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ABSTRACT

Stability characteristics of a pressure-driven Poiseuille type flow are explored in a horizontal channel with porous walls. The flow is modified
with a thermal gradient, and the temperature slips alongside a uniform cross-flow for three different configurations: (i) the flow having heat
influx/outflux and temperature jump across the channel walls with internal heat generation in the fluid, (ii) the flow with constant wall tem-
peratures (not necessarily equal) and no internal heat source, and (iii) the flow having a temperature jump/slip at the upper wall and lower
wall with a constant temperature. The Reynolds, P�eclet, and Rayleigh numbers govern the behavior of the thermal and velocity profiles along
with the physical aspects of the flow. The modified Orr–Sommerfeld and energy equations are derived for the perturbed system by the nor-
mal mode analysis and solved using the Chebyshev collocation method, while the energy budget analysis is used to further illustrate the sta-
bility characteristics of the system. The resulting eigenvalues and eigenfunctions are used to analyze the growth rate characteristics, neutral
stability ranges, velocity isolines, and temperature isotherms for each flow configuration. Further, the energy from various sources is calcu-
lated by making use of eigenfunctions corresponding to the unstable eigenmodes. An increase in the Rayleigh and Reynolds numbers pro-
motes the flow instability; whereas, a higher cross-flow Reynolds number suppresses the instability by raising the upward cross-flow. The
porous walls, characterized by the velocity slip and wall shear, inhibit the Poiseuille–Rayleigh–B�enard instability of the system. The higher
temperature difference/lower wall temperature and the stronger thermal slip, respectively, destabilize and stabilize the flow. Conclusively, the
flow instability varies depending on the configuration.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0050006

I. INTRODUCTION

The stability characteristics of shear flows are widely investigated
owing to their vast applications in the industry, including aerospace,
biomedical, instrumentation, geophysics, polymer, and food process-
ing (Wang,1 Weisshaar,2 Criminale, Jackson, and Joslin,3 etc.).
Moreover, the influence of thermal processes on aspects of meteorol-
ogy and geophysics is evident in the literature, and thermally modified
shear flows are prominent in geophysical fluid mechanics, e.g., vertical
temperature variations affect the wind flow near the ground, and tem-
perature and salinity variations are highly influential facets in dynami-
cal oceanography.4 The varied geometrical models are essential for the
comprehension of governing characteristics of such flows. The flow
geometry discussed in this work can be found in a wide range of

industrial applications, e.g., filtration and flow in artificial kidneys are
some important processes in the biomedical industry. Further, in
cooling–heating applications, the use of moving fluids to transport or
remove heat is well known, ranging from the circulation of coolant
through a nuclear reactor to the mounting of a power transistor on a
block with cooling fins. Similarly, in chemical vapor deposition, hyper-
porous media in the cooling of electronic equipment, along with in
boundary layer control areas, the effect of fluid cross-flow across chan-
nels is of great interest.5

Such diverse potential applications of shear flow rely on the
introduction of targeted modifications to the flow models. In particu-
lar, for flows governed by thermal parameters like the temperature
slip, the ancillary effects of cross-flow across the channel walls are of
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significant interest, especially in microelectronic cooling and passive
temperature control.6 From earlier works of Hains7 and Sheppard,8

fluid cross-flow is shown to stabilize the fluid flow in a channel, while
Potter and Graber9 demonstrated the destabilizing effect of a tempera-
ture difference across the walls. Accordingly, the present work exam-
ines the stability characteristics of the plane Poiseuille flow under
different thermal conditions at the porous walls combined with the
uniform cross-flow across the channel. Moreover, this investigation
aims to elaborate on the influence of temperature difference between
walls, wall velocity slip, and thermal boundary slip on the stability of
the flow.

The stability of Poiseuille flow, along with other properties, can
be maintained using a cross-flow through the layer, with inflow and
outflow across the channel walls.8,10 This modification to the shear
flow is applied in the petroleum industry, filtration, purification pro-
cesses, especially in the transport of species through various flow sys-
tems.11 The model for cross-flow is considered as an injection of a
fluid through one wall and suction through the opposite wall in a
plane Couette–Poiseuille flow between porous walls leading to a non-
parallel flow. The presence of such cross-flow produces a significant
increase in the critical Reynolds number.7 In the flow of a Newtonian
fluid between porous walls with a pressure gradient and a uniform
cross-flow across the walls, the cross-flow has positive effects on the
stability of the channel flow.5,8 In the plane Couette–Poiseuille flow
with a fluid cross-flow, the cross-flow stabilization and Couette stabili-
zation act in a similar manner, with the cause of instability being the
resonant interactions of Tollmien–Schlichting waves and at large val-
ues of cross-flow Reynolds number stabilization occurs due to decay
in energy production.12 Recently, Bajaj13 studied the stability charac-
teristics of the plane Poiseuille flow subjected to a uniform cross-flow
with constant wall temperature. They deduced that the cross-flow sta-
bilizes or destabilizes the flow depending upon the magnitude and
direction.

