0.3268
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information, (2) reduced-reference (RR) metrics, which uses only

partial information from the reference image and (3) no-reference

(NR) metrics, which do not use any reference image information.

FR metrics are generally more accurate while NR metrics can be

used when the reference image is not available. RR metrics are

essentially a tradeoff between these two since only partial

information of the reference image is required. Literature survey

shows that there has been more progress in developing FR IQA

while RR and NR IQA have been relatively unexplored.

Obviously an RR IQA allows lower requirement of memory,

bandwidth and computations. In a practical context of RR IQA,

within an image transmission service, the reference image infor-

mation (RRI) is sent along with the image to be transmitted. The

compression of the RRI can be achieved by lossless coding. At the

receiver end, one uses the RRI and compares it with the features

of the decoded/received image. From this comparison one deter-

mines the objective quality score of the image received.

In the proposed metric, the length of the feature vector is M2

for an N by N image where the reduced data isM byMwithMoN.

In our case we used M¼49 as in [33]. Therefore, we only need

492¼2401 coefficients of the reference image to perform quality

assessment. Thus, for N¼512 (i.e. 512�512), we need only 0.92%

of the actual reference image size. For an image with size

512�384 (as in TID database), we need to have only 1.2% for

the amount of data in comparison with the actual reference image

size. Therefore, even in its original form, the proposed metric can

be considered an RR metric.

We now explore further possibility of using the proposed

metric in reduced-reference scenario. A block diagram is shown

in Fig. 6 where a new block ‘‘dimension reduction’’ has been used

reduce the number of features as required in RR IQA. We now

outline the ‘‘dimension reduction’’ procedure. From Eq. (2) we find

that each bin energy G(m,n) (a complex number in general) is a

weighted sum of the frequency components where the non-uni-

form weights can be visualized through the grid or the weight

diagram representation shown in Fig. 2. Therefore, the energy in

each bin has a pre-defined contribution from each frequency

component. Now it is a fact that higher frequency components

are more important for quality assessment, and to use this to our

advantage, we retain only those bin energies corresponding to the

higher frequency components and discard the lower frequency

components. Effectively this will mean ignoring the effect of the

lower frequency components for the benefit of achieving further

dimension reduction. We use the 2D mel-cepstrum features ĉ(p,q)

defined in Eq. (3) on which we apply the said dimension reduction

procedure to obtain ĉR(p,q) where we used the subscript R to

distinguish it from ĉ(p,q). We then define the new feature vector as

x
ðnewÞ ¼ 9xðnewÞ

r �x
ðnewÞ

d
9 ð11Þ

where x
ðnewÞ
r and x

ðnewÞ

d
are the features from the reference and

distorted images, respectively, with reduced dimension RoM. We

note that similar to x defined in Eq. (4), x(new) also accounts for the

perceptual properties like sensitivity to loss of structure, edge mask-

ing and the suprathreshold effect. However, unlike x it lacks informa-

tion regarding the changes corresponding to lower frequency

components. To illustrate the usefulness of the said dimension

reduction procedure, we present the experimental results with

R¼500 as an example i.e. we retain only 500 coefficients out of

2401, which corresponds to using only 20.82% of the total number of

coefficients. This in turn means that we need to transmit only R

(¼500 in this example) coefficients from the reference image to

compute the quality of the transmitted image. For notations regard-

ing the RR metric, we use the superscript R with all the previously

defined symbols. For instance, Q ðRÞ
watermark

denotes the system trained

only with the watermarked image database with R coefficients. So the

superscript in Q ðRÞ
watermark

distinguishes it from the symbol Qwatermark,

which corresponds to the FR case. We follow a similar notation for Q,

QTID, QLIVE, Qwatermark and QIVC. We present the experimental results for

the RR case in Table 7. We find that though the prediction accuracies

decrease they are acceptable and compare favorably to the case when

no dimension reduction is employed. We can also observe that

the prediction performance is quite competitive with the existing

full-reference metrics, which use the complete reference image
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mapping
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Fig. 6. Block diagram of the proposed RR metric.

Table 6

Demonstration of scalability on TID and LIVE databases. The prediction accuracy is

presented in terms of CS for the metric Q ðRÞ
watermark

for different values of R.

