Header menu link for other important links
Power of Tyrosine Assembly in Microtubule Stabilization and Neuroprotection Fueled by Phenol Appendages
S. Barman, G. Das, P. Mondal, K. Pradhan, D. Bhunia, J. Khan, C. Kar,
Published in American Chemical Society
PMID: 30565916
Volume: 10
Issue: 3
Pages: 1506 - 1516
Microtubules play a crucial role in maintenance of structure, function, axonal extensions, cargo transport, and polarity of neurons. During neurodegenerative diseases, microtubule structure and function get severely damaged due to destabilization of its major structural proteins. Therefore, design and development of molecules that stabilize these microtubule networks have always been an important strategy for development of potential neurotherapeutic candidates. Toward this venture, we designed and developed a tyrosine rich trisubstituted triazine molecule (TY3) that stabilizes microtubules through close interaction with the taxol binding site. Detailed structural investigations revealed that the phenolic protons are the key interacting partners of tubulin. Interestingly, we found that this molecule is noncytotoxic in PC12 derived neurons, stabilizes microtubules against nocodazole induced depolymerization, and increases expression of acetylated tubulin (Ac-K40), an important marker of tubulin stability. Further, results show that TY3 significantly induces neurite sprouting as compared to the untreated control as well as the two other analogues (TS3 and TF3). It also possesses anti-Aβ fibrillation properties as confirmed by ThT assay, which leads to its neuroprotective effect against amyloidogenic induced toxicity caused through nerve growth factor (NGF) deprivation in PC12 derived neurons. Remarkably, our results reveal that it reduces the expression of TrkA (pY490) associated with NGF deprived amyloidogenesis, which further proves that it is a potent amyloid β inhibitor. Moreover, it promoted the health of the rat primary cortical neurons through higher expression of key neuronal markers such as MAP2 and Tuj1. Finally, we observed that it has good serum stability and has the ability to cross the blood-brain barrier (BBB). Overall, our work indicates the importance of phenolic -OH in promoting neuroprotection and its importance could be implemented in the development of future neurotherapeutics. © 2018 American Chemical Society.
About the journal
JournalData powered by TypesetACS Chemical Neuroscience
PublisherData powered by TypesetAmerican Chemical Society