Furthermore, the Poiseuille flow subjected to a temperature gradi-
ent has geophysical and technological applications, like, in the systems
involving cooling of the electronic instruments.14,15 The
Benard–Poiseuille flow in a rectangular channel, that is, heated from
below results in thermal stratification and convection induced transver-
sal rolls.16 In a plane Poiseuille flow with thermal stratification, the
longitudinal rolls correspond to low Reynold numbers, and
Tollmien–Schlichting waves correspond to high Reynolds numbers.17

The viscous effects under the influence of heat transfer manifest as a
skew-symmetric base flow velocity profile in a plane Poiseuille flow,
while the thermal gradient across the walls reduces the critical Reynolds
number of the flow thereby destabilizing flow across the channel.9

Viscosity, thermal diffusivity, and buoyancy affect the linear, secondary,
and transient growths of the instability in channel flow under the influ-
ence of wall heating and cooling.18 Furthermore, the wall heating desta-
bilizes the fluid flow for low viscosity near channel walls, while the effect
on secondary instability is the opposite of that on primary instability.18

Wall heating is found to stabilize the flow under effects of heat transfer
in a low-speed plane Couette–Poiseuille air-flow, while the wall velocity
and critical layer locations have a defining role in the stability of the
flow.19 The effect of boundary heating and internal heating on the insta-
bility of a Rayleigh–Bènard–Poiseuille flow was examined by Barletta
and Nield20 for nontraveling longitudinal rolls that were independent of
Reynolds and Prandtl numbers. Two different Rayleigh numbers were

used to characterize the internal heat generation and heating of the iso-
thermal channel walls. Additionally, Nield and Barletta21 explored a
basic Poiseuille throughflow along with internal heat generation in the
same manner and focused on the thermo-convective instability.

Application of the thermal gradient to the channel flow, modeled
by convective boundary conditions, necessitates the implementation of
temperature jump condition that arises due to abrupt change of the
molecular structure at the fluid–solid wall interfaces.22 The practical
applications of thermally modified shear flow systems range from the
microlevel in electronic devices, heat exchangers, and fuel cells to the
macrolevel in passive thermal control and thermal logic components.6

The subsequent temperature jump condition, analogous to the velocity
slip condition, needs a temperature slip across the interface to imple-
ment appropriate heat flux conditions.23 Additionally, the temperature
slip and velocity wall slip have also been discussed for a boundary layer
flow on a vertical surface,24 for a stretching surface,25 and for a nonlin-
ear accelerated flow past cylinders with the wall conditions.26

Shear flows and various other complex flow systems like flow sys-
tems with asymmetry, varying boundary properties, temperature/con-
centration stratification, viscosity variation have been solved by the
help of collocation methods.27–29 In recent decades, the Chebyshev
spectral collocation method has emerged as the preferred technique to
solve hydrodynamic stability problems.30,31

In particular, the Orr–Sommerfeld system with modifications
and the associated eigenvalue problems are tackled using this method.
Pioneering work by Orszag32 used the Chebyshev polynomials expan-
sions and the matrix QR algorithm to solve the Orr–Sommerfeld sys-
tem. High accuracy was obtained very economically using this
technique, and the critical Reynolds number of linear instability for
plane Poiseuille flow was evaluated as 5772.22. Additionally, they also
elucidated the suitability of Chebyshev polynomials for solving the
hydrodynamic stability problems as compared to other kinds of
expansions. The Orr–Sommerfeld equation and linearized energy
equation can be modified to model pressure-driven flow with viscous
heating in a channel.33 The system was solved by help of the
Chebyshev spectral collocation method with the temperature depen-
dence of viscosity governed by Nahme’s law, illustrating the destabiliz-
ing effect of viscous heating and decrease in critical Reynolds number
corresponding to Nahme number.33 A nonsymmetric mean flow and
the presence of cross-flow through the channel walls with Navier-slip
condition on the velocity results in a complicated Orr–Sommerfeld
analysis, such a system can also be solved for both symmetric and non-
symmetric type slip boundary conditions by the similar collocation
method.12,29

The aforementioned research works have separately examined
instabilities of different Poiseuille type flow configurations including
thermal and wall-velocity effects. However, in these investigations, a
generalized scenario has not been explored for a realistic physical
problem. The present work aims to study a comprehensive problem
that includes the combined effects of cross-flow, wall-slip, thermal gra-
dients, and internal heat generation on flow stability in a porous chan-
nel. In particular, the present work focuses on the following scenarios:
(i) modeling of porous walls using Navier slip condition and investiga-
tion of wall slip effects, (ii) inclusion of internal heat source inside the
flow field and study of its impact, and (iii) consideration of thermal
slip at the walls and discussion of the instability behavior for three dif-
ferent kinds of thermal boundary conditions. Moreover, the energy
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budget analysis is presented for these flow configurations, which has
not been explored earlier by any researcher. This energy analysis is
highly relevant as it allows us to find out the underlying physical
mechanisms for the linear instabilities in the considered model.

The present manuscript is arranged as follows: the combination
of thermal gradient and cross-flow is applied to the channel in three
configurations described in Sec. II: first, with internal heat generated
inside the fluid along with heat influx and outflux at the channel walls,
second, with constant temperatures at the channel walls, finally, with
the lower wall at a constant temperature and the upper wall having a
heat outflux. Section IIA gives the base velocity and thermal profiles.
In Sec. II B, the eigenvalue problem consisting of modified
Orr–Sommerfeld and thermal energy equations are derived in the par-
adigm of linear stability analysis along with the associated boundary
conditions. The modified Reynolds–Orr energy equation is derived in
Sec. II C. Section III explains the implementation of Chebyshev spec-
tral collocation method for solving the eigenvalue problem along with
the convergence study and error analysis. The resulting neutral stabil-
ity curves, eigenfunctions, and growth rates are examined in Sec. IV to
discern the stability characteristics of the system, which is further con-
solidated using energy budget analysis in Sec. IVA.

II. MATHEMATICAL FORMULATION

A pressure-driven, nonrotating, locally parallel flow of a viscous
and incompressible fluid between two infinite porous plates is consid-
ered and subjected to a uniform cross-flow and a temperature gradient
between the two walls along with internal heat generation. The model
is specified using Cartesian coordinates with x� axis in the direction
of the flow and y� axis in a perpendicular upward direction. The
porous channel walls are at y ¼ 6H, and there is a fluid influx at
y ¼ �H and outflux at y¼H with constant speed V0. A constant
pressure gradient acts in the streamwise direction and drives the fluid
flow with base velocity profile UbðyÞ, and the temperature gradient
between the two walls maintains the mean temperature profile TbðyÞ
(Fig. 1).