R CS for

LIVE

database

CS for TID

database

Percent

savings

relative

to R¼2401

DCS for

LIVE

database

DCS for

TID

database

2401 0.9433 0.7697 – – –

2000 0.9402 0.7624 16.70 0.0031 0.0073

1500 0.9421 0.7592 37.53 0.0012 0.0105

1000 0.9387 0.7502 58.35 0.0046 0.0195

500 0.9379 0.7435 79.80 0.0090 0.0262

400 0.9270 0.7388 83.34 0.0163 0.0309

300 0.9276 0.7378 87.51 0.0157 0.0319

200 0.9135 0.7268 91.67 0.0145 0.0397

100 0.9208 0.7240 95.84 0.0225 0.0457
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information. We further present the variation in performance

(denoted by DCS) of Q ðRÞ
watermark

for TID and LIVE databases with

different R values in Table 6. We have included the results only for

these two databases since they are the biggest in terms of the

number of images and distortion types. One can observe that the

performance is quite robust and there is graceful degradation in

metric performance as R decreases. We also present the amount of

information (%) saved with decreasing R relative to R¼2401. Given

that 2401 is itself a small number compared to the typical image

size, the savings made are significant. Similar observations were also

made for the other databases but not presented here for the sake of

brevity. For the same reason, we have omitted the results for Q(R),

Q ðRÞ
TID, Q

ðRÞ
LIVE and Q ðRÞ

IVC in Table 6.

The presented analysis indicates the potential of achieving

effective reduced—reference quality assessment with the pro-

posed metric. Since we can select the amount of RRI to be sent

based on the available resources (like bandwidth), the proposed

metric is scalable. Scalability is referred to the ability of a quality

metric to perform in accordance with the available resources (like

bandwidth, computational power, memory capacity, etc.) of a

practical system with a graceful and reasonable degradation in

metric performance due to the resource constraints. Such scal-

ability offers more flexibility to the proposed scheme in compar-

ison to FR metrics, which require the entire reference image for

quality computation. There are two reasons, which contribute to

the resulting scalability. Firstly, the discarded coefficients in

essence correspond to lower frequencies, which basically repre-

sent weak edges and texture. Due to the masking properties of the

HVS weak edges are masked or their effect is reduced. So

removing such coefficients has lesser impact on the prediction

performance. The second reason is the use of SVR. Since the

weights for the pooling stage are determined via sufficient

training with subjective scores, it further reduces the impact of

these coefficients on the overall quality. This in turn minimizes

the loss of prediction accuracy and results in more robust quality

prediction. Scalability is an important and desirable feature of the

proposed RR IQA metric because it can achieve good tradeoff

between the prediction accuracy and the amount of RRI.

We also compared Q ðRÞ
watermark

with a recently developed Wei-

bull statistics based RR metric [95] (hereafter we denote is as

WSRRM). We obtained the software code for WSRRM from its

authors. The reader may recall that Q ðRÞ
watermark

implies training with

contents that are different from those in the test databases. We

present the results for different databases in Table 8. In this case,

we have used R¼6 to make a fair comparison with WSRRM,

which uses 6 scalars [95] for RR quality computation. As can be

seen, Q ðRÞ
watermark

performs better than (we obtained similar conclu-

sions forQ ðRÞ
TID, Q

ðRÞ
LIVE andQ ðRÞ

IVC) than WSRRM for A57, IVC and TID

databases and is competitive for LIVE and WIQ databases.

Furthermore, WSRRM suffers from the following drawbacks,

which are alleviated in our RR metric:

� Low efficiency with regards to its execution speed as well as

the higher computational costs. On an average it takes about

5.92 s per image. The reason for this is that it uses multi-scale

image decomposition using the steerable pyramid decomposi-

tion. In contrast, the proposed RR metric takes only 0.32 s

per image.

� It lacks scalability while the proposed RR metric being scalable

offers more flexibility as already discussed.

