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Abstract. The problem of designing robust controller for discrete two-time-scale interval systems,
conveniently represented using interval matrix notion, is considered. The original full order two-
time-scale interval system is decomposed into slow and fast subsystems using interval arithmetic.
The controllers designed independently to stabilize these two subsystems are combined to get a
composite controller which also stabilizes the original full order two-time-scale interval system. It is
shown that a state and output feedback control law designed to stabilize the slow interval subsystem
stabilizes the original full order system provided the fast interval subsystem is asymptotically stable.
The proposed design procedure is illustrated using numerical examples for establishing the efficacy
of the proposed method.

1. Introduction

The interval systems are those whose parameters are known to lie within a range

rather than having an exact value. They are said to have parametric uncertainty.

Various analysis and design techniques available for such systems are essentially

meant for application to a “nominal” model. The resulting design is said to be

robust if the system performs within acceptable limits in the face of significant

parameter variations and model uncertainties. The need to incorporate robustness

in design is necessitated by the fact that for most practical systems, the model is

known only approximately. For example, in the aircraft industry, the aircraft model

is constructed using the data obtained from the wind-tunnel experiments on the

aircraft body. As a consequence, the parameters of the model would not have a

specific value, rather they are known to lie within an interval. Since the actual flight

data are not available the controller should be able to account for the unmodeled

parameters that can be obtained only when the aircraft is airborne. The other

examples include robotic manipulators, nuclear reactors, electrical machines and
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large power networks etc., which have parametric uncertainties for the entire range

of operation. The knowledge about the actual physical system may be approximate

and representation of such systems by fixed parameters may become inadequate.

Moreover, it is inevitable that the system matrices will have perturbations due to

component variations, ageing, operating conditions, etc. Simulation and control of

such systems can be attempted by developing their approximants.

A discrete time interval system possessing two-time-scale nature for the entire

range of parameter variation is called as two-time-scale interval system. Such class

of two-time-scale interval systems can be conveniently described using the notion

of interval matrix. It is assumed that, such two-time-scale interval system possesses

two-time-scale property for the entire range of parameter variation, that is, it has

a cluster of n1 eigenvalues distributed near the unit circle and a cluster of n2

eigenvalues centered around the origin in the complex plane. The results presented

here are essentially the extension of the results in [11], [12] for fixed case of discrete

two-time-scale systems. The slow and fast interval subsystems are obtained using

interval arithmetic [1], [3]–[5], [9], [13]–[15]. It is shown that a state and output

feedback control law designed to stabilize the slow interval subsystem stabilizes

the original full order system provided the fast interval subsystem is asymptotically

stable. It is also shown that a composite controller constructed from the slow and

fast controllers designed from the respective models stabilizes the original full order

interval system when applied to it.

2. Interval Analysis Preliminaries

An interval number [a, b] can be defined by the set of x ∈ R (the reals) such that

a ≤ x ≤ b. For a = b, the interval number becomes [a, a] which can be described as

a degenerate interval. The arithmetic operations on intervals are defined as follows

[1], [3], [5], [8], [13]–[15]:

1. [a, b] + [c, d] = [a + c, b + d],

2. [a, b] × [c, d] = [min(ac, ad, bc, bd), max(ac, ad, bc, bd)],

3. [a, b] − [c, d] = [a − d, b − c],

4. [a, b] ÷ [c, d] = [a, b] ×

[

1

d
,

1

c

]

provided that, 0 �∈ [c, d].

Alternatively, the interval number xI can be represented as xI = [a, b] = {x ∈ R |
a ≤ x ≤ b} = [x0 − ∆x, x0 + ∆x], where x0 = (a + b) / 2 (the nominal value) and

∆x = (b − a) / 2 (the uncertainty).

An interval matrix by definition [3] is a real matrix in which all the elements

are known only to the extent that each element belongs to a specified interval. For

all n × n interval real matrices, F I = {ƒI
ij} ∈ R

n × n
with interval elements ƒI

ij, and

GI = {gI
ij} ∈ R

n × n
with interval elements gI

ij, for all i and j, the addition, subtraction

and multiplication operations can be written as follows:
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1. F I ± GI = {ƒI
ij ± gI

ij} ∈ R
n × n

,

2. F IGI = {ƒI
ij}{gI

ij} =

{

n
∑

k = 1

ƒI
ik × gI

kj

}

∈ R
n × n

.

