Header menu link for other important links
Rivastigmine attenuates the Alzheimer's disease related protein degradation and apoptotic neuronal death signalling
P. Gupta, S. Tiwari, A. Singh, A. Pal, , S. Singh
Published in Portland Press Ltd
PMID: 33660768
Volume: 478
Issue: 7
Pages: 1435 - 1451
Rivastigmine is a clinical drug for patients of Alzheimer's disease (AD) exerting its inhibitory effect on acetylcholinesterase activity however, its effect on other disease-related pathological mechanisms are not yet known. This study was conducted to evaluate the effect of rivastigmine on protein aggregation and degradation related mechanisms employing streptozotocin (STZ) induced experimental rat model. The known inhibitory effect of rivastigmine on cognition and acetylcholinesterase activity was observed in both cortex and hippocampus and further its effect on tau level, amyloid aggregation, biochemical alterations, endoplasmic reticulum (ER) stress, calcium homeostasis, proteasome activity and apoptosis was estimated. STZ administration in rat brain caused significant cognitive impairment, augmented acetylcholinesterase activity, tau phosphorylation and amyloid aggregation which were significantly inhibited with rivastigmine treatment. STZ also caused significant biochemical alterations which were attenuated with rivastigmine treatment. Since AD pathology is related to protein aggregation and we have found disease-related amyloid aggregation, further the investigation was done to decipher the ER functionality and apoptotic signalling. STZ caused significantly altered level of ER stress related markers (GRP78, GADD153 and caspase-12) which were significantly inhibited with rivastigmine treatment. Furthermore, the effect of rivastigmine was estimated on proteasome activity in both regions. Rivastigmine treatment significantly enhances the proteasome activity and may contributes in removal of amyloid aggregation. In conclusion, findings suggested that along with inhibitory effect of rivastigmine on acetylcholinesterase activity and up to some extent on cognition, it has significant effect on disease-related biochemical alterations, ER functionality, protein degradation machinery and neuronal apoptosis. © 2021 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society
About the journal
JournalBiochemical Journal
PublisherPortland Press Ltd