Header menu link for other important links
X
RF sputtered MoO3thin film on si (100) for gas sensing applications
A. Pandey, A. Dhaka, C. Kumari, J. Kaushik, A. Arora, S. Dutta, , R. Raman
Published in Defense Scientific Information and Documentation Centre
2020
Volume: 70
   
Issue: 5
Pages: 505 - 510
Abstract
Molybdenum Trioxide (MoO3) films are grown on Si(100) substrates by reactive RF magnetron sputtering in plasma containing a mixture of Argon and Oxygen, using a pure Molybdenum target. In this paper, we report the deposition of (MoO3) films on Si(100) substrates under varying gas flow (O2 + Ar gas) (20 sccm to 30 sccm with the duration of deposition~ 1hr) by RF reactive magnetron sputtering at room temperature. To get crystalline MoO3 films annealing in O2 environment at 500 °C for 4 h is done. Phase formation and orientation of the film is characterised by Glancing incidence X-ray diffraction (GIXRD). The identification of the orthorhombic MoO3 phase is investigated by XRD and Raman spectroscopy. Raman lines at 819 cm-1 and 995 cm-1 are due to the (A1g, B1g) symmetric stretching (Mo-O-Mo) bond and asymmetric stretching band (Mo=O) respectively. Surface morphology and cross-sectional image of the deposited thin films were investigated by FE-SEM image. UV-Visible reflectance and cross-sectional FE-SEM image confirm the thickness of the MoO3 films with oxygen-rich and oxygen deficient phase formation occur. Reverse leakage current density of 20 sccm 1hr sample is low (1×10-6 mA/cm2) as compared to 30 sccm 1hr sample (1×10-3 mA/cm2). The higher leakage is due to crack formation during the ex-situ annealing of MoO3 films. This MoO3 films can be used in Gas sensing and switching devices. © 2020, DESIDOC.
About the journal
JournalDefence Science Journal
PublisherDefense Scientific Information and Documentation Centre
ISSN0011748X
Open AccessNo