The Navier–Stokes equations of motion with Oberbeck–
Boussinesq approximation and an energy equation are used to
describe the fluid flow, having the density variations due to the ther-
mal changes and the constant uniform volumetric heat sourceQ (see
Nield and Barletta21) The Oberbeck–Boussinesq approximation model
is mechanically incompressible but thermally compressible, and this
model is applicable when the density variations are small with pressure
and temperature change. In particular, the Boussinesq kind flows are
common in nature (for instance, the oceanic circulation, atmospheric
fronts), industry (such as dense gas dispersion), and the formed

environment (like central heating). This approximation is known to be
accurate for many such flows and makes mathematics and physics
simpler.4 The governing equations for the current model read

$:q ¼ 0; (1)

@tqþ ðq:$Þq ¼ �$p
q

þ �r2qþ g�aDT ĵ; (2)

@tT þ ðq:$ÞT ¼ kTr2T þ Q

qCp
; (3)

where q ¼ uî þ v̂j is the fluid velocity vector (̂i; ĵ are the unit vectors
along the coordinate axis), T is the temperature, and DT ¼ ðT � TwÞ
is the temperature difference with respect to a reference temperature
Tw (which can change with different flow configurations). Here,
g ¼ 9:81 m/s2 is the acceleration due to the gravity, acts vertically
downward along the negative y-axis. Moreover, �a is the thermal
expansion coefficient, kT is the thermal diffusivity, and Q is the uni-
form generated heat per unit volume per unit time, while q, Cp, p, and
t, respectively, denote the density, specific heat, pressure and time,
respectively. Additionally, the kinematic viscosity of the fluid is �
(� ¼ l=q), where l is the dynamic viscosity.

Three different scenarios for the flow correspond to disparate
sets of the boundary conditions based on cross-flow velocity, wall
velocity slip, and temperature variations. The configuration with
Q > 0 corresponds to the uniform internal heat generation, which
may be caused from a variety of factors such as internal chemical reac-
tions, radioactivity, absorption of thermal radiation, and release of
latent heat as water vapor condenses, etc.4 On the other hand,Q < 0
corresponds to the internal heat demolition. Notably, the Navier-slip
velocity condition is used to model the porous wall with small perme-
ability.29,34 If the wall/boundary of a flow is not perfectly rigid and/or
thermally insulated (which includes some hydrocarbons and porous
materials, etc.) then in addition to the velocity slip, the system could
also have a temperature jump (slip) on the boundary.6,35,36 Such a
thermal slip (due to the temperature jump) at a liquid–solid interface
arises due to abrupt molecular changes at the fluid–solid interface and
results in temperature slip boundary conditions. This also involves the
influence of factors like molecular interactions, lattice formulation of
the substrate as well as the molecular structure of the fluid near the
wall. The possible uses of the temperature jump/slip are in heat trans-
fer applications such as microcooling for electronic devices, the micro-
heat exchangers, and in fuel cells, etc.6,22 The temperature slip
condition is well established in the literature20–25 and it establishes the
relation between the absolute wall temperature and the temperature
gradient in the fluid layer near the wall. The set of different boundary
conditions is read as

Type-I: The lower and upper walls at y ¼ 7H act as a heat
source and sink, respectively, which is modeled using the thermal slip
condition37,38 and internal heat is generated within the fluid ðQ 6¼ 0Þ.
Thus, the realistic boundary conditions (Kuo and Chen35) are

u ¼ 6b @yu; v ¼ V0 and T ¼ Tw6k @yT at y ¼ 7H; (4)

where b and k are the velocity and thermal slip lengths,
respectively.

Type-II: The two-channel walls are kept at constant tempera-
tures T1, T2 with T1 > T2 and without internal heat generation (i.e.,
Q ¼ 0), so that

FIG. 1. Schematic of the channel flow system subjected to a uniform cross-flow
and temperature gradient.
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u ¼ 6b @yu; v ¼ V0 at y ¼ 7H and T ¼ T1 y ¼ �H;
T2 y ¼ H:

�

(5)

Type-III: In this case, the lower channel wall is at constant tempera-
ture and the upper wall is freely conducting to the surroundings with-
out internal heat generation (Q ¼ 0). Note that, there can be
temperature slip for one wall and not for the other wall, if the walls of
the channel are made of different materials. Moreover, this can be a
possible configuration for the flow system where one boundary is adia-
batic and kept in a constant temperature, but the other boundary is
not purely thermally insulated. Thus, the following boundary condi-
tions can be used:

u ¼ 6b @yu; v ¼ V0 at y ¼ 7H and

T ¼
T0 y ¼ �H;

Tw � k @yT y ¼ H:

(

(6)

The above system of governing equations is nondimensionalized
based on characteristic length H, characteristic velocity um which is
the maximum velocity inside the flow domain, along with other scales.
The nondimensional quantities denoted with the over tilde (~) are
scaled as follows:

ð~x;~yÞ ¼ x

H
;
y

H

� �

; ð~u;~vÞ ¼ u

um
;
v

um

� �

; ~V0 ¼ V0

um
;

~r ¼ Hr; ~t ¼ t

ðH=umÞ
; ~p ¼ p

ðlum=HÞ ;

~T ¼ T � Tw

ð�um=g�aH2Þ ;
~b ¼ b

H
; ~k ¼ k

H
:

(7)

The set of dimensionless flow parameters, namely, two different
Reynolds and P�eclet numbers based on maximum velocity um and
cross-flow velocity V0, and the Rayleigh number characterizing inter-
nal heat (Q) are deduced as

Re ¼ umH

�
; re ¼

V0H

�
; Pe ¼ umH

kT
; pe ¼

V0H

kT
¼ re

Pe

Re
;

and Ra ¼ Pe g�aH3Q

�u2mqc
:

(8)

Following Sheppard8 and Potter and Graber,9 the resulting nondi-
mensional system of equations [suppressing the over tilde (~) nota-
tion] are