3. Representation of Two-Time-Scale Discrete Interval System

A discrete time interval system possessing two-time-scale nature for the entire

range of parameter variation can be described by the following equations

x1(k + 1) = AI
11x1(k) + AI

12x2(k) + BI
1u(k), (3.1)

x2(k + 1) = AI
21x1(k) + AI

22x2(k) + BI
2u(k), (3.2)

where the state x(k) ∈ R
n

is formed by the n1 and n2 dimensional vectors x1(k)

and x2(k) at the discrete instant k and the control u(k) is an m dimensional vector.

The matrices AI
ij (i, j = 1, 2) are interval matrices. It is assumed that the system

(3.1), (3.2) possesses two-time-scale property for the entire range of parameter

variation, that is, it has a cluster of n1 eigenvalues distributed near the unit circle

and a cluster of n2 eigenvalues centered around the origin in the complex plane.

Clearly, the n1 eigenvalues have large magnitudes compared with small magnitudes

of the n2 eigenvalues over the period [0, T]. The system behaviour, therefore, can

be approximately decomposed into a slow subsystem with n1 eigenvalues and a fast

subsystem with n2 eigenvalues. In an asymptotically stable system the fast modes

corresponding to the eigenvalues of small magnitudes are important only during a

short initial period [0, Tƒ]. After that period they are negligible and the behaviour

of the system can be described by its slow modes.

Neglecting the effects of the fast modes is equivalent to letting x2(k + 1) = x2(k)

in (3.2). Without the fast modes system (3.1), (3.2) reduces to

x̄1(k + 1) = AI
11x̄1(k) + AI

12x̄2(k) + BI
1ū(k) x̄1(0) = x10, (3.3)

x̄2(k) = AI
21x̄1(k) + AI

22x̄2(k) + BI
2ū(k), (3.4)

where a bar indicates a discrete quasi-steady state [12]. Assuming that
[

I2 − AI
22

]

−1

exists, where I2 is the identity matrix with degenerate interval of dimension n2 × n2,

we can express x̄2(k) as

x̄2(k) = [I2 − AI
22]−1{AI

21x̄1(k) + BI
2ū(k)}, (3.5)

and, substituting it into (3.3), the slow subsystem of (3.1), (3.2) is given by

xs(k + 1) = AI
sxs(k) + BI

su(k), (3.6)

where

AI
s = AI

11 + AI
12[I2 − AI

22]−1AI
21,

BI
s = BI

1 + AI
12[I2 − AI

22]−1BI
2. (3.7)
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Hence x̄1(k) = xs(k), x̄2(k) and ū(k) = us(k) are the slow components of the corre-

sponding variables in system (3.1), (3.2). The fast subsystem is derived by making

the assumptions that x̄1(k) = xs(k) = constant and x̄2(k + 1) = x̄2(k). From (3.2) and

(3.5) we get

x2(k + 1) − x̄2(k + 1) = AI
22{x2(k) − x̄2(k)} + BI

2{u(k) − us(k)}. (3.8)

Defining xƒ(k) = x2(k)− x̄2(k) and uƒ(k) = u(k)− us(k), the fast subsystem of (3.1),

(3.2) can be expressed as

xƒ(k + 1) = AI
22xƒ(k) + BI

2uƒ(k); xƒ(0) = x20 − x̄2(0). (3.9)

The assumptions used in deriving the fast subsystem are justified by noting that the

slow modes of system (3.1), (3.2) have magnitudes which are close to unity and

during transients, they are changing very slowly with respect to the fast modes.

