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Abstract

We confirm that for vanishingly small loading and large impact condition, it may be possible

to generate solifons in a chain of grainsthat are characterizedby Herkian contacts.For uniform
or progressive loading conditionsthroughout the chain, one generates soft-solilons which are
weakly dispersivein space and time. Under conditionsof weak impact one generates acousric

pulses through the chain.We describethe displacements, velocities and accelerations stiered by
the individualgrains whensubjectedto solitons,sofi-solitonsand acousticpukes and describethe
effectsof restitutionon the propagatingpulse. @ 1999ElsevierScienceB.V. All rights reserved.

PACS: 46.1O.+Z 03.40.Kfi43.25.+Y

1. Introduction

Solitons are among the most fascinating objects known to the scientist [1,2]. From

a physical perspective, one cars describe the dynamical soliton as a “tight bundle” of

energy that can travel through a medkm without any dkperaion in space or in time.

Solitons are encountered in a handful of physical systems and usually, under special

initial conditions. As shown first theoretically, simulationally and experimentally by

Nesterenko [3-5], granular systems belong to the select category of systems that support
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solitons. Somehow, the discovery of solitons in granular, or more specifically, Hertzian

systems received limited attention during the decade that followed Nesterenko’s initial

work [3-5]. Recently, Sinkovits and Sen [6,7] reported studies on impulse propagation

in granular media in one and two spatial dimensions. Later, Coste et al. [8] reported

experiments that confirmed the theoretical and experimental work”of Nesterenko [3-5]

and was consistent with the studies of Sinkovits and Sen [6,7]. More recently, MacKay

[9] has published a proof (as opposed to a solution to the dynamics problem) that

Hertzian chains support solitons and Sen and Manciu have proposed a simple formula

to describe the grain displacements during the passage of a soliton [10].

The key property of a “Hertzian system” [11] is that two elastic grains in intimate

contact would exert mutual repulsion that would be proportional to their overlap raised

to some power. Thus, if 2R denotes the diameter of a spherical grain, then the overlap

6>0 would be ii s 2R – ri, j+l, where ri, i+l is the actual distance between the centers

of the adjacent grains. The potential energy gained by the compressed two-grain system

turns out to be V(6) = ad” where a is some constant [11]. In Hertzian systems, one

can calculate a which depends upon the elastic properties of the media that the grains

are constituted of and n which is sensitive to the contact geometry of the grains

[12]. Typically, Hertzian systems are anharrnonic, i.e., n >2 and hence, they exhibit

nonlinear dynamics. One expects interesting dynamical behavior in these systems. As

we shall see, the problem of acoustic transport through granular systems reveals a

variety of interesting phenomena. Under special conditions, one can support solitons in

these systems as has been claimed by Nesterenko and others.

A few years ago, Sinkovits and Sen [6,7] carried out particle-dynamics-based analy-

ses of the propagation of sound and shock impulses through one and two-dimensional

granular systems that are subjected to gravity. The key objective of these analyses

was to confirm that particle-dynamics-based studies could readily recover the predic-

tions regarding acoustic propagation in Hertzian systems subjected to gravity which

are based upon elasticity theory [13] and probe the possible non-linear behavior at the

shallow reaches of the bed. Among the results presented in Refs. [6,7] was a finding

that the kinetic energy of the granular be~ which has been subjected to an impulse

at its surface, when plotted as a function of time and space, appeared to travel down

the bed as a pulse that suffered verj little dispersion. In summary, the gravitationally

loaded gmmdar beds that were probe~ supported soliton-like excitations when they “

were subjected to appropriate impulses. A soliton-like object can be envisioned as a

softer bundle of energy than a true soliton. It travels like a soliton but experiences

some interaction with the medium as it travels. The soflness of the energy bundle, or

the dispemion suffered by the pulse, is significant even for pulses with relatively small

amplitudes.

The presence of soliton-like pulses in perturbed Hertzian systems presents interesting

possibilities. One such possibility is to exploit these pulses, which can travel through a

granular medium with little dispersion, to probe for buried objects which maybe unde-

tectable by electromagnetic, ultrasonic and purely acoustic probes [14,15]. Metal-poor

landmines, unexploded ordnance, and buried structures in granular beds are examples of
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underground objects that may be detectable using backscattering of soliton-like pulses.

We shall discuss our studies on the backscattering of soliton-like pulses from buried

objects in the following article [16].

We discuss the following problems in this article (i) the conditions under which

solitons can form; (ii) the conditions under which soliton-like pulses can be sustained

and (iii) the conditions under which acoustic pulses can form.