@xuþ @yv ¼ 0; (9)

Reð@tuþ u@xuþ v@yuÞ ¼ �@xpþr2u; (10)

Reð@tvþ u@xvþ v@yvÞ ¼ �@ypþr2
vþ T; (11)

PeðTt þ u@xT þ v@yTÞ ¼ r2T þ Ra; (12)

along with the boundary conditions for the three cases Eqs. (4)–(6)
that are transformed as following:

Type I : u ¼ 7b @yu; v ¼ V0 at y ¼ 61;
T ¼ 7k@yT; y ¼ 61; (13)

Type II : u ¼ 7b @yu; v ¼ V0 at y ¼ 61;
T ¼ T2 at y ¼ 1; T ¼ T1 at y ¼ �1;

(14)

Type III : u ¼ 7b @yu; v ¼ V0 at y ¼ 61;
T ¼ �k@yT at y ¼ 1; T ¼ T0 at y ¼ �1;

(15)

where the parameters b; k are, respectively, the nondimensional
velocity and thermal slips. In the current formulation, the rates of
momentum and heat dissipation are considered equal throughout
the fluid flow inside the channel. This corresponds to equality of
Reynolds and P�eclet numbers, i.e., Re¼ Pe, which further implies
pe¼ re [Eq. (8)]. Thus, the effective parameters governing the mod-
els are Re; re, and Ra.

A. Mean parallel flow

The hydrodynamic instability of the flow system is analyzed as
the evolution of perturbations with respect to the mean/base flow.
Following the hydrodynamic stability theory to derive the laminar
base/equilibrium flow profile of the flow system, we use the steady,
unidirectional, locally parallel flow assumptions.3,4,8,12,17,30 Under
these assumptions, the initial flow is fully developed and unaltered in
the streamwise direction. Moreover, it is a flow in the x� direction,
that only depends on the wall-normal direction y. Using the base
velocity variable U ¼ ðUbðyÞ;V0Þ of the flow in the Navier–Stokes
equations (9)–(12) and the fact that derivatives with respect to x and t
are zero, one can easily derive the base flow equations (see the
Appendix).

Further, using the velocity boundary conditions, the following
expression of the streamwise base velocity (Ub) is obtained:

UbðyÞ ¼
P0

re
ðAþ Berey þ yÞ; (16)

where A and B are given by

A ¼ �ð1þ bÞ ð1� rebÞe�re þ ð1þ rebÞere
ð1� rebÞe�re � ð1þ rebÞere

� �

;

B ¼ 2ð1þ bÞ 1

ð1� rebÞe�re � ð1þ rebÞere
� �

:

The variation of Ub as a function of y is shown in Fig. 2. Notice
that, on introduction of a cross-flow, the base flow profile becomes
asymmetric, necessitating the consideration of complete domain for
the analysis, unlike a symmetric flow with half domain analysis.
Further, by assumption, the cross-stream (y directional) base velocity
is much weaker than the streamwise base velocity (Ub) and indepen-
dent of space and time variables. According to the formulation, the
porous channel walls are at y ¼ 6H, and there is a fluid influx at
y ¼ �H and outflux at y¼H with constant speed V0. Moreover, the
model for cross-flow is considered as an injection of a fluid via the
lower wall and suction through the upper wall. It is assumed that
the cross-flow/transpiration velocity V0 is constant and uniform to
make the mathematical model equable and simpler. Such a uniform
cross-flow along with a streamwise pressure gradient is practically
achievable.39 In conformity with the study by Vadi and Rizvi,39 “a uni-
form transmembrane pressure cross-flow microfiltration system is
able to maintain uniform transmembrane pressure with high cross-
flow velocity and improves the utilization of available filtration area.”
A different generic concept for achieving a uniform cross-flow over a
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porous-walled channel consists of the injection of the fluid via a sec-
ondary channel abaft one of the porous walls, which has a linearly con-
verging geometry.12 Therefore, the formulation of this study can be
well valid for the case where both the walls of the porous channel are
made of the same material, and if the inflow and outflow pressures are
maintained equally. Besides, the parameters range for this investiga-
tion are considered in such a way that the approximation holds good
and a target appears achievable.

Moreover, the base temperature profile TbðyÞ across the flow
domain is given by

TbðyÞ ¼ AT þ BTe
rey þ CTy; (17)

where AT, BT, and CT are evaluated when Eq. (17) is subjected to the
boundary conditions (13)–(15), giving the following thermal profiles.

Type-I: The lower wall at y¼ –1 acts as a heat source and the
upper wall at y¼ 1 acts as a heat sink and internal heat is generated
within the fluid, i.e., Ra 6¼ 0. The coefficients of the temperature pro-
file Eq. (17) are derived using Eq. (13) as

AT ¼ �Rað1þ kÞ
re

ð1� rekÞe�re þ ð1þ rekÞere
ð1� rekÞe�re � ð1þ rekÞere

� �

;

BT ¼ 2Rað1þ kÞ
re

1

ð1� rekÞe�re � ð1þ rekÞere
� �

and CT ¼ Ra

re
:

(18)

Type-II: The two walls at y ¼ 61 are kept at constant temperatures T1,
T2 with T1 > T2, and without internal heat, i.e., Ra¼ 0. Here, coeffi-
cients of the temperature profile Eq. (17) are derived using Eq. (14) as

AT ¼ 1

2
cosechðreÞðT1 � T2Þere ;

BT ¼ 1

2
cosechðreÞðT2 � T1Þ and CT ¼ 0:

(19)

Type-III: The lower wall is at temperature T¼T0 and the upper wall
at y¼ 1 is freely conducting to the surroundings, the temperature is
approximated by Tð1Þ ¼ �k@yTð1Þ and no internal heat source (i.e.,

Ra¼ 0). Here, coefficients of the temperature profile Eq. (17) are
derived using Eq. (15) as

AT ¼ �T0ð1þ kreÞere
e�re � ð1þ kreÞere

; BT ¼ T0

e�re � ð1þ kreÞere
and CT ¼ 0:

(20)

Figure 3 illustrates the base temperature profile of the above three
cases, along with the effects of cross-flow and thermal slip parameters.
Temperature profiles are generally parabolic, except for the case for
which both walls are at a constant temperature in the absence of cross-
flow. An increase in the cross-flow velocity increases the skewness of
temperature profile [Fig. 3(a)] as well, while an increase in the temper-
ature slip right shifts the temperature profiles at the nonconstant end
of the flow [Fig. 3(b)].

