
1

Rapid Reconstruction of Time-varying Gene
Regulatory Networks

Saptarshi Pyne, Alok Ranjan Kumar, and Ashish Anand

Abstract—Rapid advancements in high-throughput technologies has resulted in genome-scale time series datasets. Uncovering the

temporal sequence of gene regulatory events, in the form of time-varying gene regulatory networks (GRNs), demands computationally

fast, accurate and scalable algorithms. The existing algorithms can be divided into two categories: ones that are time-intensive and

hence unscalable; others that impose structural constraints to become scalable. In this paper, a novel algorithm, namely ‘an algorithm

for reconstructing Time-varying Gene regulatory networks with Shortlisted candidate regulators’ (TGS), is proposed. TGS is

time-efficient and does not impose any structural constraints. Moreover, it provides such flexibility and time-efficiency, without losing its

accuracy. TGS consistently outperforms the state-of-the-art algorithms in true positive detection, on three benchmark synthetic

datasets. However, TGS does not perform as well in false positive rejection. To mitigate this issue, TGS+ is proposed. TGS+

demonstrates competitive false positive rejection power, while maintaining the superior speed and true positive detection power of

TGS. Nevertheless, main memory requirements of both TGS variants grow exponentially with the number of genes, which they tackle

by restricting the maximum number of regulators for each gene. Relaxing this restriction remains a challenge as the actual number of

regulators is not known a priori.

Reproducibility: The datasets and results can be found at: https://github.com/aaiitg-grp/TGS. This manuscript is currently under

review. As soon as it is accepted, the source code will be made available at the same link. There are mentions of a ‘supplementary

document’ throughout the text. The supplementary document will also be made available after acceptance of the manuscript. If you

wish to be notified when the supplementary document and source code are available, kindly send an email to

saptarshipyne01@gmail.com with subject line ‘TGS Source Code: Request for Notification’. The email body can be kept blank.

Index Terms—Gene Regulatory Network, Network Reconstruction, Bayesian Network, Probabilistic Graphical Model, Gene

Expression, Temporal Progression Model, Network Inference, Structure Learning, Computational Systems Biology.

✦

1 INTRODUCTION

C ELL, the building block of life, is a dynamic system.
It continuously senses and responds to the changes in

its environmental conditions. The cell performs this task
with the help of several biomolecules that interact with
each other. Modelling how these interactions vary with
time is critical for understanding how the cell develops,
evolves and maintains itself. One of the important types
of interactions is the ones between the transcription factors
(TFs) and the genes. Each TF is a special type of protein
which physically binds to an appropriate site in the vicinity
of its target gene to regulate the gene’s expression. The
gene, that has produced the TF in the first place, is said
to be a regulator of the target gene. This regulator-regulatee
relationships among the genes is represented by a directed
network, known as the gene regulatory network (GRN). In a
GRN, each node represents a gene and a directed edge from
one gene to another implies that the former gene regulates
the latter. The aim of this paper is to develop an algorithm
for modelling (reconstructing) how the GRN structure (edge
relationships) varies with time.

There exists an array of algorithms ([1], [2], [3], [4],
[5], [6], [7], [8], [9], [10]) that reconstruct time-varying
GRNs, from time series gene expression datasets. Among
them, the ARTIVA algorithm [4] demonstrates its ability
to accomplish this task with high accuracy. It employs
a flexible framework, where time interval specific GRNs
are learnt independently of each other, without imposing
any structural constraints. However, ARTIVA is very time
intensive; therefore, not suitable for the contemporary high-

throughput datasets.
In this paper, a novel algorithm, namely ‘an algorithm

for reconstructing Time-varying Gene regulatory networks
with Shortlisted candidate regulators’ (TGS), is proposed
to provide an equally flexible framework in a significantly
more time-efficient manner.

It needs to be noted that there exist more time-efficient
algorithms than ARTIVA. Most notably, the algorithms, pro-
posed by Dondelinger et al. [5] and Chan et al. [6]. However,
they depend upon the smoothly time-varying assumption,
which encourages temporally adjacent GRNs to share more
common edges than temporally distal GRNs.

The smoothly time-varying assumption does not neces-
sarily hold for all scenarios. For example, temporal varia-
tions are highly dynamic, during Yeast’s stress response [4]
or clinical interventions [5]. Another exception may arise
when sampling interval of the given dataset is considerably
large. In that case, two consecutive time points may belong
to two different cellular conditions. Thus, it is possible for a
GRN to share less common edges with a temporally adjacent
GRN, belonging to a separate condition, than with a distal
GRN, belonging to a similar condition (see Section 4.1 of the
supplementary document).

TGS’s framework is compatible with any dataset, re-
gardless of whether the smoothly time-varying assumption
holds for it or not. Moreover, TGS offers such flexibility
and time-efficiency, without losing its accuracy. Three of
the datasets, provided by ‘DREAM3 in silico network in-
ference challenge’, are used to evaluate TGS’s prediction

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 14, 2018. ; https://doi.org/10.1101/272484doi: bioRxiv preprint

2

power, against those of the aforementioned algorithms. The
results show that TGS is consistently competitive with these
state-of-the-art algorithms, in terms of both sensitivity and
precision. It is also found that, TGS is able to reconstruct
biologically meaningful GRNs from a D. melanogaster mi-
croarray dataset.

To summarize, the main contribution of this paper is
two-fold:

• Flexibility: It provides a framework, where time-
varying GRN structures are learnt, independently
of each other, without imposing any structural con-
straints. This framework is compatible with any time
series gene-expression dataset, regardless of whether
the underlying gene regulation process complies
with the smoothly time-varying assumption or not.

• Time-efficiency: The framework is offered in a sig-
nificantly more time-efficient manner than those of
the state-of-the-art alternatives. At the same time,
competitive sensitivity and precision are provided.

This paper is organized as follows: Section 2 formally
defines the problem statement at hand. It also provides a
critical and chronological survey of the related algorithms,
to identify the fundamental issues, that need to be solved.
Subsequently in Section 3, a novel algorithm is proposed to
resolve a selected subset of these issues. The learning power
and speed, of the proposed algorithm, are comparatively
studied against those of the prior state-of-the-art algorithms,
in Section 4, on a set of benchmark synthetic datasets. In
the same section, biological significance of its prediction is
evaluated, given a real microarray dataset. Nevertheless, a
set of limitations remain in its unconstrained application.
These limitations are discussed in Section 5, which opens
the door for future investigations.

2 RELATED WORKS

2.1 Problem Formulation

Suppose that the given dataset D is comprised of S time se-
ries S = {s1, . . . , sS} of gene expression data. Each time se-
ries contains expression levels of V genes V = {v1, . . . , vV }
at T consecutive time points T = {t1, . . . , tT }. It is assumed
that there is no missing value in any time series. In other
words, each time series is a complete time series of T time
points. D(X ;Y;Z) is used to denote the observed values of
genes X at time points Y in time series Z . D(X ;Y;Z) ⊆ D
since X ⊆ V,Y ⊆ T ,Z ⊆ S .

Given D, the objective is to reconstruct a temporally

ordered GRN sequence G =
(

G(1), . . . , G(T−1)
)

(Figure

1). Here, each G(p) (∈ G) is a time interval specific GRN.
Thus, G(p) represents the gene regulatory events occurred
during the time interval between time points tp and t(p+1).
It is a directed unweighted network on the (2× V) nodes
{vi tq : vi ∈ V, tq ∈ {tp, t(p+1)}}. Each node vi tq repre-
sents a distinct random variable. Expression of gene vi at
time point tq is modelled as random variable vi tq . There-
fore, the observed expression values of vi at time point tq in
S separate time series are considered as S observed values
of vi tq . The underlying gene regulation process is assumed
to be first order Markovian [1]. Hence, there exists a directed

v1 t1

v2 t1

vV t1

v1 t2

v2 t2

vV t2

v1 tT

v2 tT

vV tT

�
�1)

v1 t3

v2 t3

vV t3

�
�2)

Fig. 1. Output time-varying GRNs
(

G(1), . . . , G(T−1)
)

= G is a

sequence of directed unweighted networks. Here, G(p) (∈ G) repre-
sents the gene regulatory events occurred during the time interval
between time points tp and t(p+1). It consists of (2× V) nodes
{vi tq : vi ∈ V, tq ∈ {tp, t(p+1)}}. There exists a directed unweighted

edge
(

vi tp, vj t(p+1)

)

if and only if vi regulates vj during time interval
(

tp, t(p+1)

)

.

edge
(

vi tp, vj t(p+1)

)

if and only if vi’s expression at time
point tp has a regulatory effect on vj ’s expression at time
point t(p+1).

2.2 Existing Solutions

There exists an array of algorithms (e.g., Bene [11], GENIE3
[12], NARROMI [13], LBN [14]) that do not completely solve
the problem but can reconstruct a single ‘summary’ GRN
over the nodes in V . These algorithms consider D as a
cross-sectional dataset. Then they include edge (vi, vj) in
the summary GRN if and only if the expression level of
vj is not conditionally independent of that of vi, given the
expression levels of other genes. The summary GRN helps
to discover which gene regulates which gene. However,
it can not identify the time interval(s) during which such
regulation has taken place.

To address this problem, Friedman et al. [1] model G
as a Dynamic Probabilistic Network (or Dynamic Bayesian
Network, in short, DBN). It is assumed that each gene
is regulated by the same regulator(s), if any, at every
time interval. Thus, output time-varying GRNs possess
time-homogeneous structures [Section 1] [15] , e.g., edge
(vi t1, vj t2) exists in G(1) if and only if edge (vi t2, vj t3)
exists in G(2) and so on [1]. In practice, this approach
tends to discover the regulations that are active over a
large number of time intervals. However, they may miss
the regulations that are active over a small number of time
intervals [16].