4. State Feedback Control

4.1. LOWER ORDER CONTROL

Assume that the fast system is stable and the pair (AI
s , BI

s) is controllable [8],

[17]–[19], [21]. Neglecting the fast subsystem, consider the lower-order feedback

control

u(k) = K0x1(k). (4.1)

If this u(k) is applied to (3.6), closed loop slow model becomes

xs(k + 1) = [AI
s + BI

sK0]xs(k)

= H I
0xs(k). (4.2)

If the pair (AI
s , BI

s) is controllable then the closed loop system matrix can be stabilized

by the appropriate selection of the gain matrix K0. We now apply control (4.1) to

the discrete system (3.1), (3.2) to obtain

x1(k + 1) = [AI
11 + BI

1K0]x1(k) + AI
12x2(k), (4.3)

x2(k + 1) = [AI
21 + BI

2K0]x1(k) + AI
22x2(k). (4.4)

LEMMA 4.1. If the pair (AI
s , BI

s) is controllable, the matrix AI
22 is stable, and

(I2−AI
22)−1 exists, then the closed loop discrete system (4.3), (4.4) is asymptotically

stable.

Proof. Since matrix AI
22 is stable, we can neglect the fast dynamics over the

period [0, Tƒ]. The slow subsystem of (4.3), (4.4) is given by

xs(k + 1) = {[AI
11 + BI

1K0] + AI
12(I2 − AI

22)−1[AI
21 + BI

2K0]}xs(k)

= RI
0xs(k). (4.5)
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To prove the lemma it is only necessary to show that RI
0 = H I

0. Consider the matrix

H I
0:

H I
0 = AI

s + BI
sK0

= [AI
11 + AI

12(I2 − AI
22)−1AI

21] + [BI
1 + AI

12(I2 − AI
22)−1BI

2]K0

= [AI
11 + BI

1K0] + AI
12(I2 − AI

22)−1[AI
21 + BI

2K0]

= RI
0. ✷

The significance of the above lemma lies in the fact that, it reduces the design of

stabilizing feedback controllers for discrete interval systems of dimensions n1 + n2

to the reduced system of order n1 when the pair (AI
s , BI

s) is controllable.

4.2. COMPOSITE CONTROL

Consider a discrete time uncertain system possessing two-time-scale nature for the

entire range of parameter variation described by

x1(k + 1) = AI
11x1(k) + AI

12x2(k) + BI
1u(k), (4.6)

x2(k + 1) = A21x1(k) + A22x2(k) + B2u(k). (4.7)

It is assumed that A21, A22, and B2 are constant matrices. The problem is to find a

linear state feedback which stabilizes the uncertain system (4.6), (4.7).

The slow uncertain subsystem can be obtained as in (3.6) with

AI
s = AI

11 + AI
12[I2 − A22]−1A21,

BI
s = BI

1 + AI
12[I2 − A22]−1B2.

(4.8)

The fast subsystem can be obtained as

xƒ(k + 1) = A22xƒ(k) + B2uƒ(k). (4.9)

Assume that the pair (A22, B2) and the pair (AI
s , BI

s) is controllable. Let us(k) =

K0xs(k) and uƒ(k) = Kƒxƒ(k) be designed to stabilize the slow and fast subsystem in

(4.8) and (4.9) respectively.

By virtue of equation (3.5),

x̄2(k) = [I2 − A22]−1{A21x̄1(k) + B2ū(k)},

the composite control

uc(k) = us(k) + uƒ(k) = K0xs(k) + Kƒxƒ(k),

can be written as

uc(k) = {[Im − Kƒ(I2 − A22)−1B2]K0 − Kƒ(I2 − A22)−1A21}xs(k)

+ Kƒ{(I2 − A22)−1(A21 + B2K0)xs(k) + xƒ(k)}. (4.10)
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If we replace xs(k) by x1(k) and x̄2(k)+xƒ(k) by x2(k), we get the composite controller

in terms of the states of the higher order system as

uc(k) = {[Im − Kƒ(I2 − A22)−1B2]K0 − Kƒ(I2 − A22)−1A21}x1(k)

+ Kƒx2(k). (4.11)

LEMMA 4.2. If [I2 − A22]−1 exists and the pairs (AI
s , BI

s) and (A22, B2) are stabi-

lizable, then the linear state feedback control

uc(k) = {[Im − Kƒ(I2 − A22)−1B2]K0 − Kƒ(I2 − A22)−1A21}x1(k)

+ Kƒx2(k), (4.12)

stabilizes (4.6), (4.7) where K0 and Kƒ are designed to make (AI
s + BI

sK0) and

(A22 + B2Kƒ) stable matrices respectively [16].