B. Linear stability analysis

The linear stability process uses perturbation analysis in order to test
whether or not the equilibrium/base flow is unstable.9,30,33 Consequently,
the base flow variables depend only on wall-normal coordinate y, but the
perturbations are usually the function of all independent variables x, y,
and t. Instability of the base flow profiles [Eqs. (16) and (17)] is analyzed
using the normal mode approach, in which the mean parallel flow is
modified with the two-dimensional infinitesimal perturbations parallel/
proportional to the waves eiaðx�ctÞ, where i �

ffiffiffiffiffiffi

�1
p

, a is wavenumber in
the streamwise direction, and c ¼ cr þ ici is the complex wave speed.
The linear stability characteristics of the perturbation waves are tracked
by checking the exponential time growth/decay of the perturbations. The
variables of the perturbed flow are rewritten as (applying the standard
normal mode technique to the base velocity, and temperature)

uðyÞ; vðyÞ;TðyÞ½ �
¼ UbðyÞ þ ûðx; y; tÞ;V0 þ v̂ðx; y; tÞ;TbðyÞ þ T̂ ðx; y; tÞ

� �

; (21)

where the perturbations are ðû; v̂; T̂ Þ ¼ ððu0ðyÞ;�iauðyÞ;
HðyÞÞeiaðx�ctÞÞ. The velocity perturbations are expressed in terms of

FIG. 2. Mean velocity profile ðUbÞ depicted for varying (a) cross-flow Reynolds number(re) with b ¼ 0:0 and (b) velocity slip parameter (b) with re ¼ 2:0.
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the stream function perturbation (u) and the symbol 0 � d
dy
. The tem-

poral frequency of the two-dimensional disturbances is defined
by x ¼ xr þ ixi ¼ ac and the flow will be temporally stable if
ImðxÞ ¼ xi < 0, unstable if ImðxÞ ¼ xi > 0, and neutrally stable if
ImðxÞ ¼ xi ¼ 0. Consequently, the modified Orr–Sommerfeld and
energy equations are derived and given by the following:

u0000 � 2a2u00 þ a4u� reðu000 � a2u0Þ � iaHþ iaReU 00
bu

¼ iaReðUb � cÞðu00 � a2uÞ; (22)

H
00 � a2H� reH

0 þ iaPeT 0
bu ¼ iaPeðUb � cÞH: (23)

The boundary conditions [Eqs. (13)–(15)] are re-framed accordingly
as

Type� I : u ¼ 0; u0
6bu00 ¼ 0 at

y ¼ 61; H6kH0 ¼ 0 at y ¼ 61;
(24)

Type� II : u ¼ 0; u0
6bu00 ¼ 0 at y ¼ 61;

H ¼ 0 at y ¼ 61; (25)

Type� III : u ¼ 0; u0
6bu00 ¼ 0 at y ¼ 61;

Hþ kH0 ¼ 0 at y ¼ 1; H ¼ 0 at y ¼ �1:
(26)

The numerical solution of this system is explained in Sec. III along
with the convergence and error analysis of the method. Section IV dis-
cusses the eigenvalue analysis of the perturbed system and growth
rates of the unstable modes calculated using a developed MATLAB
code. The following derivation of the generalized kinetic energy equa-
tion describes the growth of small disturbances with time in the fluid.

C. Disturbance energy Equation

Generally, an unstable flow implies that the small initial disturban-
ces grow over time in terms of the rate of change of kinetic energy
(Schmid, Henningson, and Jankowski,30 Kelly et al.,40 Ren and Xia41)
Although the base fluid flow supplies most of the energies for

instabilities, the associated energy transfer mechanisms are better under-
stood with the modified energy equation. Following is a concise deriva-
tion of the disturbance energy equation for the considered flowmodel.

The modified Reynolds–Orr energy equation for the disturbed
flow is derived from the linearized perturbation equations. The equa-
tions obtained by taking the inner product of the perturbed momen-
tum equations in x; y� directions with the velocity perturbations
(û; v̂) are simplified to be interpreted as some sort of energy variation
similar to Boomkamp andMiesen42 and it is deduced that

Re
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@y
ðûûy þ v̂v̂yÞ þ v̂T̂ : (27)

The resultant equation is averaged with the wavelength (f) and inte-
grated over a control volume. Using Gauss divergence theorem and
the decomposition of the localized perturbations into their Fourier
components, the integrals are simplified, the modified Reynolds–Orr
energy equation is derived as
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dx: (28)

Upon applying normal mode solutions to the above equation, the dis-
turbance energy balance can be decomposed into different terms as
follows:

FIG. 3. Base temperature (Tb) profiles for Types-I, II and III with varying (a) cross-flow Reynolds number (re) and (b) thermal slip parameter (k).
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DKE� ¼ BReS� þ CReS� þ VDE� þ TIE�; (29)

where DKE� ¼ xi

2

Ð 1

�1
ðju0j2 þ a2jujÞdy is the mutation rate of

disturbance kinetic energy; BReS� ¼ � ia
4

Ð 1

�1
U 0

bðu0�u � u0uÞdy is
the Reynolds stress term for energy transformation from the baseflow;