To tackle the time-homogeneity issue, four algorithms
are proposed. They are Non-stationary dynamic Bayesian
networks (NsDbn) [2], Non-stationary continuous dynamic
Bayesian networks (NsCdbn) [3], ARTIVA [4] and cpBGe
[15]. These algorithms accommodate the case where the
same gene can be regulated by different regulators during
different time intervals. The class of resulting models is
known as time-inhomogeneous DBN. NsDbn assumes that

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 14, 2018. ; https://doi.org/10.1101/272484doi: bioRxiv preprint

3

the data is generated by a multiple change point process
with change points at T = {t1, t(1+p), t(1+p+q), . . . , tT } ⊆ T
where p, q ∈ Z+. The duration between two consecutive
change points is called a time segment. One GRN structure
is learnt for each time segment instead of each time interval.
GRN structures of two different time segments can be dif-
ferent but GRN structure within a time segment remains
unchanged. First, NsDbn determines the number of the
change points along with their positions. Then for each time
segment, the fittest (w.r.t. a scoring function) DBN structure
is identified to be the output GRN for that segment. The
scoring function requires the input dataset to be discretized.
In contrast, NsCdbn uses a different scoring function that
does not require the dataset to be discretized [3].

ARTIVA provides a more flexible model by relaxing the
assumption that all genes share the same change points. It
assumes that each gene has its own set of change points (i.e.
time segments specific to itself); therefore, it can be regu-
lated by different regulators at its different time segments
but within a time segment, it must be regulated by the same
regulators. Hence, the output is one GRN structure for each
time interval. If a particular time segment of a specific gene
spans multiple consecutive time intervals, then the gene’s
regulator configurations (incoming edges) remain the same
in the corresponding time interval specific GRN structures.
On the other hand, if two consecutive time intervals belong
to two separate time segments for a specific gene, then the
gene’s regulator configurations vary in the corresponding
time interval specific GRN structures. Thus, ARTIVA learns
the time interval specific GRN structures independently of
each other [4].

Grzegorczyk et al. [15] argue that the assumption of
NsDbn is over-restrictive (same change points for all the
genes) and that of ARTIVA is over-flexible (unique change
points for every gene) [15]. Being true to their argument,
they propose the cpBGe algorithm. It groups the genes into
clusters based on similar expression patterns and then infers
unique change points for every cluster. However, cpBGe
produces a single time-invariant GRN structure. Therefore,
ARTIVA remains the most viable alternative for reconstruct-
ing time-varying GRNs till that point.

In line with Grzegorczyk et al., Dondelinger et al. [5]
argue that the flexibility of ARTIVA may lead to overfit-
ting, when S ≪ V . Hence, they propose an alternative
framework, that allows ‘Information sharing’ or ‘coupling’
between time interval specific GRN estimators. The frame-
work is further categorized into two classes: hard coupling
and soft coupling, depending upon the strength of cou-
pling (expected similarity between time interval specific
GRNs). For the hard coupling, two algorithms, TVDBN-
bino-hard and TVDBN-exp-hard, are introduced; they assume
that the expression of each gene follows a binomial and
an exponential distribution, respectively. Similarly, for the
soft coupling, two more algorithms, TVDBN-bino-soft and
TVDBN-exp-soft, are proposed. Dondelinger et al. also pro-
pose an unconstrained (no ‘Information sharing’) variant,
called TVDBN-0, which is same as ARTIVA, except in the
internal sampling strategies [5]. Through a comparative
study, over a collection of simulated datasets, it is con-
cluded that ‘Information sharing’ improves prediction when
the true network varies smoothly with time (each GRN

TABLE 1
A Summary of the existing GRN Reconstruction Algorithms, discussed

in Section 2.2, in the context of Time Series Gene Expression Data.

Algorithm Summary

Bene [11], GENIE3 [12],
NARROMI [13], Chang
et al. [7], LBN [14], cp-
BGe [15]

Learn a single time-invariant summary
GRN. Can not identify the time inter-
val(s) during which a regulatory event
has taken place.

DBN [1] Learns time-varying GRNs. Identifies
the time interval(s) during which a reg-
ulatory event has taken place. However,
does not accommodate the case where a
gene can be regulated by different regu-
lators during different time intervals.

NsDbn [2], NsCdbn [3],
ARTIVA [4], Xiong et al.
[8], TVDBN-0 [5]

Accommodate the case where a gene
can be regulated by different regulators
during different time intervals. Nev-
ertheless, not suitable for large-scale
datasets due to high computational cost.

{TVDBN-bino-hard,
TVDBN-bino-soft,
TVDBN-exp-hard,
TVDBN-exp-hard} [5],
MAP-TV [6], Zhang et
al. [10]

Relatively scalable. However, requires
the assumption that each GRN shares
more common edges with its temporally
adjacent GRNs than the distal ones. It
is called the smoothly time-varying as-
sumption.

structure shares more common edges with its temporally
adjacent GRN structures than with the distal ones, known
as the ‘smoothly time-varying assumption’). Following the
same assumption, Chan et al. [6] propose a time-efficient
algorithm (henceforth, MAP-TV), based on a Maximum A
Posteriori (MAP) probability estimation approach. Later,
Zhang et al. [10] replace the L1-based penalties in MAP-
TV with a multi-Laplacian prior. This approach further
helps in simultaneously obtaining time-varying GRNs and
transcriptional regulatory networks.

Nevertheless, it is always preferable to avoid any struc-
tural assumptions, unless the assumptions are known a
priori to hold for the dataset [4]. ARTIVA offers such an un-
constrained framework. It learns each time interval specific
GRN structure in a purely data-driven manner, indepen-
dently of other GRN structures.

However, ARTIVA is a computationally expensive algo-
rithm. Its authors suggest that it requires approximately
(5× V) minutes to reconstruct GRNs from a dataset of
T = 20 and S = 5 with the default parameter settings on
a 2.66 GHz CPU having a 4 GB RAM [4]. Hence, the time
frame necessary for it to scale up to the high-throughput
datasets may be considered prohibitive (≃ 87 days for
V = 25, 000). Developing an unconstrained as well as time-
efficient framework can be considered a timely contribution.
A summary of the algorithms, discussed in this section, is
provided in Table 1.

3 METHODS

In this section, two algorithms are developed. First, a base-
line algorithm is developed for reconstructing time-varying
GRNs from time series gene expression data. Like ARTIVA
[4], the baseline algorithm attempts to reconstruct the time-
varying GRNs independently of each other. Therefore, it
is compatible with any dataset, regardless of whether the

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 14, 2018. ; https://doi.org/10.1101/272484doi: bioRxiv preprint

4

smoothly time-varying assumption holds for it or not. Nev-
ertheless, it is time-intensive and hence not suitable for
large-scale datasets. Second, a heuristic based approxima-
tion step is added to the baseline algorithm to develop the
final algorithm. It maintains the independently time-varying
framework without compromising the scalability.

3.1 Development of the Baseline Algorithm

A conditional independence based baseline algorithm, re-
ferred to as Time-varying Bayesian Networks (TBN), is
designed. Algorithm 1 describes the steps in TBN. It takes a
discretized complete time series gene expression dataset D
as input. It is assumed that there are multiple time series
(S > 1) in D. Then TBN reconstructs one GRN G(p) for
every time interval

(

tp, t(p+1)

)

, where 1 ≤ p ≤ (T − 1)
(Figure 1). Each G(p) is modelled as a Bayesian Network
(BN) [17]. Absence of a directed edge

(

vi tp, vj t(p+1)

)

in

G(tp) implies that the expression level of vj at time point
t(p+1) is conditionally independent of that of vi at time
point tp, given the expression levels of the genes V \ {vi}
at time point tp. Biologically, it signifies that the expression
level of vi at time point tp has no regulatory effect on
that of vj during time interval (tp, tp + 1). On the other
hand, presence of that edge signifies that there is a non-
zero probability that vi’s expression level at tp has affected
that of vj during the (tp, tp + 1) time interval.

TBN employs a BN structure learning algorithm [18]
to learn every G(p) from D(V;{tp,t(p+1)};S). Therefore, the

problem of learning (T − 1) time-varying GRNs in G gets
decomposed into (T − 1) independent BN structure learn-
ing problems. For learning an exact BN structure, Bene
is the state-of-the-art algorithm w.r.t. time complexity and
scalability, to the best of authors’ knowledge. Hence, TBN
with Bene is chosen as the baseline for developing a novel
algorithm.

In TBN (Algorithm 1 Line 17), BIC scoring function
[17] is used with Bene to compute scores of the candidate
regulator sets. There exist some other scoring functions that
can be used with Bene, e.g. BDe. Among all available scoring
functions, BIC and BDe are compared w.r.t. their effects on
learning power of Bene by Silander et al. [11]. It is observed
that BIC outperforms BDe when number of observations
being considered (here, (S + 1)) is below 20. Moreover, the
performance of BDe is very sensitive to the chosen value of
its hyper-parameter [19]. BIC, on the other hand, does not
depend on any hyper-parameter. For these reasons, BIC is
considered to be most suitable for the current study.

3.2 Development of a Novel Algorithm: ‘an algorithm

for reconstructing Time-varying Gene regulatory net-

works with Shortlisted candidate regulators’ (TGS)

From Algorithm 1 , it is found that TBN’s time com-

plexity is TTBN (V) = (T − 1) × V × o
(

V 22(V−2)
)

=

o
(

(T − 1)V 32(V−2)
)

. It grows exponentially with the num-

ber of candidate regulators for each gene, which is V in
this case. Therefore, this approach can be made more com-
putationally efficient if a way can be discovered that: (a)
generates a significantly shorter list of candidate regulators

Algorithm 1 TBN

1: procedure TBN(D)
2: Initialize G ← a null graph over (V × T) nodes.
3: for each time interval

(

tp, t(p+1)

)

do
4: ⊲ where 1 ≤ p ≤ (T − 1); (T − 1) iterations.
5: for each gene vj ∈ V do ⊲ (V) iterations.
6: Candidate regulators of vj t(p+1)

7: ← {vi tp : vi ∈ V}.
8: Candidate regulator sets of vj t(p+1)

9: ← Powerset ({vi tp : vi ∈ V}).
10: Find out a regulator set with the maximum
11: BIC score by computing the scores of all
12: candidate regulator sets from
13: D(V;{tp,t(p+1)};S) using the Bene algorithm.