Details of our models and of the particle dynamics simulations are presented in

Section 2. The results of our study are presented in Section 3. We close in Section 4

with a summary of the work and open questions.
.. I

2. The model and the simulations

2.1. Intergrain interactions

We model a granular chain as a collection of spheres that are in contact with neigh-

bors via external loading or by gravitational compaction. We follow the classic work

of Hertz [11] and describe the energy associated with the repulsive interaction between

any two compressed spheres labeled i and i + 1 of radii Ri and Ri+l (while they are

uncompressed) as follows. We define the “overlap” between the two adjacent grains by

8[,/+1 = Ri+Ri+l —ri,~+1,where we let ~i,i+l represent the distance between the centers

of the two spheres. The interaction energy between the granular spheres is expressed

as a function of this overlap as follows:

where the constant a s 2/5D (RiRi+l )/(Ri + Ri~l ) and where

(
D=3 l–~+l– ~+,

~ Ei )Ei+l ‘

(1)

(2)

in which ~i$ ~i+l and Ei, Ei+l are the Poisson’s rdios ~d the Young’s moduli of

the two bodies, respectively. Anharmonicity or deviation from Hookean form in the

potential energy in Eq. (1 ) arises due to purely geometrical effects and can be evaluated

for perfectly spherical grains (for a detailed derivation of Eq. (l), see Ref. [11]).

As noted by Coste et al. [8], the interaction energy in Eq. (1) is valid when the

repulsive force and tii.i+l vary slowly in time relative to the time taken by sound

to travel through a spherical groin. In other words, we neglect plastic deformation

of the spheres in this study. The experimental work of Coste et al. [8] suggests that

this is a reasonable approximation for materials such as steel spheres. However, plastic

deformation may play an important role in studying sound propagation in softer granular

materials. 2These effects are not addressed here.

zlt mm outUMUforcertainmateri~s,the sditon puke attenuates rapidly, possibly due to lwe re~mtion

of the material. We are gxatetil to Prof. V. Nesterenko for discussions regarding this issue.
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2.2. Equations of motion and initial conditions

In this article, we focus on the propagation of a perturbation created by an impact

on the first grain of a granular chain. We present results in which, (i) the granular

chain is uniformly loaded and gravitational compaction is absen~ i.e., when the chains

are horizontal, and (ii) in which the chain is gravitationally loadei i.e., the chain is

vertical and the load increases with depth. In case (i), loading the grains such that they

are in intimate contact with one another is an important issue. The equation of motion

of a grain of mass m at location Zi for case (i) is given by

~“i = na[{zto – (Zt – Zt-l)~–’ – {Llo – (Zt+l – Zt))’’-’] case (i) ,

m~i = na[{Ao – (Zt – Zt_l)~–l – {Zlo —(Zt+l – Zt)~–’] —mg case (ii) . (3)

where n = ~ for the case of spherical grains in contact. In Eq. (3), we define A. s

Ri+Ri~l – 10=2R – 10 in a homogeneous system and where 10enters due to loading for

the horizontal chain problem and we replace Ri + Ri+l in the definition of di, i+l given

above Eq. (1) by Ao. As we shall see, 10 plays an important role in distinguishing

between the shock-like perturbations and the softer compression pulses that can be

generated down a column with suitable initial impact velocities on the first grain in the

chain. For the vertical column problem in case (ii), in which gravitational compaction

plays an important role, we add –mg to the right-hand side of Eq. (3).

In case (i), given Ao, the initial positions of all the grains in the chain are specified.

The velocity of the first grain is specified at time t = O. The velocities of all the other

grains are initially set to zero. For a given loading or l., the velocity of the first grain

therefore defines the physical properties of the soliton-like pulse. We discuss these

properties in detail in Section 3.

The initial structure of the vertically oriented granular column (case (ii)) is different

[6,7] than the horizontal chain. In this case, the grain at the bottom of the chain is

most compressed while the one at top is least compressed. Since granular systems,

being macroscopic, are largely insensitive to changes in temperature, it is important to

determine the ground state of a gravitationally compacted granular column for studying

collective phenomena in these systems. We accomplish this as follows. The location

of the bottom grain is first fixed and the positions of the remaining grains are set such

that the repulsive forces due to the overlap between the adjacent grains exactly equal

the forces required to support the grain column. For a system of N’ grains in which

the bottom grain is Iabelled 1, the overlap between grains i and i+ 1 is determined as

follows [6,7]:

(4)

The reader may observe that if the gravitationally compacted chain is loaded then it is

essential to take into account the addhional repulsive force term that must arise from

-.--..--.7---- . . . .. . . ~-. -, ;- .,.. :<.,. ,,F. .- . . ,.,Z. . . . . . ., . . . . . . . . . . . . . . . ———— . .
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*

that loading .(ss described in case (ii) of Eq. (3)) on the left-hand side of Eq. (4)

above. We do not consider loaded gravitationally compacted chains in this study.