Proof. Consider any one member of the interval system in (4.6), (4.7). Let it be

represented as

x1(k + 1) = A11lx1(k) + A12lx2(k) + B1lu(k),

x2(k + 1) = A21x1(k) + A22x2(k) + B2u(k).
(4.13)

The slow and fast models of this system are obtained as

xs(k + 1) = Aslxs(k) + Bslus(k),

xƒ(k + 1) = A22xƒ(k) + B2uƒ(k),
(4.14)

where

Asl = A11l + A12l[I2 − A22]−1A21,

Bsl = B1l + A12l[I2 − A22]−1B2.

As A11l ⊂ AI
11 (i.e., a11l ∈ aI

11) and A12l ⊂ AI
12, Asl ⊂ AI

s . Similarly Bsl ⊂ BI
s .

The feedback system, when the controller (4.12) is applied to system (4.13)

is
[

x1(k + 1)

x2(k + 1)

]

=

[

F1 F2

F3 F4

] [

x1(k)

x2(k)

]

, (4.15)

where

F1 = A11l + B1l[Im − Kƒ(I2 − A22)−1B2]K0 − B1lKƒ(I2 − A22)−1A21,

F2 = A12l + B1lKƒ,

F3 = (I2 − A22 − B2Kƒ)(I2 − A22)−1(A21 + B2K0),

F4 = A22 + B2Kƒ.

The complete separation into the slow and fast system is achieved by a transforma-

tion x̂(k) = Hx(k) [11],

H =

[

I1 + NK N

K I2

]

, H−1 =

[

I1 −N

−K I2 + KN

]

, (4.16)



ROBUST CONTROL FOR TWO-TIME-SCALE DISCRETE INTERVAL SYSTEMS 51

where I1 and I2 are n1 × n1 and n2 × n2 identity matrices respectively and

K = −(I2 − A22)−1(A21 + B2K0) + O(ε),

N = (Asl + BslK0)−1(A12l + B1lKƒ) + O(ε).
(4.17)

From equations (4.15), (4.16), and (4.17) we get

H

[

F1 F2

F3 F4

]

H−1 =

[

F0l 0

0 Fƒ

]

, (4.18)

where

F0l = Asl + BslK0 + O(ε),

Fƒ = A22 + B2Kƒ + O(ε).

It is seen that eigenvalues of the transformed closed-loop system (4.18) are formed

by eigenvalues of (Asl + BslK0) and (A22 + B2Kƒ) to a first-order approximation.

Hence the stabilization of system (4.13) amounts to the selection of the matrices

K0 and Kƒ such that the pairs (Asl + BslK0) and (A22 + B2Kƒ) are stable. As Asl ⊂ AI
s ,

Bsl ⊂ BI
s , and, (AI

s + BI
sK0) and (A22 + B2Kƒ) are stable by design, the closed loop

system represented by (4.18) is a stable system. A similar analysis for another

member Asq of interval system will give same result since Asq ⊂ AI
s and Bsq ⊂ BI

s .

This argument applies to all the members of the interval system (4.6). Hence the

state feedback controller (4.12) will give a stable closed loop system. ✷

5. Output Feedback Control

5.1. OUTPUT FEEDBACK CONTROL USING SLOW MODEL

Here we consider the problem of output feedback control design for interval discrete

systems possessing the fast slow separation property [16]. The interval system is

assumed to have been decomposed into slow and fast interval subsystem. It is shown

that output feedback control obtained from the slow uncertain model stabilizes the

full order uncertain system, provided that fast uncertain subsystem is stable.

Consider the linear shift invariant interval system possessing two-time-scale

structure for the entire range of parameter variation. Let such system be described

by (3.1), (3.2) with

[

y1(k)

y2(k)

]

=

[

C1 0

0 C2

] [

x1(k)

x2(k)

]

, (5.1)

where y1(k) and y2(k) have dimensions p1 and p2 respectively. Let vector y(k) ∈ R
p

be composed of vectors y1(k) and y2(k). It is assumed that C1 and C2 are constant

matrices. In terms of discrete quasi-steady state the output becomes

ȳ1(k) = C1x̄1(k),

ȳ2(k) = C2x̄2(k).
(5.2)
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The slow uncertain system is given by (3.6). By substituting the value of x̄2(k) of

(3.5) in (5.2), the output equation of the slow uncertain subsystem becomes

ys(k) = CI
s xs(k) + DI

sus(k)

= [yt
1s(k) yt

2s(k)]t
, (5.3)

where

Cs =

[

C1

C2(I2 − AI
22)−1AI

21

]

and Ds =

[

0

C2(I2 − AI
22)−1BI

2

]

.