14: Once the regulator set is finalized, for each
15: node in it, add an edge in G (Figure 1)
16: from that node to vj t(p+1).

17: ⊲ o
(

V 22(V−2)
)

[11]

18: end for
19: end for
20: return G.
21: end procedure

for each gene, and (b) the amount of time it spends for short-
listing candidate regulators is overshadowed by the time
gain it brings.

Statistical pairwise association measures fulfil the first
criterion. Given sufficient observations on a pair of ran-
dom variables, they can identify whether there is a statisti-
cally significant probability (w.r.t. a predefined significance
threshold) that these variables are not associated with each
other. Thus the candidate regulators, whose expressions are
not statistically associated with that of the regulatee gene,
could be identified. Then these regulators can be removed
from the candidate regulator set.

A study by Liu et al. [20] compares 14 such associa-
tion measures and concludes that Mutual Information (MI)
demonstrates superior stability over other measures. MI’s
potential regulator-regulatee association predictions consis-
tently outperform [20] those of most others across different
sizes (different values of V) of benchmark gene expression
datasets w.r.t. mean AUC (Area Under Receiver Operat-
ing Characteristic Curve). Algorithms NARROMI and LBN
utilize MI for short-listing candidate regulators. For each
regulatee gene, they calculate its MI with every candidate
regulator; then eliminate the candidates with MI lower than
a user defined threshold.

However, the Achilles’ heel of this strategy is that the
prediction is heavily dependent on the user defined thresh-
old value [14]. LBN determines the threshold for synthetic
datasets by performing the predictions multiple times with
different threshold values and choosing the one that gives
the best prediction. This threshold selection strategy re-
quires the true regulatory relationships to be known a priori
so that quality of a prediction can be measured. A more
practical strategy is appointed by Context Likelihood of Re-
latedness (CLR) algorithm [21] (Algorithm 2). It constructs a

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 14, 2018. ; https://doi.org/10.1101/272484doi: bioRxiv preprint

5

weighted MI network 1 over all genes from a gene expres-
sion dataset without requiring a user defined threshold. CLR
is found to outperform other major MI network inference
algorithms [21]. Furthermore, it requires only O

(

V 2
)

time
for a dataset with V genes.

For the aforementioned reasons, CLR is chosen to be
a pre-selection step for candidate regulators before more
comprehensive selection could be performed by TBN. It
gives birth to a novel algorithm, which is named TGS (short
form for ‘the algorithm for reconstructing Time-varying
Gene regulatory networks with Shortlisted candidate regu-
lators’) (Algorithm 3). A flowchart is presented in Section 4.2
of the supplementary document. Additionally, a graphical
flowchart, with a small example, is depicted in Figure 2.

Algorithm 2 CLR [21]

1: procedure CLR(D,M)
2: (M is the Mutual Information (MI) matrix. It is a
3: (V × V) matrix. The (vi, vj)

th
cell of M , denoted by

4: M (vi, vj), represents the estimated MI value
5: between vi and vj .)
6: Initialize CLR network GCLR ← a null graph over the
7: genes in V . ⊲ O

(

V 2
)

.
8: for each pair of genes {vi, vj} do ⊲ O

(

V 2
)

.

9: Calculate CLR weight wi,j =
√

z2i + z2j where

10: zi = max
(

0,
M (vi,vj)−v̄i

σ(vi)

)

where, in turn,

11: (v̄i, σ (vi)) are the parameters of the empirical
12: distribution, estimated from the MI values
13: {M (vi, vk) : vk ∈ V \ {vi}}.
14: Similarly, zj is calculated.
15: if wi,j > 0 then
16: Add an undirected edge in GCLR between vi
17: and vj with edge weight wi,j .
18: end if
19: end for
20: return GCLR.
21: end procedure

TGS (Algorithm 3) has the time complexity

TTGS (V) =
(

O
(

V 2
)

+ (T − 1)× V × o
(

M22(M−2)
))

=
(

O
(

V 2
)

+ o
(

(T − 1)VM22(M−2)
))

. Here, M is the

maximum number of neighbours a gene has in the CLR
network. Since, in theory, M ≤ V , time complexity of
TGS is upper bounded by that of TBN. But empirically,
it is found [22] that each gene is regulated by a small
number of regulators with the exception in case of E.coli.
For this reason, major BN based algorithms (e.g., the
DBN implementation in BayesNet Toolbox for MATLAB
[23]) have variants that allow the user to specify the
maximum number of regulators a gene can have in a
given dataset, known as the max fan-in value (Mf). For
each gene, it reduces the number of candidate regulator

sets from
∑V

m=0

(

V
m

)

to
∑Mf

m=0

(

V
m

)

, where Mf ≪ V . It

is further reduced to
∑Mf

m=0

(

Mf

m

)

in the variant of TGS

1. An MI network is an undirected graph where two nodes are
connected if and only if their pairwise MI is statistically significant.
The significance threshold is either user defined or programmatically
computed by the network inference algorithm itself.

Algorithm 3 TGS (Graphical flowchart in Figure 2)

1: procedure TGS(D)
2: Compute the Mutual Information (MI) matrix,

3: denoted by M . It is a (V × V) matrix. The (vi, vj)
th

4: cell of M , denoted by M (vi, vj), represents the
5: estimated MI value between vi and vj . ⊲ O

(

V 2
)

.
6: Initialize G ← a null graph over (V × T) nodes.
7: GCLR ← CLR (D,M). ⊲ (Algorithm 2), O

(

V 2
)

.
8: for each time interval

(

tp, t(p+1)

)

do
9: (where 1 ≤ p ≤ (T − 1)) ⊲ (T − 1) iterations

10: for each gene vj ∈ V do ⊲ (V) iterations
11: Candidate regulators of vj t(p+1) ←
12: {vi tp : (vi, vj) ∈ Edgeset (GCLR)}.
13: Candidate regulator sets of vj t(p+1) ←
14: Powerset ({vi tp : (vi, vj) ∈ Edgeset (GCLR)}).
15: Find out a regulator set with the maximum
16: BIC score by computing the scores of all
17: candidate regulator sets from
18: D(V;{tp,t(p+1)};S) using the Bene algorithm.

19: Once the regulator set is finalized, for each
20: node in it, add an edge in G (Figure 1) from
21: that node to vj t(p+1). Suppose,
22: M = maximum number of neighbours any
23: gene has in GCLR [11].

24: ⊲ o
(

M22(M−2)
)

.

25: end for
26: end for
27: return G.
28: end procedure

with max fan-in restriction (Algorithm 4). Therefore,
for a high-throughput human-genome scale time series
gene expression dataset where (T − 1) = o (V) and
Mf = o (lg V), the time complexity of TGS asymptotically
tends towards polynomial while that of TBN remains
exponential.

TTGS (V) =
(

O
(

V 2
)

+ o
(

(T − 1)VM2
f 2(Mf−2)

))

(1)

=
(

O
(

V 2
)

+ o
(

o (V)V o (lg V)
2
2(o(lg V)−2)

))

=

(

O
(

V 2
)

+ o

(

o
(

V 2 (lg V)
2
) 2(o(lg V))

4

))

=
(

O
(

V 2
)

+ o
(

o
(

V 2 (lg V)
2
)

(o (V))
))

=
(

O
(

V 2
)

+ o
(

V 3 (lg V)
2
))

= o
(

V 3 (lg V)
2
)

(2)

TTBN (V) = o
(

(T − 1)V 3 2(V−2)
)

= o
(

o (V)V 3 2(V−2)
)

= o
(

V 4 2(V−2)
)

TGS+: A variant of Algorithm 4, called TGS+, is also
proposed to minimize the negative effect of the CLR step
on false positive rejection. While CLR is very beneficial for
predicting a useful number of true positive edges, it can do

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 14, 2018. ; https://doi.org/10.1101/272484doi: bioRxiv preprint

6

v�v�

v2

v3

v4

t� t2 t3
s�

v�v�

v2

v3

v4

t� t2 t3
s2

Input time-series discretized complete gene expression dataset �

v� v2

v3v4

CLR

CLR Network GCLR

Pre-selection of Candidate Regulator�s)

v2

v� v2

v� v4

v3

v4

v4

v2 v3

Selection of Regulator�s)

Candidate

Regulatee

�ene

Regulator�s)

w��2

w2�4

w3�4

2 12 1

1 2 1

1 1 2

1 1 2

2 1

1 2 1

1 1 2

1 1 2

Fig. 2. Graphical Flowchart (Part 1) of the TGS Algorithm (Algorithm
3). The flowchart is continued in Figure 3. For illustration, a dataset D
is considered with four genes {v1, v2, v3, v4} = V and two time series
{S1, S2} = S. Each time series has three time points {t1, t2, t3} = T .
D is discretized into two discrete levels, represented by {1, 2}.

so at the cost of predicting a considerable number of false
positive edges [21]. Having such a considerable number of
false positives could result in the waste of scarce and often
expensive resources in the validation process.

Cases where CLR’s judgment fails are when two genes,
vi and vj , have a high mutual information, M (vi, vj), even
though they do not have a direct regulatory relationship.
One such case is when vi and vj have an indirect regulatory
relationship. For example, vi regulates a third gene vk and
vk, in turn, regulates vj .