The results presented in Section 3 below, address the solutions to Eq. (3) with and

without gravitational compaction. In the absence of gravitational compaction, Eq. (3)

can be analyzed in the strongly nonlinear limit. Typically, such a limit means that

the characteristic size of the perturbation is such that the end grains are compressed at

least 10-32R. In this limit the traveling soliton pulse is symmetric in position, velocity

and acceleration about the geometric center of the soliton. For weaker perturbations, as

mentioned in Section 1 above, the pulse is asymmetric and becomes dispersive. Such

pulses can no longer be thought of as pure solitons but rather as soliton like.

One can extend the ID chain of Hertzian grains to that of an ordered 3D lattice.

In the general case, when grains have different sizes, shapes, densities and positional

disorder, the only way to accurately solve the dynamics of the system of coupled

non-linear equations is by numerical means. However, if we assume that each layer is

completely rigid in the x – y plane, then the equation for each grain can be replaced

by a lD equation for an entire 2D layer of thickness equalling one grain diameter. In

this limit we rmover the ID equation of motion (Eq. (3)) where the m needs to be

replaced by the mass of the entire layer. Thus, for a stack of rigid 2D planes with

each plane densely packe~ one can argue that it must be possible to propagate solitons

along the c-axis provided the initial impulse is imparted to the entire surface layer.

In the general case, when granular motion is possible along all three directions, one

would expect that for sufficiently strong impulses along the c-axis one might be able to

propagate weakly dispersive soliton-like perturbations. Indeed as we shall see [16], it

is possible to send soliton-like pulses in close-packed 3D granular beds. The dispersion

suffered by an impulse possesses rich stmcture. Backscattenng from buried inclusions

in such beds can be used to infer information about the buried object [16].

2.3. Numerical constants

Our results are based upon numerical integration of the coupled equations of motion

for granular chains with N spheres, where N w 103. We have used the third-order

Gear predictor-corrector algorithm [17] for time integrating the coupled equations of

motion of the N grain system.

We chose constant diameter 2R = 10-3 m and constant mass m= 1.41 x 10–6 kg for

the spheres, For the material coefficients, we have used Young’s Modulus E = 7.87 x

1010N m-2 for quartz, E =2.0 x 101*N m-2 for steel and E= 1.0 x 1010N m-2 for

plastic, and Poisson’s ratios of a = 0.144 for quartz, a= 0.300 for steel and c= 0.120

for plastic. With these dam the constant a in the Her& potential (see Eq. (l)) is

3.39 x 108 N m–3/2 for quartz-quartz interaction, 4.96 x 108 N m-3E for quartz-steel

interaction and is 7.60 x 107 N m–3/2 for quartz-plastic interaction.

The velocity of propagation of a typical shock wave that will travel through the

granular chain which has been initiated by compressing the surface grain by about

10-3 of its diameter is dependent upon the precise details of the initial impulse. For

-.
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very weak perturbations (i.e., purely acoustic pulses) the velocity of propagation of

the perturbation from one grain to another is typically 5 m/s. In an earlier study [18],

02 These velocities are much less than the soundwe have found that typically, c N Ui~P.

velocity in quartz (about 6000 m/s). Thus, for our purposes, it is appropriate to neglect

the internal distortions of the quartz beads and to treat them as particles.

3. Solitons and soliton-iike pulses in Hertzian Chains

3.1. Perfect solitons in the shock regbne: g = O, 10= O case

- We first discuss the problem of propagation of an impulse in a chain of monodisperse

Hertzian spheres when there is no loading of the grains, i.e., when l.=O (see Eq. (3)).

To simplifi matters, we consider a horizontal chain with no gravity. Our numerical

solution to Eq. (3) reveals that when an impulse is imparted to a grain at one end of the

chain, i.e., at a surface grain, it propagates down the chain at some fixed velocity, the

magnitude of which depends upon the amplitude of the initial impulse, a clear signature

of non-linear behavior in the shock regime. Let us insist that the surface grain moves at

a fixed velocity q~P at time t =0 while all the other grains are held fixed. Typically, we

choose ui~Pbetween 10-3 and 10 m/s, which are reasonable impulse limits that can be

generated by strikers [3–5]. In what follows, we shall mostly refrain from using ViP to

characterize the impulse and use a new quantity, q/lo, where q denotes the maximum

displacement of the surface grain with regard to its equilibrium position z~ s rN + q,

where rN denotes the equilibrium position of the surface grain at time t = O, N being

the total number of grains. To avoid confhsion in describing the calculations below, we

now redejine N such that the surface grain is numbered grain number 1 (unless stated

otherwise). Thus, we consider the propagation of perfect solitons which are realized in

the limit q/l. ~ m.