The fast uncertain subsystem is given by (3.9) and output equation in this case is

yƒ(k) =

[

0

C2

]

xƒ(k),

= [yt
1ƒ(k) yt

2ƒ(k)]t
. (5.4)

Assume that fast subsystem is stable and the pair (AI
s , BI

s) is controllable.

LEMMA 5.1. If the pair (AI
s , BI

s) is controllable and us(k) = K0y1s is designed to

stabilize the slow subsystem (3.6), then this control stabilizes the system (3.1), (3.2)

provided that matrix AI
22 is stable and (I2 − AI

22)−1 exists.

Proof. The reduced control in terms of the states of the original system becomes

us(k) = K0C1x1(k). When this reduced control is applied to the system (3.6), the

closed loop system becomes

xs(k + 1) = [AI
s + BI

sK0C1]xs(k). (5.5)

Now if we apply the control us(k) = K0C1x1(k) to the system in (3.1) and (3.2), we

get

x1(k + 1) = [AI
11 + BI

1K0C1]x1(k) + AI
12x2(k), (5.6)

x2(k + 1) = [AI
21 + BI

2K0C1]x1(k) + AI
22x2(k). (5.7)

Since matrix AI
22 is stable, we can neglect the fast dynamics over the period [0, Tƒ].

The slow subsystem of (5.6), (5.7) is given by

xs(k + 1) =
{

{[AI
11 + BI

1K0C1] + AI
12(I2−AI

22)−1[AI
21 + BI

2K0C1]}xs(k)
}

. (5.8)

Consider the system (5.5),

xs(k + 1) =
[

AI
s + BI

sK0C1

]

xs(k)

= {[AI
11 + AI

12(I2 − AI
22)−1AI

21]

+ [BI
1 + AI

12(I2 − AI
22)−1BI

2]K0C1}xs(k)

= {[AI
11 + BI

1K0C1] + AI
12(I2 − AI

22)−1[AI
21 + BI

2K0C1]}xs(k). (5.9)
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Comparing (5.8) and (5.9) the lemma is proved. ✷

5.2. COMPOSITE OUTPUT FEEDBACK

Consider the linear shift invariant uncertain system possessing two-time-scale struc-

ture for the entire range of parameter variation. Let such system be described by

(4.6), (4.7). It is assumed that C1 and C2 are constant matrices and have rank p1

and p2 respectively. It is also assumed that A21 = PC1 i.e., the effect of slow part

on fast part is linearly related to the output of the slow part. Given A21 and C1, the

matrix P is computed by [12] P = A21CT
1 (C1CT

1 )−1 which is an approximate result

equivalent to a least squares estimate.

The problem is to find an output feedback control design for (4.6), (4.7). The

slow uncertain system can be obtained as in (3.6) with

AI
s = AI

11 + AI
12[I2 − A22]−1PC1,

BI
s = BI

1 + AI
12[I2 − A22]−1B2.

(5.10)

The output equation of the slow uncertain subsystem is given by

ys(k) = Csxs(k) + Dsus(k),

= [yt
1s(k) yt

2s(k)]t
, (5.11)

where

Cs =

[

C1

C2(I2 − A22)−1PC1

]

and Ds =

[

0

C2(I2 − A22)−1B2

]

.

The fast subsystem is (4.9) and output equation in this case is by (5.4). Assume that

the pair (A22, B2) and the pair (AI
s , BI

s) is controllable. Suppose us(k) = K0y1s(k) and

uƒ(k) = Kƒy2ƒ(k) are designed to stabilize the slow and fast subsystem in (5.10),

(4.8), and (4.9) respectively.