The Data Processing Inequality (DPI) [24] helps to iden-
tify the false positive edge in the aforementioned case. The
inequality states that the mutual information of the false
positive pair must not be higher than those of the true
positive pairs: M (vi, vj) ≤ min (M (vi, vk),M (vk, vj)). An
algorithm, namely ARACNE [24], applies the converse of the
DPI to produce significantly low number of false positives
[24]. ARACNE takes the raw mutual information matrix as
input. Then, for each 3-combination of genes, it identifies
the pair with the lowest mutual information and replace
their mutual information with zero in the mutual informa-
tion matrix (Algorithm 5). Thus, ARACNE refines the raw
mutual information matrix.

In TGS+ (Algorithm 6), the refined mutual information
matrix, instead of the raw one, is provided as input to the
CLR step. The expectation is that the reduction in false
positives in the mutual information matrix will help CLR

v1 t1 v1 t2 v1 t3

v2 t1 v2 t2

v1 t1 v1 t2

v2 t1 v2 t2 v2 t3

v4 t1 v4 t2

�ene

v2 t1 v2 t2

v3 t1 v3 t2

v4 t3v4 t1 v4 t2

v3 t1 v3 t2 v3 t3

v4 t1 v4 t2

Merge

v1 t1 v1 t2

v2 t1 v2 t2 v2 t3

v3 t1 v3 t2

v1 t3

v3 t3

v4 t1 v4 t2 v4 t3

Reconstructed Time-varying Gene Regulatory Networks G

Selection of regulators of
fv1 t�p+1) : 2 � �p + 1) � �g

Selection of regulators of
fv4 t�p+1) : 2 � �p + 1) � �g

Selection of regulators of
fv2 t�p+1) : 2 � �p + 1) � �g

Selection of regulators of
fv3 t�p+1) : 2 � �p + 1) � �g

Fig. 3. Graphical Flowchart (Part 2) of the TGS Algorithm (Algorithm 3).
The flowchart is continued from Figure 2. For discussion of the Bene
step, let us consider the ‘Selection of regulators of {v1 t(p+1) : 2 ≤
(p+ 1) ≤ T}’. Since, v2 is the sole neighbour of v1 in GCLR, v2 is
the only candidate regulator of v1 (Figure 2). Therefore, the candidate
regulator sets of v1 t2 are ∅ and {v2 t1}. Among these two sets, Bene
chooses {v2 t1} based on observations DV;{t1,t2};S . Similarly, the
candidate regulator sets of v1 t3 are ∅ and {v2 t2}. Among these two
sets, Bene chooses ∅ based on observations DV;{t2,t3};S .

to make less false positive predictions. If that becomes the
case, then TGS+ is expected to predict less false positives,
compared to TGS.

Nevertheless, ARACNE’s power of false positive rejec-
tion comes at a cost. When feed-forward network motifs
(e.g., vi regulates vj directly as well as indirectly through vk)
are present in the true network, ARACNE may reject the true
feed-forward edges. Another case, where ARACNE may
result in rejection of the true positive edges, is discussed
in Section 4.3 of the supplementary document. However, it

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 14, 2018. ; https://doi.org/10.1101/272484doi: bioRxiv preprint

7

Algorithm 4 TGS with the Max Fan-in Restriction

1: procedure TGS(D,Mf)
2: Compute the Mutual Information (MI) matrix,

3: denoted by M . It is a (V × V) matrix. The (vi, vj)
th

4: cell of M , denoted by M (vi, vj), represents the
5: estimated MI value between vi and vj . ⊲ O

(

V 2
)

.
6: Initialize G ← a null graph over (V × T) nodes.
7: GCLR ← CLR (D,M). ⊲ (Algorithm 2), O

(

V 2
)

.
8: for each time interval

(

tp, t(p+1)

)

do
9: (where 1 ≤ p ≤ (T − 1)) ⊲ (T − 1) iterations

10: for each gene vj ∈ V do ⊲ (V) iterations
11: if |{vi tp}| > Mf then
12: (where (vi, vj) ∈ Edgeset (GCLR))
13: Sort such vi genes in descending order of
14: the edge weight wi,j in GCLR. Generate a
15: list Lj by retaining the top Mf number of
16: genes and discarding the rest. Break ties
17: using lexicographic order of the gene
18: names or indices.
19: Candidate regulators of vj t(p+1) ←
20: {vi tp :
21: ((vi, vj) ∈ Edgeset (GCLR))∧ (vi ∈ Lj)}.
22: else
23: Candidate regulators of vj t(p+1) ←
24: {vi tp : (vi, vj) ∈ Edgeset (GCLR)}.
25: end if
26: Candidate regulator sets of vj t(p+1) ←
27: Powerset({vi tp :
28: (vi, vj) ∈ Edgeset (GCLR)}).
29: Find out a regulator set with the maximum
30: BIC score by computing the scores of all
31: candidate regulator sets from
32: D(V;{tp,t(p+1)};S) using the Bene algorithm.

33: Once the regulator set is finalized, for each
34: node in it, add an edge in G (Figure 1) from

35: that node to vj t(p+1). ⊲ o
(

M2
f 2(Mf−2)

)

.

36: end for
37: end for
38: return G.
39: end procedure

is observed that the improvement in false positives, due to
ARACNE, outweighs the decline in true positives [24].

Therefore, TGS+ is expected to provide a significantly
less number of false positives at the loss of slightly less
number of true positives, compared to TGS. Moreover, since
the refined mutual information matrix tend to be sparser
than the raw one, CLR is expected to shortlist a smaller
number of candidate regulators, for each regulatee gene. As
a consequence, TGS+ is expected to have a shorter runtime
than even TGS. The time complexity of TGS+ is presented at
Section 4.4 of the supplementary document. The differences
between TGS and TGS+ are presented as black box diagrams
in Figure 4.

4 RESULTS

The results of the TGS and TGS+ algorithms, on a set of real-
istically simulated (synthetic) benchmark datasets and a real

TBN

CLR

�R�CNE

Data

mutual information matrix
Raw

mutual information matrix
Re�ned

Shortlisted
candidate regulators

Finalized
regulators

Output

TGS�

TBN

CLR

Data

mutual information matrix
Raw

Shortlisted
candidate regulators

Finalized
regulators

Output

TGS

Fig. 4. The Black Box Diagrams of the TGS and TGS+ Algorithms. TGS+
has an additional step, namely ARACNE, compared to TGS.

Algorithm 5 ARACNE [24]

1: procedure ARACNE(M)
2: ⊲ M is the raw Mutual Information (MI) matrix.
3: T ← Initialize a (V × V) matrix.
4: Assign zero to each cell. ⊲ O

(

V 2
)

.
5: for each 3-combination of genes {vi, vj , vk} do

6: ⊲ O
(

(

V
3

)

)

= O
(

V 3
)

.

7: if there exists a pair among
8: {{vi, vj}, {vj , vk}, {vk, vi}}, whose MI value
9: is less than the other two pairs then

10: Tag that pair i.e.
11: make T (vi, vj)← 1, assuming
12: that (vi, vj) is such a pair.
13: end if
14: end for
15: for each tagged pair (vi, vj) in T do ⊲ O

(

V 2
)

.
16: Reset their raw MI value i.e.
17: make M (vi, vj)← 0.
18: end for
19: return the refined mutual information matrix M .
20: end procedure

microarray dataset, are presented in this section. The learn-
ing power and speed of TGS and TGS+ are evaluated with
the synthetic datasets, against those of ARTIVA, TVDBN-
0, TVDBN-bino-hard and TVDBN-bino-soft. The reason why
TVDBN-exp-hard and TVDBN-exp-soft can not be included in
this comparative study, is explained in a footnote of Section
4.3. Moreover, the binomial variants are observed to provide
more consistent predictions than the exponential variants
[5]. Therefore, the exclusion of the exponential variants,
may not be disadvantageous for this study. The MAP-TV
algorithm can not be included in this study, either, as its
source code is not available. An indirect comparative study,
between MAP-TV and the TGS variants, are presented in
Section 4.5 of the supplementary document. Finally, TGS
and TGS+ are applied on the real dataset, and biological
significance of their predictions are evaluated against the

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 14, 2018. ; https://doi.org/10.1101/272484doi: bioRxiv preprint

8

Algorithm 6 TGS+ with the Max Fan-in Restriction

1: procedure TGS+(D,Mf)
2: Compute the Mutual Information (MI) matrix,

3: denoted by M . It is a (V × V) matrix. The (vi, vj)
th

4: cell of M , denoted by M (vi, vj), represents the
5: estimated MI value between vi and vj . ⊲ O

(

V 2
)

.
6: Refine M by passing it through ARACNE i.e.
7: M ← ARACNE(M). ⊲ (Algorithm 5), O

(

V 3
)

.
8: Initialize G ← a null graph over (V × T) nodes.
9: GCLR ← CLR (D,M). ⊲ (Algorithm 2), O

(

V 2
)

.
10: for each time interval

(

tp, t(p+1)

)

do
11: (where 1 ≤ p ≤ (T − 1)) ⊲ (T − 1) iterations
12: for each gene vj ∈ V do ⊲ (V) iterations
13: if |{vi tp}| > Mf then
14: (where (vi, vj) ∈ Edgeset (GCLR))
15: Sort such vi genes in descending order of
16: the edge weight wi,j in GCLR. Generate a
17: list Lj by retaining the top Mf number of
18: genes and discarding the rest. Break ties
19: using lexicographic order of the gene
20: names or indices.
21: Candidate regulators of vj t(p+1) ←
22: {vi tp :
23: ((vi, vj) ∈ Edgeset (GCLR))∧ (vi ∈ Lj)}.
24: else
25: Candidate regulators of vj t(p+1) ←
26: {vi tp : (vi, vj) ∈ Edgeset (GCLR)}.
27: end if
28: Candidate regulator sets of vj t(p+1) ←
29: Powerset({vi tp :
30: (vi, vj) ∈ Edgeset (GCLR)}).
31: Find out a regulator set with the maximum
32: BIC score by computing the scores of all
33: candidate regulator sets from
34: D(V;{tp,t(p+1)};S) using the Bene algorithm.