CReS� ¼ � b2re
4Re

ju0j2jy¼1 � ju0j2jy¼�1

	 


dy is the energy contribution

due to the cross-flow; VDE�¼� 1
2Re

Ð 1

�1
ju00j2þ2a2ju0j2
�

þa4juj2Þdy
þ b
2Re

ju0j2jy¼1þju0j2jy¼�1

	 


þa2b
4Re

ðu00uþu00�uÞjy¼1þðu00uþu00�uÞjy¼�1

	 


is the viscousdissipationenergy in thedisturbed flow; and TIE� ¼� ia
4Re

�
Ð 1

�1
ðu �H� �uHÞdy corresponds to the thermally induced energy:

It is worth noticing that Eq. (29), not only contains the classical
terms (DKE�; VDE�; BReS�) of the Reynolds–Orr energy balance
equation for a plane Poiseuille flow with velocity slip,41 its also modi-
fied to incorporate the influence of cross-flow across the channel walls
as well as the thermally induced effects (CReS�; TIE�) in the energy
fluctuation. Besides, the rate of change of kinetic energy ðDKE�Þ is
proportional to the temporal growth rate. Moreover, the dependence
of energy balance on velocity slip b is explicit in CReS�; VDE� and
implicit for other terms, while the thermal slip k has implicit influence
on the energy balance via the eigenfunctions u and H. Finally, Eq.
(29) is normalized using I ¼ 1

2

Ð 1

�1ðju0j2 þ a2jujÞdy to acquire the
scaled growth ratexi ¼ DKE ¼ DKE�=I as

FIG. 4. Relative error EN against the truncation number N for the Chebyshev polynomials in the case of configurations (a) Type-I with Ra ¼ 50; Re ¼ 10 000; re ¼ 0:4;
k ¼ 1; b ¼ 0:005; and k ¼ 0:2, (b) Type-I with Ra ¼ 100; Re ¼ 10 000; re ¼ 0:4; k ¼ 1; b ¼ 0:005; and k ¼ 0:2, (c) Type-II with Re ¼ 10 000; re ¼ 0:4;
k ¼ 1; T1 ¼ 100; T2 ¼ 50; and b ¼ 0:005, and (d) Type-III with Re ¼ 10 000; re ¼ 0:4; k ¼ 1; b ¼ 0:005; T1 ¼ 100 and k ¼ 0:2. (a) Type-I, Ra¼ 50. (b) Type-I,
Ra¼ 100. (c) Type-II. (d) Type-III.
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DKE ¼ BReSþ CReSþ VDE þ TIE: (30)

III. NUMERICAL METHOD AND VALIDATION

The derived modified Orr–Sommerfeld and energy equations
form a coupled system, along with the associated boundary conditions,
that is, solved using the Chebyshev spectral collocation method.30,31

First, the system of equations (22) and (23) is written as a generalized
eigenvalue problem of the form,

AX ¼ cBX; (31)

where X ¼ ½u H�T is the eigenvector corresponding to the eigenvalue
c that represents the complex wave speed. The elements of the matri-
cesA and B are differential operators which reads

A ¼
A11 A12

A21 A22

" #

; B ¼
B11 O

O B22

" #

; (32)

where A11¼D4�2a2D2þa4� reðD3�a2DÞþ iaReU 00
b � iaReUbðD2

�a2Þ; A12 ¼�ia; A21 ¼�iaPeT 0
b; A22 ¼ ðD2 � a2Þ � reD� iaPeUb;

B11 ¼�iaReðD2 � a2DÞ; B22 ¼�iaPeD;Dk ¼ dk=dyk; and O is the
null operator. Since the eigenvalue problem consists of fourth- and
second-order ordinary differential equations (ODEs), the system
becomes complete by including six associated boundary conditions
corresponding to different flow configurations [Eqs. (24)–(26)]. Next,
the Chebyshev spectral collocation method is used to reframe the
eigenvalue problem as a system of equations. The perturbation ampli-
tude functions u and H are expanded as the finite sums using
Chebyshev polynomials TiðyÞ as the basis functions defined over
½�1; 1� and satisfying the orthogonality property. The N� truncated
series is given by

u ¼
X

N

i¼0

uiTiðyÞ; H ¼
X

N

i¼0

HiTiðyÞ; (33)

FIG. 5. (a) Eigenvalue Spectrum and (b) Convergence of dispersion curves for Type-I configuration, when Re ¼ 10 000; Ra ¼ 100; re ¼ 0:4 and k ¼ 0:2, where the growth
rate curves overlap for the values N> 70; (c) Neutral stability curves in Re� a plane validating the Type-II configuration in the current study with that of Sheppard8 and
Fransson and Alfredsson,5 using T1 ¼ T2 ¼ 0, b¼ 0 and Ra¼ 0.
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where ui and Hi are the unknown coefficients. The flow domain is
discretized using the extrema of Chebyshev polynomials, known
as Gauss–Lobatto collocation points yj ¼ cos ðpj=NÞ; j 2 f0; 1; 2;
…;Ng, and the functions are evaluated at those points. After imple-
menting Eq. (33) in Eq. (31), the resulting form of the eigenvalue prob-
lem is then solved using the well established QZ algorithm (Canuto
et al.31) to evaluate the eigenvalues. Note that, the boundary conditions
at upper and lower walls are implemented in Eq. (31) as the top and
bottom rows after replacing the corresponding rows in the matrices A
and B. Using the QZ algorithm the matrices A and B are recast into
the upper triangular forms and the resulting eigenvalues are com-
puted, as the ratio of diagonal elements corresponding to the modified
A and B. However, the accuracy of numerical computation depends
on the number of collocation points N.