From (3.5) and (5.10) we get

x̄2(k) = [I2 − A22]−1(P + B2K0)y1s(k), (5.12)

the composite control

uc(k) = us(k) + uƒ(k) = K0y1s(k) + Kƒy2ƒ(k),

can be written as

uc(k) = {[Im − KƒC2(I2 − A22)−1B2]K0 − KƒC2(I2 − A22)−1P}y1s(k)

+ Kƒ{y2ƒ(k) + C2(I2 − A22)−1(P + B2K0)y1s(k)}. (5.13)

If we replace y1s(k) by y1(k) and ȳ2(k) + y2ƒ(k) by y2(k), we get the composite

controller in terms of the y1(k) and y2(k).
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LEMMA 5.2. The output feedback control

uc(k) = {[Im − KƒC2(I2 − A22)−1B2]K0 − KƒC2(I2 − A22)−1P}y1(k)

+ Kƒy2(k) (5.14)

stabilizes (4.6), (4.7), where K0 and Kƒ are designed to make (AI
s + BI

sK0C1) and

(A22 + B2KƒC2) stable matrices respectively.

Proof. Consider any one member of the interval system in (4.6), (4.7). Let it be

represented as in (4.13). The slow and fast models of the system (4.13) are given

by (4.14), with

Asl = A11l + A12l[I2 − A22]−1PC1,

Bsl = B1l + A12l[I2 − A22]−1B2.

As A11l ⊂ AI
11 and A12l ⊂ AI

12, Asl ⊂ AI
s . Similarly Bsl ⊂ BI

s .

The feedback system, when the controller (5.14) is applied to system (4.13)

is
[

x1(k + 1)

x2(k + 1)

]

=

[

F11 F12

F21 F22

] [

x1(k)

x2(k)

]

, (5.15)

where

F11 = A11l + B1l[Im − KƒC2(I2 − A22)−1B2]K0C1

−B1kKƒC2(I2 − A22)−1PC1,

F12 = A12l + B1lKƒC2,

F21 = (I2 − A22 − B2KƒC2)(I2 − A22)−1(P + B2K0)C1,

F22 = A22 + B2KƒC2.

The complete separation into the slow and fast system is achieved by a transforma-

tion x̂(k) = Jx(k) [12]

J =

[

I1 + RQ R

Q I2

]

, J−1 =

[

I1 −R

−Q I2 + QR

]

, (5.16)

where I1 and I2 are n1 × n1 and n2 × n2 identity matrices respectively and

Q = Q0 + O(ε),

Q = −(I2 − A22)−1(P + B2K0)C1 + O(ε),

R = R0 + O(ε),

R = (Asl + BslK0C1)−1(A12l + B1lKƒC2) + O(ε).

(5.17)

The Q0 and R0 are of the “order of ε” approximation to Q and R, respectively.

Retaining the first order term we get

J

[

F11 F12

F21 F22

]

J−1 =

[

D1 0

0 D4

]

, (5.18)
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Table 1. Open loop eigenvalues of the two-time-scale
discrete interval system.

Eigenvalue number Lower bound Upper bound

1 0.9051 0.9131

2 0.7756 0.8250

3 0.0909 0.0936

4 0.1528 0.2026

where

D1 = (Asl + BslK0C1) + O(ε),

D4 = (A22 + B2KƒC2) + O(ε).

It is seen that eigenvalues of the transformed closed-loop system (5.18) are formed

by eigenvalues of (Asl +BslK0C1) and (A22 +B2KƒC2) to a first-order approximation.

Hence the stabilization of system (4.13) amounts to the selection of the matrices K0

and Kƒ so that the pairs (Asl + BslK0C1) and (A22 + B2KƒC2) are stable. As Asl ⊂ AI
s ,

Bsl ⊂ BI
s , and, (AI

s + BI
sK0C1) and (A22 + B2KƒC2) are stable by design, the closed

loop system represented by (5.15) is a stable system. A similar analysis for another

member Asq of interval system will give same result since Asq ⊂ AI
s and Bsq ⊂ BI

s .

This argument applies to all the members of the interval system (4.6). Hence the

controller (5.14) will give a stable closed loop system. ✷

6. Numerical Examples

EXAMPLE 6.1. Consider the following uncertain two-time-scale system of the

form (3.1) and (3.2) with

AI
11 =

[

[0.9, 0.91] [0, 0]

[0.1, 0.1] [0.8, 0.85]

]

,

AI
12 =

[

[0, 0] [0.1, 0.12]

[0.05, 0.05] [−0.1,−0.1]

]

,

AI
21 =

[

[−0.1,−0.1] [0, 0]

[0.12, 0.13] [0.003, 0.003]

]

,

AI
22 =

[

[0.15, 0.2] [0, 0]

[0, 0] [0.1, 0.1]

]

,

B1 = [ 0 1 ]T
, B2 = [ 1 1 ]T

.