35: Once the regulator set is finalized, for each
36: node in it, add an edge in G (Figure 1) from

37: that node to vj t(p+1). ⊲ o
(

M2
f 2(Mf−2)

)

.

38: end for
39: end for
40: return G.
41: end procedure

existing biological knowledge.

4.1 Datasets

4.1.1 Synthetic DREAM3 In Silico Network Inference Chal-

lenge Datasets

A real gene expression dataset with known true underlying
GRNs is the coveted choice of dataset for evaluating GRN
modelling algorithms. To that end, Marbach et al. [25] de-
sign three sets of realistic GRN structures for different model
organisms with 10, 50 and 100 genes. Then for each of
these in silico GRNs, they choose an appropriate dynamical
model and generate a dataset through simulation [26]. These
datasets are made publicly available as benchmarks for
assessing and comparing the modelling algorithms through
DREAM3 In Silico Network Challenge [27], [28]. In each

TABLE 2
A Summary of the chosen DREAM3 Datasets. Here, V = number of

genes, T = number of time points and S = number of time series in a
given dataset.

Datasets (noiseless, noisy) V T S No. of True Edges

(Ds10, Ds10n) 10 21 4 10

(Ds50, Ds50n) 50 21 23 77

(Ds100, Ds100n) 100 21 46 166

dataset, gene expressions are normalized so that the max-
imum gene expression value in a data file is one. Among
these datasets, the ‘Yeast1’ time series datasets are chosen
for the purpose of this paper. It comprises of two sets of
datasets: one noiseless and the other noisy (resulted from
adding Gaussian noise to the noiseless datasets). Each set
contains three datasets as summarized in Table 2 . It can be
noted that the true networks are single network GRNs.

The noisy datasets are chosen for the comparative study
because: (a) the presence of noise makes them more real-
istic than the noiseless datasets, and (b) the noisy datasets
are used to evaluate algorithms in the DREAM challenge,
while the noiseless datasets are released after the challenge;
therefore, the reader can compare the performances of the
algorithms, in this study, with those of the algorithms,
employed during the challenge.

4.1.2 Real Drosophila melanogaster (Dm) Life Cycle

Dataset (DmLc)

The DmLc dataset is a time series real gene expression
dataset of the fruit fly’s developmental cycle (from embry-
onic stage up to the first thirty days of adulthood). This
dataset is experimentally produced by Arbeitman et al. [29].
In Song et al. [30], the dataset is utilized for evaluating
performance of the KELLER algorithm. Since, the original
dataset is real-valued and KELLER requires a discretized
dataset, the original dataset is discretized using the 2L.Tesla
algorithm (Algorithm 2, Section 4.6, supplementary docu-
ment). The discretized DmLc dataset is obtained from the
KELLER website [31]. It contains a single time series (S = 1)
observations of 4028 (V = 4028) genes which represent
around one-third of identified Dm genes [29]. There are a
total of 66 time points (T = 66) in the time series, spread
across four life cycle stages; they are the Embryonic (E;
time points 1-30), Larval (L; time points 31-40), Pupal (P;
time points 41-58) and Adult (A; time points 59-66) stages.
The sampling intervals vary between different stages and
even within a stage. For example, the sampling intervals
are either 0.5 hour or 1 hour in the E stage; whereas, it
is in order of days in A stage. This is done because the
developmental changes happen at different rates in different
stages, like - in the E stage, changes take place faster than
those in the A stage. The sampling intervals are described
in Arbeitman et al. [29]. Following Song et al. [30], a sub-
dataset (hereafter, DmLc3) is also generated from the DmLc
dataset by selecting the data corresponding to only a subset
of 588 genes, known to be involved in the developmental
process of Dm according to their gene ontology annota-
tions. Then the DmLc3 dataset is further divided into four
mutually exclusive and collectively exhaustive sub-datasets

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 14, 2018. ; https://doi.org/10.1101/272484doi: bioRxiv preprint

9

with respect to four separate stages. These datasets are
appropriately named as DmLc3E, DmLc3L, DmLc3P and
DmLcA.

4.2 Discretization of Data for {TBN, TGS, TGS+}

Two different algorithms are chosen for data discretization:
one based on domain-knowledge (the wild type values
of the genes); another based on a domain-independent
strategy. It is observed that the domain-knowledge based
algorithm improves learning over the domain-independent
one (Section 4.6, supplementary document). Therefore, for
all the experiments reported here, the former algorithm is
applied to discretize data.

4.3 Implementation

TBN, TGS and TGS+ are implemented in R programming
language [32] version 3.3.2. For ARACNE and CLR, their
implementations in R package minet [33] (version: 3.34.0)
are used. R package bnstruct [34] (version: 1.0.2) is used,
for its implementation of Bene. The ARTIVA source code is
publicly available as an R package with the same name
([35], version: 1.2.3). The implementations of algorithms
{TVDBN-0, TVDBN-bino-hard, TVDBN-bino-soft, TVDBN-
exp-hard, TVDBN-exp-soft} 2 are available in R package EDI-
SON ([36], version: 1.1.1). Experiments are performed on
an Intel R© computing server. Its configuration is provided
in Section 2.2 of the supplementary document.

4.4 Evaluation Metrics for Comparative Study of the

Learning Power

Since the true networks are single network GRNs and the
outputs of TBN and TGS are time-varying GRNs, the output
set of networks G for each algorithm are converted (‘rolled
up’) into an equivalent single network G by the following
algorithm: Add a directed edge from vi to vj in G if there
exists at least one edge from vi tp to vj t(p+1) in G for any
tp, t(p+1) ∈ T . For DREAM3 synthetic datasets, self-loops (if
any) are removed from the rolled network G since the true
networks do not contain self-loops. On the other hand, for
Dm datasets, self-loops (if any) are not removed from G as it
is not known a priori whether the true network contains any
self-loop or not. The metrics used to evaluate correctness of
each predicted (rolled) network w.r.t. the corresponding true
network are described in Section 4.7 of the supplementary
document.

4.5 Learning From Dataset Ds10n

For Ds10n, TGS+ outperforms every other algorithm w.r.t.
every metric (Table 3a). TBN also achieves the highest TP
but at the cost of the worst FP. Amongst TBN and TGS,
it is found that TGS is faster, which is expected, since the
regulator search space for each gene, in case of TGS, is
monotonically smaller than that of TBN. But the interesting

2. The implementations of TVDBN-exp-hard and TVDBN-exp-soft
crashed in all the experiments. In a personal communication with the
authors, the author-cum-maintainer of the package hinted at a potential
bug, that might be fixed in a future version of the package. Therefore,
the results of TVDBN-exp-hard and TVDBN-exp-soft are not reported in
this paper.

observation is that TGS, being a heuristic based approxi-
mate search algorithm, performs competitively with TBN,
an exhaustive search algorithm, in every metric of learning
power as well. The reason behind that is explained by the
fact that the CLR step, in TGS, captures 7 out of 10 true
edges even from this noisy dataset. The high TPR of CLR
step is utilized by the downstream Bene step. Bene identifies
at least as many true edges as that of TBN; at the same time,
Bene avoids to search for as many potential false edges as
possible. This reasoning is supported by another fact that
TGS suffers from much less FP than TBN. Still, TGS’s FP is
higher than those of the existing algorithms. This issue is
taken care of, by the ARACNE step, in TGS+. Moreover, by
producing a sparser mutual information matrix, ARACNE
helps TGS+ to have a smaller search space and, in turn, a
shorter runtime.

4.6 Learning From Datasets Ds50n and Ds100n

Due to Bene’s main memory requirement of 2(V+2) Bytes
[11], both TBN and TGS have the same inherent exponential
memory requirement. In theory, that should enable them to
learn a network with V ≤ 32 with a 31 GB main memory,
since 2(32+2) Bytes = 16 GB < 31 GB. But it is found
empirically that the bnstruct’s implementation of Bene can
learn a network with V ≤ 15 with that configuration,
without any segmentation fault. Therefore, the max fan-in
variant of TGS is employed for Ds50n and Ds100n with
Mf = 14, since that would restrict each atomic network
learning problem to a maximum of 15 nodes (1 regulatee
and a maximum of 14 candidate regulators). But TBN does
not have any such provision and hence can not be applied
on these datasets.

In this study, TGS and ARTIVA consistently produce the
highest TP and the lowest FP, respectively (Table 3b, 3c).
Here, TGS+ provides a middle ground. It produces mono-
tonically higher TPs than those of ARTIVA, while maintain-
ing competitive FPs. On the other hand, the ARACNE step
in TGS+, causes TPR to decline by 9% and 33% w.r.t. TGS,
for Ds50n and Ds100n, respectively. But there is 0% decline
for Ds10n. This observation can be explained by the fact that
around 39% of true edges are feed-forward edges for Ds50n
and Ds100n, whereas that is only 10% in case of Ds10n.

Another major concern with {ARTIVA, TVDBN-0,
TVDBN-bino-hard} is the runtime. For example, ARTIVA
takes around 32 hours to reconstruct 100-gene GRNs, which
is certainly a bottleneck for its application in reconstructing
human genome-scale GRNs. In comparison, TGS and TGS+
consume only 18 minutes and 1 minute, respectively. Only
TVDBN-bino-soft is able to provide a competitive runtime.
However, it is consistently outperformed in {PRC, MCC,
F1} by both TGS and TGS+. Moreover, the runtime of {TGS,
TGS+} grow almost linearly as the number of genes grow
(Figure 5). These observations indicate that TGS and TGS+
are substantially more suitable for reconstructing large-scale
GRNs than the alternative algorithms.

4.7 Effect of Noise on Learning Power and Speed

TGS is evaluated on all noisy and noiseless datasets with
different number of genes. From Figures 6 and 7, it can
be observed that the presence of noise negatively impacts

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 14, 2018. ; https://doi.org/10.1101/272484doi: bioRxiv preprint

10

TABLE 3
Comparative Performances of the Selected Algorithms on the DREAM3 Datasets.