In this regard, to check the accuracy of numerical computation
and convergence of eigenspectrum for different values of N, we have
followed the methodology of Tilton and Cortelezzi,43 and Samanta.44

For a given N, the relative error ðENÞ is defined using the L2 norm
ðjj:jj2Þ

EN ¼ jjcNþ1 � cN jj2
jjcN jj2

; (34)

where the components of the vectors cN and cNþ1 are the eigenvalues
related to the twenty least stable disturbance modes of the eigenvalue
problem Eq. (31), obtained using N and Nþ 1 Chebyshev polyno-
mials, respectively. Figures 4(a)–4(d) illustrate the behavior of relative
error against the number of Chebyshev collocation points (N) for the
three different types of thermal boundary conditions. It is seen that
generally for N � 70 the relative error decreases exponentially beyond
the order 10�4, thereby confirming the convergence of the method for
the given models. Moreover, since the system has uniform dimensions
between the walls, any increase in the value of N increases the number
of Gauss–Lobatto collocation points and subsequently the order of
accuracy of the solution. However, high N values result in higher com-
putation times as well. Additionally, for higher Rayleigh numbers, the

relative error increases [Figs. 4(a) and 4(b)] and higher N may be
required for satisfying the needed error tolerance. Thus, the above
graphs illustrate that for N � 70, increasingly accurate numerical
results are to be expected with minimal computational costs.

Figure 5(a) illustrates the eigenvalue spectrum for the system of
Orr–Sommerfeld and energy equations modeling the porous (less per-
meable) channel flow with the inclusion of internal heat generation,
heat flux across the walls, and a uniform cross-flow. The familiar “Y”
shaped spectrum corresponding to the wall-bounded Poiseuille type
flow is obtained, having different branches, and following the classifi-
cation of Mack,45 the branches are named as A ðcr ! 0Þ; P ðcr ! 1Þ,
and S ðcr � 2=3Þ. According to Mack,45 the eigenvalues have been
classed based on arranging the eigenvalues in order of decreasing ci
and the range of cr. The number of eigenvalues on each branch
depends on the model as well as the parameter values. Moreover, the
unstable mode is located on branch A and the S modes are highly
damped. Figure 5(c) compares the neutral stability curves generated
from the current computation to the results with those in Sheppard,8

Fransson, and Alfredsson.5 The limiting results are obtained by con-
sidering no-slip conditions at the walls and T1 ¼ T2 ¼ 0, for Type-II
configuration. It is clearly seen that the current results are in good
agreement with those of the earlier works, thus establishing the cor-
rectness and validity of the developed numerical code.

The convergence of the Chebyshev spectral collocation method

is further demonstrated in Fig. 5(b). The growth rate curves are

plotted for the Type-I boundary condition with Re ¼ 10 000; re
¼ 0:4; Ra ¼ 100; b ¼ 0:005; and k ¼ 0:2. It is observed that the dis-

persion curves overlap and converge for the number of Chebyshev

points N> 70. In subsequent figures, N¼ 100 is used to generate the

dispersion curves, and the desired accuracy is achieved.

IV. RESULTS AND DISCUSSION

The results corresponding to the temporal linear instability
of the system are discussed for three different cases with the
boundary conditions imposed for the velocity and temperature

FIG. 6. Neutral stability curves in Re� a plane (where growth rate xi ¼ 0): (a) depicting the influence of uniform cross-flow for Type-II configuration with T1 ¼ T2 ¼ 100; (b)
comparison of the results for fixed wall temperature (Type-II) configuration and with that of thermal slippage walls (Types-I, III) when re ¼ 0:4; b ¼ 0:005 and k ¼ 0:2.
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variation, as mentioned in subsection 1 of the Appendix. The
behaviors of the eigenvalue spectrum, eigenfunctions of excited
eigenmodes, the growth rate of unstable modes, and marginal sta-
bility boundaries for various flow parameters are explored numer-
ically. Furthermore, the energy balance is analyzed in Sec. IV A
illustrating the impact of various imposed conditions on the above
system.

The neutral stability curves in Figs. 6(a) and 6(b), where cross-
flow is present but no thermal slip, are also in agreement with the pat-
terns in Sheppard8 and Fransson and Alfredsson.5 Figure 6(a) shows
the neutral stability curves for Type-II when the temperature of both
walls is equally set with variations in cross-flow. An increase in the
cross-flow delays the onset of instability as the critical Reynolds num-
ber Rc increases, and the size of unstable region shrinks along with
reduction in the range of unstable wavenumbers. Therefore, cross-flow
stabilizes the flow system, due to the change in shear rate near the
walls as well as decay of the flow speed by the presence of vertical
cross-flow. Figure 6(b) presents the comparison between the results

for Types-I, II, and III of temperature boundary conditions. It is
observed that for the same values of flow parameters re;b; k, and Ra
and the same initial temperatures of the lower wall, Type-II model is
stable for a wider range of Reynolds numbers with a substantial
increase in the critical Reynolds number as compared to Type-III
model. Furthermore, the stable region in Type-I model is dependent
on Rayleigh number, a variation in which can result in a critical
Reynolds number higher and lower than that in the Type-II and Type-
III models, respectively.

The normalized eigenfunctions for the Orr–Sommerfeld and
energy system [Eqs. (22) and (23)], corresponding to the highlighted
eigenvalues from Fig. 5(a) are depicted in Fig. 7. The solid line repre-
sents the magnitude of the eigenfunction, and the dashed and dotted
lines represent the corresponding real and imaginary parts. The A�
branch mode (Orr–Sommerfeld mode) has minimum variation near
the channel walls, and a peak arises near the centerline (y¼ 0) similar
to standard channel flow.30 However, asymmetry is introduced due to
the presence of uniform cross-flow across the channel as the

FIG. 7. [(a)–(c)] Orr–Sommerfeld eigenfunctions; [(d)–(f)] temperature eigenfunctions for plane Poiseuille flow with cross-flow and internal heat generation when
Re ¼ 10 000; Ra ¼ 100; re ¼ 0:4 and k ¼ 0:2. (a) A-branch mode. (b) P-branch mode. (c) S-branch mode.
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maximum is shifted slightly from the centerline [Fig. 7(a)]. In contrast,
the mode sourced from the energy equation corresponding to A�
branch mode peaks sharply near the walls and falls to a nearly con-
stant lower value in between [Fig. 7(d)]. Both the velocity and temper-
ature eigenfunctions, corresponding to the P� branch, peak around
the centerline with minimal variation near the walls, as in Figs. 7(b)
and 7(e). Generally, the S� branch modes are highly damped, and the
corresponding eigenfunction has a symmetric pattern across the chan-
nel centerline.30 Nevertheless, as per Figs. 7(c) and 7(f), the cross-flow
induces asymmetry in the eigenfunctions related to S� mode across
y¼ 0, with oscillations being damped near cross-flow exit wall.