By numerically integrating the coupled equations of motion for the grains in the chain

(see Eq. (3)), we probe the propagation of the impulse through the chain as functions

of space and time. The propagating impulse typically spans a few grains at a given

instant of time and hence possesses a length scale that cannot be accurately probed

in the long-wavelength approximation, the regime in which most soliton problems are

typically analyzed. Let us temporarily postpone the discussion of the number of grains

in the propagating packet of energy and focus our attention on the motion of a typical

particle in the chain as the impulse propagates through it.

Fig. l(a) presents plots of the displacements of two typical grains in the chain

measured in pm as a function of time measured in ms. We present results for the

100th particle of the chain (solid line), which remains in a position of zero displacement

from the equilibrium position until the arrival of the impulse and then shiils its position

continuously to some maximum displacement of magnitude that is determined by the

nature of the impulse. Unless mentioned otherwise, the numbers are not normalized in

this study and are shown with regard to the model for quartz grains. The origin of
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Fig. 1. Displacement (upper panel), velocity (middle panel) and acceleration (lower panel) as functions of

time for particlenumbers100(solid line) and 500 (open circles). The dynamical variables for particle 500

are translated in time for the purposes of easy comparison with those of particle 100 and to show that the

furrctioml forms of displacemen~ veloeity and acceleration remain invariant for both the particles.

time in Figs. l(a):(c) is defined at the starting point of the impulse propagation in

particle 1. The behavior of the displacement timction for particle 500 (open circles)

turns out to be identical to that of particle 100, within the limits of our numerical

accuracy, when the displacement function for particle 500 is shljl.e’d in time so as to

coincide with the data for particle 100. The corresponding data for the velocity and

acceleration are shown in Figs. l(b) and (c).

The data show that there are no measurable differences between the particle dis-

placements, positions and accelerations as functions of time and space and hence we

confirm that our calculations reveal that one can propagate solitons through a chain

of Hertzian grains when g = O and the chain is not loaded. These findings confirm

Nesterenko’s results [3-5] and agree with the experimental studies of Coste et al. [8].

We note that prior to this study, the time-dependent behavior of the position, velocity

-. ..-. -. —— ——. .
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0.008- . Particle Dynamics
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Fig. 2, Displacement (upper panel), velocity (middle panel) and acceleration (lower panel) as functions of

time for particle number 100 (open cimles) and our analytic result (solid lines). See the text for remarks

concerning the time axis. Observe that the agreement between numerical data and anrdytic formula is worse

compared to the agreement between &ta in Fig. 1 for progressively higher derivatives of the position variable.

and acceleration of the solitons had not been reported in detail in the literature. This

is because in the long-wavelength approximation, it is difficult to generate expressions

for all of these quantities. As we shall argue below, the knowledge of the behavior of

displacements, positions and accelerations of the grains allows us to construct a simple

solution to Eq. (3) in the soliton regime [10].

The solid lines in Figs. 2(a), (b) and (c) describe the displacement velocity and

acceleration, respectively, of any grain as a fimction of time as generated using an

approximate analytic solution to the soliton propagation problem. The solution assumes

that z = ct in Eq. (3), which allows one to write Eq. (3) for g = O as

~c2d24n(z)
— = na[{rjn(z – d) – @n(z)}”–’ – {r#n(z) – @n(z + d)~-’] ,

dz2 (5)

...



.

596 M. Manciu et al. IPhysics A 274 (1999) 588-606

where #m(z) is the soliton displacement fimction for any value of n (in these systems,

n > 2). The approximate solution can be written as

A(Z) = ()f.(z)
–~tanh —

. 2’
(6)

where f “(z)= ~~o CU+l (n).#q+* and A is determined by the magnitude of the dis-

placement suffered by any grain as a soliton passes through that grain. The details of

this solution can be found in Ref. [10].

The agreement between our solution and simulated data (shown in circles in

Figs. 2(a)-(c)) is impressive. The reader should observe that the plots are shown

using a different origin in time than in Figs. l(a)-(c). The origin of time used in

Figs. 2(a)-(c) is intentionally chosen to be at the center of the soliton to illustrate the

symmetry of the soliton in z and hence also in t. The derivation of the analytic formula

for grain position as a fimction of space z and hence t is summarized in Ref. [10].

We have also probed the behavior of 4.(z) for n =2.2 and 5. The results are shown

in Fig. 3. In Fig. 3, the diamonds (n= 2.2), crosses (n= 2.5) and squares (n= 5.0)

display numerically calculated data while the continuous lines are generated using our

solution. The values of C%+l are generated using the prescription given in Ref. [8].