6.2. Further discussion

We have three points, which deserve further discussion and

are explained in what follows. First, the reader will recall that we

used only the magnitude of the bin energy G(m,n) in Eq. (3). Note

that G(m,n) will be a complex number in general, which we

denote as Aeja with magnitude A and phase a. The 2D mel-

cepstrum computation involves the logarithm of G(m,n), so we

have log(G(m,n))¼ log(Aeja)¼ log(A)þ ja. Now both A and a should

be continuous functions for them to have a valid Fourier trans-

form. However, since aA[�p,p] we must first unwrap the phase

so that it becomes continuous. The major problem is that

unwrapping the phase in 2-D is very difficult [89] due to two

reasons. First, a typical image may contain thousands of indivi-

dual phase wraps. Some of these wraps are genuine, while others

may be false and are caused by the presence of noise and

sometimes by the phase extraction algorithm itself. The process

of differentiating between genuine and false phase wraps is

extremely difficult and this adds complexity to the phase

unwrapping problem. A second reason that complicates the phase

unwrapping problem is its accumulative nature. The image is

processed sequentially on a pixel-by-pixel basis. If a single

genuine phase wrap between two neighboring pixels is missed

due to noise, or a false wrap appears in the phase map, an error

occurs in unwrapping both pixels. This kind of error then

propagates throughout the rest of the image. In addition, phase

unwrapping will be computationally expensive step and poten-

tially a major bottle neck in the use of the proposed metric for

real-time applications. Therefore, we used only the magnitude

and discarded the phase.

The second point is regarding the use of multiple databases in

this paper. It ensures that the proposed system is tested for its

robustness to a wide variety of image and distortion contents on

Table 7

Performance of the proposed metric for reduced-reference scenario with R¼500.

Criteria Metric LIVE A57 WIQ IVC TID EPFL video

database

CP Q(R) 0.9287 0.8491 0.8678 0.9381 0.7664 –

Q ðRÞ
TID

0.9108 0.8814 0.8164 0.8739 – 0.9244

Q ðRÞ
LIVE

– 0.8612 0.8163 0.8785 0.7607 0.9186

Q ðRÞ
IVC

0.9267 0.8646 0.8194 – 0.7675 0.9246

Q ðRÞ
watermark

0.9350 0.8742 0.8219 0.8757 0.7697 0.9252

CS Q(R) 0.9115 0.7898 0.7527 0.9002 0.7442 –

Q ðRÞ
TID

0.9256 0.8386 0.8126 0.8620 – 0.9107

Q ðRÞ
LIVE

– 0.8156 0.8110 0.8700 0.7431 0.9068

Q ðRÞ
IVC

0.9232 0.8299 0.8170 – 0.7433 0.9086

Q ðRÞ
watermark

0.9379 0.8248 0.8164 0.8647 0.7435 0.9103

RMSE Q(R) 7.8902 0.1055 8.5038 0.3993 0.8613 –

Q ðRÞ
TID

9.5445 0.1161 13.2294 0.5923 – 0.5145

Q ðRÞ
LIVE

– 0.1249 13.2326 0.5820 0.8710 0.5330

Q ðRÞ
IVC

8.6877 0.1235 13.1308 – 0.8602 0.5139

Q ðRÞ
watermark

7.2549 0.1193 13.0467 0.5884 0.8567 0.5117

Table 8

Comparison with WSRRM [95]. The better metric has been highlighted by bold

font for quick glance.

Criteria Metric LIVE A57 WIQ IVC TID

CP WSRRM 0.8849 0.5830 0.8244 0.5267 0.5536

Q ðRÞ
watermark

0.8642 0.5836 0.7996 0.5882 0.6313

CS WSRRM 0.8827 0.5621 0.8076 0.4512 0.5415

Q ðRÞ
watermark

0.8598 0.5842 0.7905 0.5881 0.6366

RMSE WSRRM 10.7670 0.1997 12.9649 1.0357 1.1176

Q ðRÞ
watermark

11.6313 0.1992 13.7560 0.9853 1.0407
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which the proposed system is not trained. Besides, it also helps in