TP = True Positive, FP = False Positive, TPR = True Positive Rate, PRC = Precision, MCC = Matthew’s Correlation Coefficient,
F1 = F1 score. The numerical values are rounded off to three decimal places. For each column, the best value(s) is boldfaced.

Algorithm TP FP TPR PRC MCC F1 Runtime

TBN 3 17 0.3 0.15 0.083 0.2 7.119s

TGS 3 10 0.3 0.231 0.168 0.261 5.789s

TGS+ 3 1 0.3 0.75 0.442 0.429 5.515s

ARTIVA 0 9 0 0 −0.105 0 10m 20s

TVDBN-0 0 1 0 0 −0.034 0 2m 24s

TVDBN-bino-hard 1 7 0.1 0.125 0.0246 0.111 2m 15.2s

TVDBN-bino-soft 2 9 0.2 0.182 0.096 0.190 2m 14.6s

(a) Comparative Performances of the Selected Algorithms on the Ds10n Dataset. In TGS+, the
ARACNE and CLR steps take 0.021 and 0.007 seconds, respectively.

Algorithm TP FP TPR PRC MCC F1 Runtime

TGS 15 342 0.195 0.042 0.026 0.069 7m 36s

TGS+ 6 100 0.078 0.057 0.031 0.066 22.034s

ARTIVA 6 64 0.078 0.086 0.054 0.082 4h 30m 15s

TVDBN-0 7 199 0.091 0.034 0.006 0.049 11m 59s

TVDBN-bino-hard 11 410 0.143 0.026 −0.012 0.044 9m 38s

TVDBN-bino-soft 14 395 0.182 0.034 0.009 0.058 8m 8s

(b) Comparative Performances of the Selected Algorithms on the Ds50n Dataset. In TGS+, the
ARACNE and CLR steps take 0.221 and 0.009 seconds, respectively.

Algorithm TP FP TPR PRC MCC F1 Runtime

TGS 28 790 0.169 0.034 0.041 0.057 17m 49s

TGS+ 19 181 0.114 0.095 0.088 0.104 1m 4s

ARTIVA 14 158 0.084 0.081 0.067 0.083 31h 52m 54s

TVDBN-0 9 678 0.054 0.013 −0.007 0.021 52m 17s

TVDBN-bino-hard 26 1304 0.157 0.020 0.009 0.035 2h 53m 32s

TVDBN-bino-soft 18 1296 0.108 0.014 −0.009 0.024 17m 20s

(c) Comparative Performances of the Selected Algorithms on the Ds100n Dataset. In TGS+, the
ARACNE and CLR steps take 0.899 and 0.015 seconds, respectively.

Fig. 5. The Runtime of the TGS and TGS+ Algorithms w.r.t. the Number
of Genes in the Synthetic Datasets (Table 2).

runtime and precision. This observation can be explained
by analysing the effect of noise on the CLR step (Table 4).
In the absence of noise, the CLR step can eliminate more

Fig. 6. The Runtime of the TGS Algorithm w.r.t. the Number of Genes
in the Input Synthetic Datasets (Table 2). The black and grey lines
represent noisy and noiseless versions of the datasets, respectively.

number of potential false regulators from the candidate set
of regulators of each regulatee, resulting in smaller and
more precise shortlist of candidate regulators. That in turn,

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 14, 2018. ; https://doi.org/10.1101/272484doi: bioRxiv preprint

11

Fig. 7. Precision of the TGS Algorithm w.r.t. the Number of Genes in
the Datasets. The black and grey bars represent noisy and noiseless
versions of the datasets, respectively. The 2L.wt algorithm is used for
data discretization.

TABLE 4
Maximum Number of Neighbours a Gene has in the CLR Network.

Algorithm 2L.wt is used for data discretization.

Total Number of Genes Noiseless Dataset Noisy Dataset

10 4 7

50 24 33

100 43 84

improves precision and speed of the overall algorithm. The
effect of noise on the performance of TGS+ is discussed in
Section 4.8 of the supplementary document.

4.8 Learning from the DmLc3 Datasets

For each sub-dataset of the DmLc3 dataset, all time points
belong to a single time series. However, TGS requires
multiple time series as input. Hence, the time points are
divided into multiple groups and each group is considered
as a distinct time series. For example, DmLcE is originally
comprised of 30 time points belonging to a single time
series. These time points are used to generate 5 time series
having 6 time points each, with the following strategy: time
points 1− 5 are assigned to time series 1− 5 , respectively;
similarly, time points 6 − 10 are assigned to time series
1 − 5 , respectively; and so on. In short, the ith time point

is assigned to the (i mod S)
th

time series, where i varies
from 1 to the total number of time points in the original
time series and S equals the number of time series to be
generated. This strategy ensures that the replicates at each
newly created time point are consecutive time points in the
original time series. For example, there are 5 replicates at the
newly created first time point. It comprises of the first time
points of every newly created time series. Therefore, these
replicates are time points 1 − 5 in the original time series.
The same single to multiple time series conversion strategy
is followed for datasets DmLcL, DmLcP and DmLcA (Table
5).

The TGS algorithm is applied separately on each con-
verted dataset. It results in reconstruction of (T − 1) time-
varying GRN(s) (one GRN for each time interval) for each

TABLE 5
A Summary of the DmLc3 Datasets before and after the Conversion

from Single to Multiple Time Series. The datasets, after conversion, are
used for experimentation. Here, V = number of genes, T = number of

time points and S = number of time series in a given dataset.

Dataset
Before After

V T S V T S

DmLc3E 588 30 1 588 6 5

DmLc3L 588 10 1 588 2 5

DmLc3P 588 18 1 588 3 6

DmLc3A 588 8 1 588 2 4

dataset, where T = number of time points in that dataset.

Therefore, five time-varying GRNs {G
(1)
E , G

(2)
E , · · · , G

(5)
E }

are reconstructed from DmLc3E; also a single time-invariant
GRN GE is generated by rolling up the time-varying GRNs.
For DmLc3L, one time-varying GRN GL is reconstructed;
since there is only one time-varying GRN, there is no
need to roll it up. For DmLc3P, two time-varying GRNs

{G
(1)
P , G

(2)
P } are reconstructed; also a single time-invariant

GRN GP is generated by rolling up the time-varying GRNs.
For DmLc3A, one time-varying GRN GA is reconstructed;
again since there is only one time-varying GRN, there is
no need to roll it up. The accuracy of all the reconstructed
time-varying GRNs and the time taken to reconstruct them
are studied in the subsequent sections.

4.8.1 Study of Learning Power with the DmLc3 Datasets

The study is conducted in two steps. In the first step, a
coarse-grained analysis is performed at the network level.
It analyses structural properties of the predicted GRNs. In
the second step, a fine-grained analysis is performed at the
edge level. It attempts to evaluate the biological relevance
of the predicted edges. Since, the true GRNs are not known,
the evaluation is performed against the existing biological
knowledge. The outcome of the coarse-grained analysis is
discussed in Section 4.9 of the supplementary document.
The outcome of the fine-grained analysis is described below.

Fine-grained Analysis: For the fine-grained analysis,
a subset of 25 genes are chosen, which are known to produce
TFs in Dm. This subset is generated by intersecting the set
of genes in the DmLc3 dataset with the set of known TF-
coding Dm genes used in Marbach et al. [37]. Then for each
gene in the subset, two questions are posed:

Q1. Whether the given gene is predicted to play any
regulatory role in the development stage(s) where it is
known to do so? This question is answered by checking
whether the gene has at least one regulatee in the predicted
GRN(s) specific to that stage(s).

Q2. If answer to Q1 is yes, then does the given gene
regulate any of its known regulatees (if any) in the predicted
GRN(s)? This question is inapplicable when answer to Q1 is
no.

For this analysis, known regulatory stages and known
regulatees, if any, of each concerned gene are retrieved
from TRANSFAC Public Database version 7.0 [38], which is
claimed to be the gold standard in the area of transcriptional
regulation [39]. This analysis finds a number of biological

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 14, 2018. ; https://doi.org/10.1101/272484doi: bioRxiv preprint

12

supports for the predicted GRNs. Some of the findings are
discussed below.

prd: Gene ‘prd’ is known to have a positive cell speci-
ficity in the E stage. It is also known that ‘prd’ participates
in the regulation of anterior-posterior segmentation of the
embryo. TGS:: In agreement with the prior knowledge,
‘prd’ is predicted to have the maximum number (i.e. 8) of
regulatees in GE , whereas it has 3 regulatees in GP , and
does not have any regulatee in GL and GA. Additionally,
in GE , ‘prd’ regulates ‘eve’, which is a known regulatee
of ‘prd’. TGS+:: Similar to TGS, ‘prd’ is predicted to have
regulatees only in GE and GP . However, TGS+ misses the
true edge from ‘prd’ to ‘eve’, unlike TGS.

bcd: Similar to ‘prd’, ‘bcd’ is known to be a major regu-
lator in the anterior-posterior axis formation of the embryo.
TGS:: The prediction is consistent with the knowledge as
‘bcd’ has 9 regulatees in GE and does not possess any
regulatee in either of {GL, GP , GA}. ‘bcd’ is also known to
be a concentration-dependent regulator of ‘eve’. But there
is no directed edge from ‘bcd’ to ‘eve’ in GE . It might be
a true negative prediction, if the regulation did not happen
during the data collection period, owing to the absence of
the required concentration level. TGS+:: ‘bcd’ has 3 and 2
regulatees in GE and GP , respectively. Like TGS, it does not
possess any regulatees in other stages.