It becomes progressively difficult to generate analytic solutions as n increases. Our

preliminary studies suggest that the slope of the displacement fimction between –1

and 1 in Fig. 3 increases as n increases. The regions of inflection near – 1 and 1

become discontinuous as n ~ W.

The width L of a soliton (note that the soliton is non-dispersive and hence L is a

constant) can be defined by the number of grains over which the energy associated

with a propagating soliton resides at a given instant of time. Mathematically speaking,

L equals twice the distance between the origin and any of the maxima in Figs. l(c)

or 2(c). It turns out that L ~ m when n ~ 2 (see Fig. 4). In this limit one no

longer obtains a soliton solution to Eq. (3). This is an expected result in view of the

fact that n = 2 leads to a harmonic equation of motion (see Eq. (3)). When n ~ co,

i.e., when the repulsive interaction between grains in contact approaches the hard core

limit L ~ 1 (see Fig. 4). In this limit, one obtains the smallest possible soliton.

Typically, however, n varies between 2.5 and 3 and hence the soliton width is about

five grains. Hertzian solitom” are hence of finite extent and it is therefore difficult to

describe the solitons in Hertzian systems using long wavelength analysis. Such analysis

was first carried out by Nesterenko [3–5]. Nesterenko managed to obtain a rather good

description of the soliton width even withh the continuum approximation. In Fig. 4(a),

we present numerical data on the width of the soliton (diamonds) and present the width

as predicted by Nesterenko’s formula given by

=*J7=KL (n–2)
(7)

using the dashed line. The agreement between the simulated data and the numerical

results grow worse for n >3 or so. Thus, the long wavelength analysis based calcu-

lations are not highly reliable as the repulsive potential becomes dominant. Fig. 4(b)

----- 1
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n=2.5
&w. I n=2.2

597

-3 -2 -1 0 1 2 3

Normalized Grain Position

Fig.3. Normalizeddkplseementfimctionofgninaplottedtod~lay thesymmetricnatureofthedisplacement
functionfor variousvaluesof n. Th continuouslinesare plotsusingour analyticformulausingvarious
c~+l ‘s.

presents the same study on a log–log scale in which the L – 1 axis has been shown

across 8 decades and the n – 2 axis has been shown across 4 decades. A possible fi.mc-

tional form that could fit the data across such a broad spectrum is l/~sinh [5(n – 2)]

(dashed line). Nesterenko’s formula yields a straight line on such a log-log scale and

is therefore too simplistic for the large n regime.

It is well known in the soliton literature [1] that two distinct solitons that are initi-

ated from opposite directions in a continuous medium pass through each other without

any interaction. It is therefore important to study the problem of two crossing soli-

tons initiated from opposite ends of a Hertzirm chain. We describe a preliminary study

of the interaction of two solitons with unequal velocities that are generated at the

opposite ends of a chain and which intersect one another as they simultaneously prop-

agate towards the respective opposite ends of the chain. The calculations showing the

velocities of the grains as fimctions of time and space are depicted in Fig. 5. The sign

of velocity depends upon the direction of p~opagation of the impulse in the Hertzian

chain problem. Because compression of grains is required to obtain the solitons, one

:.
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Fig. 4. (Upper panel) Plot of L - I, L behg the width of the aolitons, for various values of n. The plot

shows that no aditona ean be sustained as n ~ 2, the harmonic limit. The dashed line is obtained using

Nesterenko’s formula (Eq. (7)). (Lower panel) same plot as in the upper panel but d~layed in log-log

scale. The fitted line is discussed in the text.

cannot create a dilatational pulse for Hertzian chahs. Thus, the signs of the velocity

variable must always be in opposition for two solitons which are propagating in oppo-

site directions. The vertical axis represents the velocity of the grains in arbitrary units.

The planar axes are, grain depth, expressed in terms of grain diameters, and time.
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0.3-

Fig. 5. Two aolitons of different sizes are simultaneously released from the two ends of a column. The

crossing of solhons exhibit peculiar behavior in a discrete medium. In this case, secondary solitons ae

spawned at the intersection point due to extended “rattling” of the grains where the solitons meet. This kind

of behavior is peculiar to the discrete mture of the medium. The units are arbkwy along the time and

velocity axes. The particle axis denotes particle position in terms of the particle diameter.

The data shown in Fig. 5 and in Figs. 6(a) and (b) reveal a surprising new re-

sult. The solitons interact very weakly as they intersect one another and spawn new

secondary solitons, which are much weaker in magnitude and hence move at much

slower velocities. Fig. 6(a) shows the kinetic energies of the grains as functions of

time as the two opposing solitons intersect. With low enough resolution in the en-

ergy scale, the secondruy solitorts are invisible and it appears as though the motion

of the grain where the collision occurs is simply the difference of the two velocities.