more comprehensive metric testing since as discussed in Section 5,

a metric performing well for one database may not do well on

another. In addition, it facilitates the cross database evaluation,

which provides a strong and convincing demonstration of the

proposed system’s ability to predict the quality well for untrained

data. It may be mentioned here that for the cross database evalua-

tion, we did not do any parameter optimization towards the test

database. For instance consider Qwatermark. In this case, once we learn

the model using all the images and associated subjective scores of

the watermarked image database, we use the same model for

testing LIVE, A57, TID, WIQ, IVC and EPFL (video database) data-

bases. That is, we used the same kernel function namely RBF and the

other parameters (i.e. radius of Gaussian function r, the tradeoff

error C and regression tube width) were all kept constant when

testing other image databases. Similar comments can be made for

QTID, QLIVE, QIVC and Q ðRÞ
watermark

. The performance improves further if

we train a model specifically for each test database separately. It is

also worth pointing out that the proposed metric is pretty robust to

the different SVR parameters in that small changes in them does not

cause large change in the prediction performance.

Finally, as demonstrated the proposed scheme is more con-

sistent and stable in its performance across multiple databases

than the existing metrics. This highlights that the selected

features based on the 2D mel-cepstrum are effective. In addition,

they convey a clearer physical meaning. The exploitation of 2D

mel-cepstral features for IQA is novel and interesting since

originally mel-cepstrum analysis was formulated for speech/

audio signals. Since audio and visual signals have certain similar-

ity as natural signals therefore it is not surprising that a similar

approach can be used for analyzing them. The theory of natural

signal statistics [62] also confirms that natural signals (including

images and sounds) share statistical properties (for instance

natural signals are highly structured). These features are also of

interest for pattern recognition applications since they allow

representing the spectra by points in a multidimensional vector

space. The feature pooling via SVR is more convincing and

reasonable since a quantitative data-driven modeling procedure

is employed for the complex mapping of the feature vector to the

desired output. In summary, the novelty of the proposed scheme

in comparison to the existing IQA metrics is due to the following

reasons:

� We used the 2D mel-cepstrum features, which to our knowl-

edge have not been exploited in the literature for IQA. From

the point of view of pattern recognition, they are also effective

for dimension reduction. Essentially, we used them to quantify

the perceptual similarity between the spectral envelopes of

reference and distorted images. We have given proper analysis

and reasoning behind using them for IQA and also outlined

how they can account for the HVS properties like sensitivity to

structure and suprathreshold effect in connection with IQA.

The presented analysis provides new insights and can be

useful for related applications like image utility assessment

[2], image similarity assessment, etc.

� We employed machine learning technique for more systematic

feature pooling. The proposed methodology demonstrates the

effectiveness of machine learning in avoiding unrealistic

assumptions currently imposed in the existing feature pooling

methods. It is therefore an attractive alternative to bridge the

gap between the psychophysical ground truth and the realistic

engineering solution.

� Since we could discard some coefficients based on their

perceptual significance, we arrived at an RR IQA metric. The

reduced number of coefficients was selected in a way that

reduces the information required while still maintaining good

performance. This further confirms the analysis presented in

this paper and provides evidence in favor of the validity of the

theoretical points made. The reduced-reference prospects and

the associated scalability make the proposed metric more

attractive and useful.

� The proposed metric is more efficient than many existing

metrics in terms of execution time needed and thus suitable

for real-time deployment.

7. Conclusions

In this paper, we have explored the 2D mel-cepstrum features

and SVR image quality assessment, and formulated the task of

image quality prediction as a pattern recognition problem, to

enable the use of more sophisticated pooling techniques like the

SVR to achieve robust, accurate, consistent and scalable quality

prediction. This helps to overcome the limitations of the existing

pooling methods in image quality assessment (IQA). We provided

in-depth analysis and justification of the 2D mel-cepstrum

features to be employed for IQA. A thorough and extensive

experimental validation using seven independent and publicly

available image/video databases with diverse distortion types

provides strong ground for the usefulness of the proposed metric.

The experimental results confirm the effectiveness of the pro-

posed feature selection and pooling method towards more effec-

tive and consistent IQA. We have also compared the performance

of the proposed metric with seven relevant existing metrics and

shown that the proposed metric performs consistently better

across all the databases. In addition, we also explored the

possibility for reduced-reference situations and demonstrated

good performance as well.
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