The main challenge in recognizing handwritten characters is to handle large-scale shape variations in the handwriting of different individuals. In this paper, we present a novel handwritten character recognition method based on the structural shape of a character irrespective of the viewing direction on the 2D plane. Structural shape of a character is described by different skeletal convexities of character strokes. Such skeletal convexity acts as an invariant feature for character recognition. Longest common subsequence matching is used for recognition. We have tested out method on a benchmark dataset of handwritten Bengali character images. Preliminary results demonstrate the efficacy of our approach. © 2011 IEEE.