Fig. 6(b) presents the same data but with much higher resolution in energy. Three

distinct secondary solitons emanating from the point of intersection are visible. We are

unable to find a simple scaling law for the soliton sizes for the general problem of

collision of unequal solitons. Our preliminary analyses show that the energy contained

in the secondary solitons that are emitted from the point of intersection is typically

less than 0.57. of the energy contained in the original solitons.

We conjecture that this small energy fiction will become vanishingly small if, some-

how, the size of the solitons can be increase~ i.e., we expect to recover non-interacting

intersections of the solitons for large enough soliton sizes. Increasing the soliton size

is only possible in our problem as one approaches the n e 2 limit. Detailed analy-

sis to examine this conjecture is needed. Such calculations must be carried out with

high precision over very large time windows to observe the slowest moving secondary

-7T> ---,,7. , , .,,. :. ..VE-P, . . . . . . . . . >., . . . .,! ..,. .---’ . . . .
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Crossing of Solitons from Opposite Ends
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Fig. 6. (a) Crossing of unequal aolitons M!tiated at opposite ends of tire chain. The kinetic energy of each

grain is plotted as functions of apace aud time. (b) Same data as in (a) but plotted with muchhigher
resolution.Thedataareshownin programunits(sss text).
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Fig. 7. Aeeeleration versus time in a loaded (but horizontal) cbaii for the 100th graio from the SurfSeeand

very small constant loading (see text). The tail of the velocity envelope, as deseribed by our &@ deeays

as (-1.4.

solitons with the smallest velocities and are therefore challenging. Studies are in progress

and will be reported in a separate dedicated publication [19].

3.2. Soliton-like objects: g = O, 10>0 and at g >0

As one compresses the grains very gently against one another in a Hertzian chain

at g = O, one introduces a finite 10 into Eq. (3). In our calculations, 10 is 10–2 pm.

We also choose q = 10-4pm to be much less than 10 and hence consider impulse

propagation in the acoustic regime. The consequence of such loading is that the shape

of the soliton-like pulse thus forme~ which passes through any chosen grain as a

Iimction of time, is no longer of the symmetric forms presented in Figs. 1 and 2,

Instea~ in loaded Hertzian chains, the acceleration suffered by any grain as a fimction

of time, consists of a pulse similar to the one in Fig. l(c) followed by a long decaying

tail in time as shown in Fig. 7. The data are taken for particle number 100 from

the surface and a very small q = 10-4pm has been used. The nature of the decay of “

the tail can be described by two distinct power laws. Our &ta reveal that the amplitude

of the maximum velocity of the pulse decays with z as

A- = 0.129z–03 . (8)

- -.7 -,,.. ,, ..- . . . ..-T--m- -- ... ,— -.
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while the envelope of the pulse experienced by a single grain decays in time as t,for

large t as

.Lt,+m12)1~’t-l”d. (9)

The tail is measured in such a way that the behavior of the jeading edge of the pulse

does not affect the measurement of decay of the tail. The tail elongates in time as the

pulse travels in a scale invariant fashion. We should mention here that it is significantly

more challenging to construct an analytic description of the velocity or acceleration

of an individual grain in a granular chain compared to the task of describing the

characteristics of the propagating energy bundle [20].

In the following discussions, we first describe the nature of the acceleration fimc-

tion for cases with progressive loading (due to gravitation) for various initial impact

conditions, followed by a description of the nature of the a~celeration autocorrelation

fimction for the various cases of loading and initial impact. The acceleration autocor-

relation finction, defined below as C(t), for a tagged particle can be used to measure

the relaxation of that tagged particle [21–24] as it is perturbed by an impulse and as

it tries to return to its unperturbed lower energy state. It serves as a measure of the

memory of the interaction .wdTeredby the tagged particle.

The dynamical behavior of the grains is of much interest when g >0 and the grains

experience progressively larger loadings as a fimction of depth due to gravitational

compression (see Eq. (4)). This is what happens in a vertical Hertzirm chain in which

gravitational loading plays an important role. In Fig. 8, we plot the accelerations of the

100th and the 300th grains as functions of time for the case with terrestrial g (assumed

to be 9.8 m/s2 ). It is evident from the data in Fig. 8 (a)-(c) that with decreasing q,

the amplitude of the soliton-like pulse (given in m/s2) attenuates progressively slowly

in time and the tail of the pulse becomes more oscillatory in time. In Fig. 8(a), we

set q = 1pm (strong perturbation), and at q = 10–2 and 10–4 pm for the cases in

Figs. 8(b) and (c). The behavior seen in Fig. 8(c) is obtained for smaller values of q

as well.