Some more genes, like - ‘tll’, ‘dl’, ‘ftz.f1’ and ‘Trl’, are
reported, in literature, to play regulatory roles in the E stage.
TGS:: In accordance with the literature, they are found to
have no regulatee in any predicted networks except in GE .
Moreover, ‘Trl’ produces a very abundant nuclear protein,
known as the GAGA protein. This protein has implications
in the transcriptions of numerous Dm genes by either di-
rectly binding to the regulatee gene’s TF binding site or by
allowing the regulatee gene to open up for transcription
via modification of the chromatin configuration around it
[40]. This implication is also found in GE , where ‘Trl’ is
predicted to have directed paths to a total of 538 genes
(downstream regulatees), in spite of having directed edges
to only 2 genes (direct regulatees). TGS+:: Like TGS, the
aforementioned genes have regulatees only in GE . ‘ftz.f1’ is
the only exception; it does not possess any regulatees in any
of the predicted GRNs.

Another interesting prediction is found for gene ‘Antp’.
Appel et al. [41] propose that, in some type of neuronal
cells, the regulator proteins of ‘Antp’ compete to regulate
it with the protein encoded by ‘Antp’ itself; in other words,
‘Antp’ appears to auto-regulate itself. But, in none of the
GRNs, predicted by TGS, ‘Antp’ has a self-loop. However
in GE , it does have two feedback loops (directed paths to
itself), each of length 2, through genes ‘odd’ and ‘CG12896’,
respectively. Whether the auto-regulation of ‘Antp’ happens
through a self-loop or multi-hop feedback loops opens up
an intriguing question in experimental biology.

For the complete set of findings of the fine-grained anal-
ysis, please see Table 3.1 of the supplementary document.

4.8.2 Study of Learning Speed with the DmLc3 Datasets

The comparative study of DmLc3 datasets reveals that the
runtime of the TGS and TGS+ algorithms increase with the
value of T , when V is fixed (Figure 8). This finding is consis-

Fig. 8. The Runtime of the TGS and TGS+ algorithms w.r.t. DmLc3
datasets. These datasets (Table 5) have the same number of genes
(V = 588). But they vary in the number of time points (T). It is evident
that the runtime strictly increases with T when V is fixed, which is
consistent with the time complexity expressions of TGS (Equation 1)
and TGS+ (Section 4.4, supplementary document).

tent with the time complexity expressions of TGS (Equation
1) and TGS+ (Section 4.4, supplementary document).

An additional experiment is performed to examine
whether TGS and TGS+ can scale up to larger datasets, than
the DmLc3 datasets, in a reasonable time frame. For this
experiment, the expression levels of all 4028 genes of the
DmLc dataset during the E stage are used. The E stage
consists of 30 time points belonging to a single time series.
They are converted to 15 time series, each consisting of 2
time points using the strategy discussed in Section 4.8. The
resultant dataset is named DmLcE. TGS is able to scale up to
DmLcE, reconstructing a GRN with 3318 directed edges, in
47 minutes. TGS+ performs the same task, slightly faster (in
44 minutes), reconstructing a marginally sparser GRN (with
3312 directed edges).

Detailed guidelines of how to reproduce the results,
presented in this section, are provided in the supplementary
document.

5 SUMMARY AND FUTURE WORK

In this paper, a novel algorithm, namely TGS, is proposed
to reconstruct time-varying GRNs from a time series gene
expression dataset. TGS assumes that there are multiple time
series and no missing values in the dataset.

TGS employs a two-step learning strategy. In the first
step, for each target gene, a shortlist of its potential regula-
tors is inferred. In the final step, these shortlisted candidates
are thoroughly evaluated to identify the true regulators
among them. Moreover, the temporal sequence of the regu-
latory events is learnt from the data.

The novelty of the TGS algorithm is two-fold: (A) flexi-
bility and (B) time-efficiency. Its flexible framework allows
time-varying GRNs to be learnt independently of each other.
TGS learns every GRN structure in a data-driven manner,
without imposing any structural constraints.

However, an existing algorithm, namely ARTIVA, pro-
vides a similarly flexible framework [4]. The only chal-
lenge with ARTIVA is its substantial runtime. That makes

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 14, 2018. ; https://doi.org/10.1101/272484doi: bioRxiv preprint

13

ARTIVA’s application prohibitive with high-throughput
datasets. TGS, on the other hand, is able to offer the same
flexibility in a significantly more time-efficient manner.

It needs to be noted that the flexibility comes at a cost.
Learning each time interval specific GRN, independently,
demands sufficient number of measurements per time point,
for each gene. Empirically, it is seen that TGS needs at least
4 replicates per time point, for each gene, to reconstruct
meaningful GRNs. If the number of measurements is low,
then TGS, like ARTIVA, may lead to overfitting [5]. For such
datasets, it is preferable to use less flexible algorithms, e.g.,
Dondelinger et al. [5], which learns the GRNs jointly, by
sharing information across time intervals.

However, the joint learning algorithms perform well,
only when changes in true GRNs, across time intervals, are
gradual (‘smoothly time-varying’ GRNs). That is not the
case, always. For example, introduction of a drug, during
treatment, can result in a drastic change [5]. On the other
hand, TGS’s framework is compatible with any dataset,
regardless of how smooth the underlying changes are.

Moreover, TGS provides such flexibility and time-
efficiency, without losing its accuracy. It consistently out-
performs ARTIVA in true positive detection (sensitivity),
given three benchmark, realistically simulated, datasets. On
the other hand, ARTIVA performs better, in false positive
rejection. Hence, a less sensitive but more precise variant
of TGS, namely TGS+, is proposed. TGS+ is comparable to
ARTIVA, in false positive rejection, while still being more
sensitive.

Nevertheless, there are scopes for improvement. One
limitation of TGS is the need to discretize data. The reason
behind that is TGS uses BIC score to determine the best
GRN structure and BIC scoring function requires the data
to be discretized. Two of the ways the issue can be resolved
are: (a) by using a scoring function that does not require
discretized data, like in Grzegorczyk et al. [3], and (b) by
developing a regression based structure learning strategy,
e.g., Lèbre et al. [4], because regression problems are inher-
ently compatible with continuous data.

Another area for improvement is the temporal resolution
of the shortlisting strategy. In TGS, the shortlist of candidate
regulators, for each gene, is time-invarint. Therefore, the
regulators, which are active over a small number of time
intervals, may not get shortlisted. To amend this issue, time
interval specific shortlists can be generated, for each gene.

One more area for improvement is the utilization of
existing domain knowledge, apart from gene expression
data. The prediction accuracy of TGS can be further im-
proved by integrating known information, if any, about
the concerned system, like - protein expression profiles,
protein-DNA interaction data, protein-protein interaction
data, DNA-binding sequences etc., e.g., Jain et al. [42].

However, the experiments with the large datasets help
the authors to identify the Achilles’ heel of TGS. It is the
fact that its main memory requirement grows exponentially
with the number of genes (and in turn number of candidate
regulators for each gene) in the datasets. In the current
implementation of TGS, maximum number of candidate
regulators is restricted to 14 for each gene, to avoid this
issue. But relaxing this restriction is an important challenge

since the actual number of regulators for a gene is not
known a priori.

The reason behind such astronomical memory require-
ment is that Bene and related Bayesian Network structure
learning algorithms need to compute and store the global
conditional probability table [11] in main memory. Some
researchers are exploring efficient ways to distribute this
task and storage across multiple computing nodes using
distributed computing strategies, e.g., Jahnsson et al. [43].
Mending this gap can be considered a worthwhile challenge.
Convergence of affordable high-throughput gene expression
measurement technologies with accurate and scalable GRN
reconstruction methodologies will be a valuable achieve-
ment. It will help in improving our understanding of disease
progression and life in general through the lens of gene
regulation.

ACKNOWLEDGEMENTS

SP and ARK received MHRD Fellowships from IITG during
this work.

REFERENCES

[1] N. Friedman, K. Murphy, and S. Russell, “Learning the structure
of dynamic probabilistic networks,” in Proceedings of the Fourteenth
Conference Annual Conference on Uncertainty in Artificial Intelligence
(UAI-98), San Francisco, CA, 1998, pp. 139–147.

[2] J. W. Robinson and A. J. Hartemink, “Non-stationary dynamic
bayesian networks,” in Advances in Neural Information Processing
Systems 21, D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou,
Eds., 2008, pp. 1369–1376.

[3] M. Grzegorczyk and D. Husmeier, “Non-stationary continuous
dynamic bayesian networks,” in Advances in Neural Information
Processing Systems 22, Y. Bengio, D. Schuurmans, J. D. Lafferty,
C. K. I. Williams, and A. Culotta, Eds., 2009, pp. 682–690.

[4] S. Lèbre, J. Becq, F. Devaux, M. P. Stumpf, and G. Lelandais, “Sta-
tistical inference of the time-varying structure of gene-regulation
networks,” BMC Systems Biology, vol. 4, no. 1, p. 130, Sep 2010.

[5] F. Dondelinger, S. Lèbre, and D. Husmeier, “Non-homogeneous
dynamic bayesian networks with bayesian regularization for in-
ferring gene regulatory networks with gradually time-varying
structure,” Machine Learning, vol. 90, no. 2, pp. 191–230, 2013.

[6] S.-C. Chan, L. Zhang, H.-C. Wu, and K.-M. Tsui, “A maximum
a posteriori probability and time-varying approach for inferring
gene regulatory networks from time course gene microarray data,”
IEEE/ACM transactions on computational biology and bioinformatics,
vol. 12, no. 1, pp. 123–135, 2015.

[7] Y. H. Chang, J. W. Gray, and C. J. Tomlin, “Exact reconstruction
of gene regulatory networks using compressive sensing,” BMC
bioinformatics, vol. 15, no. 1, p. 400, 2014.

[8] J. Xiong and T. Zhou, “A kalman-filter based approach to identifi-
cation of time-varying gene regulatory networks,” PloS one, vol. 8,
no. 10, p. e74571, 2013.

[9] Y. Nie, L. Wang, and J. Cao, “Estimating time-varying directed
gene regulation networks,” Biometrics, 2017.

