Header menu link for other important links
X
Scalability and stability of very thin, roll-to-roll processed, large area, indium-tin-oxide free polymer solar cell modules
D. Angmo, S.A. Gevorgyan, T.T. Larsen-Olsen, R.R. Søndergaard, M. Hösel, M. Jørgensen, , G.U. Kulkarni, F.C. Krebs
Published in Elsevier B.V.
2013
Volume: 14
   
Issue: 3
Pages: 984 - 994
Abstract
Polymer solar cell modules were prepared directly on thin flexible barrier polyethylene terephthalate foil. The performance of the modules was found to be scalable from a single cell with an area of 6 cm2 to modules with a total area of up to 186 cm2. The substrate thickness was also explored and the performance was found to be independent of thickness in the range of 20-130 μm. The thinner substrates were found to present some challenge regarding handling but were not limited in performance. Large area modules on a substrate thickness of 45 μm were finally prepared by full roll-to-roll processing employing P3HT:PCBM as the active material and were found to exhibit a total area efficiency of >1% (1000 W/m-2; AM1.5G) with a typical active-area efficiency in the 1.5-1.6% for total module area of >110 cm2 due to high fill factors in excess of 50%. The modules were also found to have an active-area efficiency of >1% under low light levels (∼100 W m-2). The modules were then subjected to extensive stability testing for a minimum of 1000 h employing several ISOS protocols. The modules presented higher than 80% of the initial performance (T80) in the dark (ISOS-D-1), in dark under elevated temperature of 65°C (ISOS-D-2), under low light (ISOS-LL), under full sunlight (ISOS-L-2), and under outdoor testing (ISOS-O), which was conducted in two locations in India and Denmark. We estimate maximum T80 for those tests to be 2800, 5000, 1300, 1000, and 3500 h respectively. The modules showed significant sensitivity to high humidity and had low values for T80 for dark storage tests at 50°C/85%RH (ISOS-D-3) and accelerated operation conditions with 0.7 sun/65 oC/50%RH (ISOS-L-3). We found the modules to be particularly suited for information and communications technology (ICT) and mobile applications where low humidity (<50%) and lower temperatures (<65°C) can be anticipated and we estimate operational lifetimes in excess of 1 year. © 2012 Elsevier B.V. All rights reserved.
About the journal
JournalData powered by TypesetOrganic Electronics
PublisherData powered by TypesetElsevier B.V.
ISSN15661199