It is evident that the soliton-like solution obtained by solving Eq. (3) with g >0

possesses characteristics of a non-dispersive soliton as well as that of a dispersive

acoustic wave. For g = 0,10 = O one obtains a soliton, while for g = 0,10>0 and

for g >0,10 = O, one obtains soliton-like pulses that are “soft” bundles of energy that

dispeme slowly in time and in space due to interactions with the medium. The nature of

dispersion is strongly dependent upon q for both cases until one considers compressions

that are less than 10-4 or so of the grain diameters.

A convenient way of probing the return of each grain to an equilibrium state (which

is often not the original equilibrium state) is to calculate the acceleration autocomelation ~

function. In granular systems, the thermal energies are negligible compared to the

potential energies of interest an~ hence, it is only meaningfid to probe relaxation as a

quantity at zero thermal energies. We set acceleration a(t) of some chosen grain, which

is sufficiently far from the chain ends, to be carefully probed as a dynamical variable

of interest. We then define the normalized relaxation function for the acceleration and

:-.,
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Fig. 8. The figures show acceleration versus time behavior for particles 100 and 350 along a vertieal chain

for different initial impact eorrditions. Upper panel describes the ease with ~ = 1 ynr (strong perturbation),

central panel deseribes the case with q= 10-2 pm and the lower panel describes the ease with q= 10-4 pm.

Observe the evolution of the tail shucture that is chameteristics of gravitationally loaded systems as q

deereases.

write as follows:

C(t) - a(t)a(0)/a(0)2. (lo)

The autocorrelation function is calculated by computing

(l/T) ~Ta(t’)a(f’ + t)dt’/(l/T) ~Ta(t’)a(t’)dt’, (11)

for a large number ?f t values where T is the total time measured from the instant

at which the pulse reaches the chosen grain to the maximum time up to which the

calculations can been performed without picking up any reflection signals from the

chain end. In all instances, the time windows probed are long enough for studying

return to equilibrium.

If C(t) -0 at short times and if the system returns to the original equilibrium state

then one can conclude that the grain has lost all info~ation about the perturbation or

the pulse that passed through it. In all of our calculations shown in Fig. 9 we find that

C(t) ~ O. TMs is an expected result in view of the fact that for our non-dissipative,

monodispeme system, we do not expect any energy to get trapped and hence ergodicity
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Fig. 9. Acceleration autoeorrelation functions (which measure the “memory” of the grain of getting per-

turbed) versus time(s) for particle 100 (from the surface) in a vertieal chain. Upper panel describes on-site

autocorielation for q = 1 pm (large perturbation and hence wliton-like pulse propagation), central panel

describes the case with q = 10-4 pm and the bottom panel describes relaxation when the perturbation is

infinitesimally weak such that the particle returns to the equilibrium position (see text).

demands that C(t) ~ O at t ~ co [25]. However, it is important to observe that the

tagged grain does not necessarily return to the original equilibrium state unless the

perturbation imparted to the grain being studied is infinitesimally weak.

We have probed C(t) for a typical grain, again the 100th grain from the surface,

for cases with g = 0,10 = O and q = 1 pm in Fig. 9(a), for g = 9.8 m/# with q =

10-4 ~m in Fig. 9(b) (i.e., progressive loading case, the reader may refer to the data in

Fig. 8(c) in studying the behavior shown here) and for q/l. = 1 with 10= 10–2 pm and

g = O in Fig. 9(c) (i.e., conr$mt loading case). In Figs. 9(a) and (b), the tagged grain

does not return to the original equilibrium state within the period of calculation even

though C(t) j O. The distance between the adjacent ~lns remain altered in these

cases long afier the pulse has passed through the system. Figs. 9(a) and (b) describe

the system memory in the non-linear acoustic regime where the memory of the original

equilibrium state is lost. We are presently not aware of a simple way to characterize

multi-point correlation functions in the non-linear acoustic regime. To our knowledge,

the concepts of linear response theory clearly need revision in describing relaxation

processes such as those in Figs. 9(a) and (b) [26,27].
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In Fig. 9(c), however, the tagged grain asymptotically returns to the original equi-

librium state in the limit when the perturbation is infinitesimally weak. Thus, Fig. 9(c)

describes the system in the linear acoustic regime.

4. Summary and conchrsion

The present article extends the research reported in Ref. [18] as listed. (1) We

present our work on soliton propagation in chains of Hertzian grains for arbitrary n

and propose an approximate solution to the grain displacement fimction as fimctions

of time and space as a soliton passes through the grain. (2) We present data on the

width, L, of the soliton as a iimction of n and show that L ~ (xI in the harmonic

limit (i.e., when a soliton solution is no longer supported by the equations of motion)

and L + 1 as n ~ m, i.e., in the limit of hardcore repulsion bebiveen the spheres.