[10] L. Zhang, H.-C. Wu, C.-H. Ho, and S.-C. Chan, “A multi-laplacian
prior and augmented lagrangian approach to the exploratory anal-
ysis of time-varying gene and transcriptional regulatory networks
for gene microarray data,” IEEE/ACM Transactions on Computa-
tional Biology and Bioinformatics, 2018.

[11] T. Silander and P. Myllymäki, “A simple approach for finding the
globally optimal bayesian network structure,” in Proceedings of the
Twenty-Second Conference on Uncertainty in Artificial Intelligence, ser.
UAI’06, 2006, pp. 445–452.

[12] V. A. Huynh-Thu, A. Irrthum, L. Wehenkel, and P. Geurts, “Infer-
ring regulatory networks from expression data using tree-based
methods,” PLOS ONE, vol. 5, no. 9, pp. 1–10, 09 2010.

[13] X. Zhang, K. Liu, Z.-P. Liu, B. Duval, J.-M. Richer, X.-M. Zhao,
J.-K. Hao, and L. Chen, “Narromi: a noise and redundancy re-
duction technique improves accuracy of gene regulatory network
inference,” Bioinformatics, vol. 29, no. 1, pp. 106–113, 2013.

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 14, 2018. ; https://doi.org/10.1101/272484doi: bioRxiv preprint

14

[14] F. Liu, S.-W. Zhang, W.-F. Guo, Z.-G. Wei, and L. Chen, “Inference
of gene regulatory network based on local bayesian networks,”
PLOS Computational Biology, vol. 12, no. 8, pp. 1–17, 08 2016.

[15] M. Grzegorczyk and D. Husmeier, “Improvements in the re-
construction of time-varying gene regulatory networks: dynamic
programming and regularization by information sharing among
genes,” Bioinformatics, vol. 27, no. 5, pp. 693–699, 2011.

[16] L. Song, M. Kolar, and E. P. Xing, “Time-varying dynamic bayesian
networks,” in Advances in Neural Information Processing Systems,
2009, pp. 1732–1740.

[17] F. Markowetz and R. Spang, “Inferring cellular networks – a
review,” BMC Bioinformatics, vol. 8, no. 6, p. S5, Sep 2007.

[18] K. P. Murphy, “How to use the bayes net toolbox,”
last accessed on Aug 15, 2017. The documentation was
last updated on Oct 29, 2007. [Online]. Available: http:
//bayesnet.github.io/bnt/docs/usage.html

[19] T. Silander, “Hyperparameter sensitivity revisited,” in Advanced
Methodologies for Bayesian Networks, 2017, pp. 7–7.

[20] Z.-P. Liu, “Quantifying gene regulatory relationships with associ-
ation measures: A comparative study,” Frontiers in Genetics, vol. 8,
p. 96, 2017.

[21] J. J. Faith, B. Hayete, J. T. Thaden, I. Mogno, J. Wierzbowski,
G. Cottarel, S. Kasif, J. J. Collins, and T. S. Gardner, “Large-
scale mapping and validation of escherichia coli transcriptional
regulation from a compendium of expression profiles,” PLOS
Biology, vol. 5, no. 1, pp. 1–13, 01 2007.

[22] N. Bhardwaj, M. B. Carson, A. Abyzov, K.-K. Yan, H. Lu, and
M. B. Gerstein, “Analysis of combinatorial regulation: Scaling of
partnerships between regulators with the number of governed
targets,” PLOS Computational Biology, vol. 6, no. 5, pp. 1–9, 05 2010.

[23] K. P. Murphy, “The bayes net toolbox for matlab,” Computing
Science and Statistics, vol. 33, p. 2001, 2001.

[24] A. A. Margolin, I. Nemenman, K. Basso, C. Wiggins,
G. Stolovitzky, R. Dalla Favera, and A. Califano, “Aracne: an
algorithm for the reconstruction of gene regulatory networks in
a mammalian cellular context,” in BMC bioinformatics, vol. 7, no. 1,
2006, p. S7.

[25] D. Marbach, T. Schaffter, C. Mattiussi, and D. Floreano, “Generat-
ing Realistic In Silico Gene Networks for Performance Assessment
of Reverse Engineering Methods,” Journal of Computational Biology,
vol. 16, no. 2, pp. 229–239, 2009.

[26] D. Marbach, R. J. Prill, T. Schaffter, C. Mattiussi, D. Floreano, and
G. Stolovitzky, “Revealing strengths and weaknesses of methods
for gene network inference,” PNAS, vol. 107, no. 14, pp. 6286–6291,
2010.

[27] DREAM3, “Dream3 in silico network challenge,” last accessed:
May 15, 2017. [Online]. Available: https://www.synapse.org/#!
Synapse:syn2853594/wiki/71567

[28] R. J. Prill, D. Marbach, J. Saez-Rodriguez, P. K. Sorger, L. G. Alex-
opoulos, X. Xue, N. D. Clarke, G. Altan-Bonnet, and G. Stolovitzky,
“Towards a rigorous assessment of systems biology models: The
dream3 challenges,” PLOS ONE, vol. 5, no. 2, pp. 1–18, 02 2010.

[29] M. N. Arbeitman, E. E. M. Furlong, F. Imam, E. Johnson, B. H.
Null, B. S. Baker, M. A. Krasnow, M. P. Scott, R. W. Davis, and
K. P. White, “Gene expression during the life cycle of drosophila
melanogaster,” Science, vol. 297, no. 5590, pp. 2270–2275, 2002.

[30] L. Song, M. Kolar, and E. P. Xing, “Keller: estimating time-varying
interactions between genes,” Bioinformatics, vol. 25, no. 12, pp.
i128–i136, 2009.

[31] DmLc, “Drosophila melanogaster life cycle dataset,” last accessed:
Oct 7, 2017. [Online]. Available: http://www.sailing.cs.cmu.edu/
main/keller/data.zip

[32] R Development Core Team, R: A Language and Environment for Sta-
tistical Computing, R Foundation for Statistical Computing, Vienna,
Austria, 2008.

[33] P. E. Meyer, F. Lafitte, and G. Bontempi, “minet: Ar/bioconductor
package for inferring large transcriptional networks using mutual
information,” BMC bioinformatics, vol. 9, no. 1, p. 461, 2008.

[34] A. Franzin, F. Sambo, and B. Di Camillo, “bnstruct: an r package
for bayesian network structure learning in the presence of missing
data,” Bioinformatics, p. btw807, 2016.

[35] ARTIVA, “ARTIVA package,” Last accessed: Oct 13, 2017.
[Online]. Available: https://cran.r-project.org/package=ARTIVA

[36] EDISON, “EDISON package,” Last accessed: May 31, 2018.
[Online]. Available: https://cran.r-project.org/package=EDISON

[37] D. Marbach, S. Roy, F. Ay, P. E. Meyer, R. Candeias, T. Kahveci,
C. A. Bristow, and M. Kellis, “Predictive regulatory models in

drosophila melanogaster by integrative inference of transcrip-
tional networks,” Genome research, vol. 22, no. 7, pp. 1334–1349,
2012.

[38] B. GmbH, “Transfac public database version 7.0,” the user
requires to create a free-of-cost account to access the database.
Last accessed: Oct 10, 2017. [Online]. Available: http://
gene-regulation.com/cgi-bin/pub/databases/transfac/search.cgi

[39] “Genexplain transfac R©,” As of Oct 10, 2017, the webpage
claims that “TRANSFAC R© is the database of eukaryotic
transcription factors, their genomic binding sites and DNA-
binding profiles. Dating back to a very early compilation,
it has been carefully maintained and curated since then
and became the gold standard in the field, which can be
made use of when applying the geneXplain platform (http:
//genexplain.com/genexplain-platform).”. [Online]. Available:
http://genexplain.com/transfac/

[40] T. O’Brien, R. C. Wilkins, C. Giardina, and J. T. Lis, “Distribution
of gaga protein on drosophila genes in vivo.” Genes & development,
vol. 9, no. 9, pp. 1098–1110, 1995.

[41] B. Appel and S. Sakonju, “Cell-type-specific mechanisms of tran-
scriptional repression by the homeotic gene products ubx and abd-
a in drosophila embryos.” The EMBO journal, vol. 12, no. 3, p. 1099,
1993.

[42] S. Jain, J. Arrais, N. J. Venkatachari, V. Ayyavoo, and Z. Bar-Joseph,
“Reconstructing the temporal progression of hiv-1 immune re-
sponse pathways,” Bioinformatics, vol. 32, no. 12, pp. i253–i261,
2016.

[43] N. Jahnsson, B. Malone, and P. Myllymäki, “Duplicate detection
for bayesian network structure learning,” New Generation Comput-
ing, vol. 35, no. 1, pp. 47–67, Jan 2017.

Saptarshi Pyne is a PhD student in Dr. Ashish
Anand’s research group. His research area is
temporal progression modelling of biological
systems. Saptarshi believes in a future where
biomolecular signals are measured in-vivo and
analysed in near real time. Website: http://iitg.
ac.in/stud/p.saptarshi/

Alok Ranjan Kumar wrote his MTech thesis,
titled ’Structure learning of gene regulatory net-
work from large-scale (high-dimensional) time-
series gene expression data’, under the super-
vision of Dr. Ashish Anand. Alok is a graduate
trainee engineer at Siemens Industry Software
(India) Pvt. Ltd. LinkedIn: https://www.linkedin.
com/in/alok-kumar-4039/.

Ashish Anand is an assistant professor at the
Department of Computer Science and Engi-
neering, Indian Institute of Technology Guwahati
(IITG), India. Prior to joining IITG, he was a
member of the European Consortium, BaSyS-
Bio at the Systems Biology Lab, Institut Pasteur,
Paris. His main research area is temporal pro-
gression modelling of biological systems. Web-
site: http://iitg.ac.in/anand.ashish/

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 14, 2018. ; https://doi.org/10.1101/272484doi: bioRxiv preprint