The bound on eigenvalues of the interval matrix can be obtained using the method

suggested in [2], [6], [7], and [10]. The bounds on the open loop eigenvalues

obtained using the method described in [2] are given in Table 1.
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Table 2. Closed loop eigenvalues of the discrete two-time-
scale interval system.

Closed loop eigenvalues

lower bounds 0.9029 0.7752 0.0935 0.1528

upper bounds 0.9152 0.8247 0.0920 0.2025

Using interval arithmetic, the slow uncertain subsystem is given by

AI
s =

[

[0.9126, 0.9284] [0.0003, 0.0004]

[0.0784, 0.0816] [0.7996, 0.8497]

]

, BI
s =

[

[0.1046, 0.1417]

[0.9407, 0.9579]

]

.

Let K0 = [k1, k2] be the stabilizing controller for the slow uncertain system obtained

using LMI toolbox [20]. In LMI toolbox the function psys specifies the state space

models where the state space matrices may be uncertain or parameter dependent.

The function pvec is used in conjunction with psys to specify parameter depen-

dent systems. The pvec uses the type “box” which corresponds to independent

parameter ranging in interval Pj ≤ Pj ≤ Pj. Finally the function msfsyn com-

putes a state feedback control u = Kx that places the closed loop poles inside

the LMI region specified by region. The composite state feedback controller,

us = [−0.0990 −0.0256 0 0]x(k), when applied to actual higher order discrete

two-time-scale system, results in a stable closed loop system. The closed loop

eigenvalues of discrete two-time-scale interval are given in Table 2.

EXAMPLE 6.2. Consider the following uncertain two-time-scale system of the

form (4.6) and (4.7) [16]

AI
11 =

[

[0.9, 0.91] [0, 0]

[0.1, 0.1] [0.8, 0.85]

]

, AI
12 =

[

[0, 0] [0.1, 0.12]

[0.05, 0.05] [−0.1,−0.1]

]

,

A21 =

[

−0.1 0

0.12 0.003

]

, A22 =

[

0.15 0

0 0.1

]

,

B1 =

[

0

1

]

, B2 =

[

1

1

]

.

Using interval arithmetic the slow uncertain subsystem is given by

AI
s =

[

[0.9126, 0.9284] [0.0003, 0.0004]

[0.0784, 0.0816] [0.7996, 0.8497]

]

, BI
s =

[

[0.1046, 0.1417]

[0.9407, 0.9579]

]

.

Using LMI toolbox [20] the controller obtained for slow subsystem is

K0 = [−0.0990 −0.0256].

The stabilizing controller for fast system (A22, B2) of (4.9) is

Kƒ = [−0.0240 −0.0040].
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Table 3. Closed loop eigenvalues of discrete two-time-
scale interval system.

Closed loop eigenvalues

lower bounds 0.8283 0.7170 0.1793±0.0390i

upper bounds 0.8599 0.7172 0.2183±0.0642i

The composite state feedback controller (4.12)

us = [−1.0169 −0.0262 −0.0240 0.0040]x(k)

when applied to actual higher order discrete two-time-scale system, results in a

stable closed loop system. The closed loop eigenvalues of discrete two-time-scale

interval system are given in Table 3.

7. Conclusion

A method for designing controller for discrete two-time-scale interval system is

presented. The discrete two-time-scale interval system is decomposed into slow

and fast interval subsystems. It is shown that a state feedback control law designed

to stabilize the slow model stabilizes the actual full order system provided the fast

modes are asymptotically stable. It is also shown that the composite controller

formed from the subsystem controller stabilizes the original discrete two-time-

scale interval system when applied to it. The problem of designing output feedback

controller for discrete two-time-scale uncertain system using slow model and both

the slow and fast subsystem is also considered. The output feedback controller so

designed stabilizes the discrete two-time-scale interval system.
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