We also establish that existing long wavelength analysis of the propagation of an

impulse in a Hertzian chain leads to solitons and that the results thus obtained are

reasonably good in the n =2.5 case but become unreliable for n> 3. (3) The problem

of crossing of two solitons that are initiated at the opposite ends of a chain is shown to

be distinct from the corresponding problem for solitons in continuum systems. Hertzian

solitons lead to the spawning of new secondary solitons at the point of intersection. .

(4) The decay of the amplitude of a soliton-like object and the lengthening of its

tail during propagation through loaded chains is discussed in some detail and in this

context we probe the acceleration correlations of individual grains in loaded chains

for various conditions of loading and impact. These studies are crucial to the eventual

development of a theoretical framework to describe the problem of propagation of

solitons and soliton-like excitations in Hertzian chains under various conditions of

loading.

The key open question concerning soliton propagation is the construction of an

exact solution to Eq. (3) that will describe the properties of the Hertzian solitons and

soliton-like objects for any n and for any loading condition. Such a solution may also

provide an important step towards developing a theory of non-linear response in these

strongly non-equilibrium, interacting, many-particle systems.

Acknowledgements

This research was supported in part by the U.S. Army (DACA-39-97-KO026) and

by the U.S. Department of Energy (Contract No. DE-Aco4-g4AL8500). Sandia is a multiProgramlaboratory
operatedby Sandia Corporation,a
Lockheed Martin Company,for the

References United States Departmentof Energy
under contract DE-AC04-94AL85000.

[1] G. Eilenberger, Solitons, Springer, Berli~ 1983.

[2] J.S. Russell, Report of the fourteenth meeting of the British Association for the Advancement of Science,

York September 1844, London. Plates XLVII-LVII, pp. 311-390.



● ✎

606 M. Manciu et al. lPhysica A 274 (1999) 588-606

[3] V.F. Nesterenko, J. Appl. Mech. Tech. Phys. (USSR) 24(5) (1983) 733.

[4] A.N. bzaridi, V.F. Nesterenko, J. Appl. Mech. Tech. Phys. 26 (1985) 405.

[5] V.F. Nesterenko, J. de Physique IV,C84 (1994) 729.

[6] R.S. Sinkovits, S. Sen, Phys. Rev. Lett. 74 (1995) 2686. “

[7] S. Sen, R.S. Sinkovits, Phys. Rev. E 54 (1996) 6857.

[8] C. Coste, E. Falcon, S. Fauve, Phys. Rev. E 56 (1997) 6104.

[9] RS. MacKay, Phys. Lett. A 251 (1999) 191.

[10] S. Sen, M. Manci~ Physics A 268 (1999) 644.

[11] L.D. Landaw E.M. Lifshi@ Theory of Elasticity, 2nd Edition, PergamoL Oxfo~ 1970.

[12] D.A. Spence, Proe. R. Snc. Land. A 305 (1968) 55.

[13] J.D. God@ Proe. Roy. Sot. (Lzmd.) A 430 (1990) 105.

[14] S. Sen, M.J. Naughto~ Nonlinear Acoustic Detector of Buried Objects, U.S. Patent Applieatio~ Pending,

1999.

[15] M.J. NaughtoL R Shelton, S. SeL M. Manci~ in Detection of Abandoned Landmines, IEE Conf. Pub.

No. 458, 249, IEE, Landoq 1998.

[16] M. Manci~ S. Se% A.J. H@ Physiea A 274 (1999) 607.

[17] M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids, Ckwendo~ Oxfo~ 1987.

[18] S. Sen, M. ManciU J.D. Wrigh~ Phys. Rev. E 57 (1998) 2386.

[19] M, Manci~ S. Sen, unpublished.

[20] J.B. Hong, J.-Y. Ji, H. I@ Phys. Rev. Lett. 82 (1999) 3058.

[21] M.H. Lee, Phys. Rev. Lett. 49 (1982) 1072.

[22] M.H. Lee, Phys. Rev. B 26 (1982) 2547.

[23] M.H. Lee, J. Math. Phys. 24 (1983) 2512.

[24] J. Florencio Jr., M.H. Lee, Phys. Rev. A 31 (1985) 3231.

[25] S. Sen, Physiea A 186 (1992) 285.

[26] V.N. Tehan, M.S. Thesis, SUNY, Buffalo, 1999.

[27] M. Manci~ V.N. Tehq S. Se% unpublished.

,--).,:,.- v-?-?.~.. ., , ..-~~ . . .. .. .. .. ., .. . ...!” . . . .. . . . . . . . . . . . . . . . . .. . . . . . . . . . . ..s ...+..’ t ,. rT- ~.---—-- --