Figure 8(a) demonstrates the effect of cross-flow on the critical
Reynolds number Rc, which is observed to be highly sensitive to the
Reynolds number based on cross-flow (re), and the perturbed flow
remaining stable over a more significant range of Reynolds numbers
for higher re, which is analogous to Sheppard.8 Further details about

the eigenvalue spectra are in Fig. 8(b), showing the spectra for different
amounts of cross-flows with the same wall temperature, wavenumber
a ¼ 1:0, and Reynolds number Re¼ 10 000. Additionally, suppression
of the unstable mode is visualized (in the inset figure) for increasing
cross-flow parameter re.

The isolines of horizontal and vertical components of the
velocity perturbations and temperature isotherms are drawn in Figs.
9(a), 9(b), and 9(c), respectively, for the Poiseuille flow having
cross-flow, heat influx and outflux along with internal heat genera-
tion together with velocity and thermal slips. These results are simi-
lar to those in Bajaj.13 The horizontal velocity perturbations are
extremized near the boundaries while the horizontal perturbation is
relatively stationary near the centerline. It is also observed that iso-
lines of the vertical velocity perturbations tilt at the boundaries, and
this allows the perturbation to access energy from the mean flow.46

The temperature perturbations follow the energy distributed by the

FIG. 8. (a) Variation in critical Reynolds number Rc as a function of cross-flow Reynolds number re and (b) influence of re on the unstable mode present in A� branch. The
wall temperatures are fixed at T1 ¼ T2 ¼ 0 and Re¼ 10 000.

FIG. 9. [(a) and (b)] Velocity isolines and (c) temperature isotherms for the plane Poiseuille flow with velocity slip, uniform cross-flow and internal heat generation when Re ¼
10 000; Ra ¼ 100; b ¼ 0:005; re ¼ 0:4 and k ¼ 0:2. (a) Horizontal velocity. (b) Vertical velocity. (c) Temperature.
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FIG. 10. [(a) and (d)] Horizontal velocity isolines; [(b) and (e)] vertical velocity isolines; [(c) and (f)] temperature isotherms for plane poiseuille flow with velocity slip and internal
heat generation when Re ¼ 10 000; Ra ¼ 100; b ¼ 0:005 and k ¼ 0:2 with different cross-flows. (a) re¼ 0.0. (b) re¼ 0.0. (c) re¼ 0.0. (d) re¼ 1.0. (e) re¼ 1.0. (f) re¼ 1.0.

FIG. 11. Growth rate dispersion curves for Type-I flow configuration with different values of (a) Rayleigh number Ra when re ¼ 0:4 and (b) cross-flow Reynolds number re
when Ra¼ 100. The other common parameters are Re ¼ 4267:5;b ¼ 0:005 and k ¼ 0:2.
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velocity perturbations, as in Fig. 9(b), with maximum perturbation
near the boundary walls.

Figure 10 compares velocity and temperature perturbations with
and without cross-flow; re ¼ 0:0 for panels 10(a)–10(c) and re ¼ 1:0
for panels 10(d)–10(f). The minimum of horizontal and maximum of
vertical velocity perturbations are shifted in the direction of the cross-
flow, while the density of temperature perturbations decrease near the
cross-flow exit wall which is congruent with the consequences of
Bajaj.13

Section IVA elaborates on the results for various types of flow
configurations with different thermal boundary conditions in a more
sophisticated way.

Type-I: Flow with internal heat source and thermal slip at the
channel walls: Figure 11(a) depicts growth rates for the extreme
excited mode of the disturbed flow in the presence of internal heat
generation for various Ra when Re ¼ 4267:5; re ¼ 0:4; k ¼ 0:2. The
flow is observed to destabilize for values of Ra � 100 and xi > 0 for
certain range of a. Figure 11(b) plots the growth rates illustrating the
influence of cross-flow Reynolds number re on the fluid flow with
internal heat generation. It is observed that an increase in the Rayleigh
number destabilizes the fluid flow between parallel porous walls, which
corresponds to an increase in internal temperature of the fluid. In con-
trast, for a fixed rate of heat generation and conduction through chan-
nel walls, increase in the cross-flow Reynolds number stabilizes the
fluid flow by diminishing the temporal growth rate [Fig. 11(b)]. This is
consistent with earlier works in the literature. Additionally, in this
case, the maximum growth rate becomes zero for the critical Reynolds
number Rc ¼ 4267:5 with Ra¼ 100.

Figures 12(a) and 12(b), respectively, show the influence of veloc-
ity slip and thermal slip coefficients on the marginal stability curves.
The flow is observed to stabilize due to an increase in either the veloc-
ity slip coefficient or the thermal slip coefficient. The changes in the
value of the velocity slip coefficient result in a significant reduction in
the area of the unstable region, and the flow is highly sensitive to small
variations in the value of the velocity slip coefficient resulting in

significant increases in the critical Reynolds number. Figure 12(b)
illustrates that the flow is not very sensitive to the thermal slip coeffi-
cient k, as a significant change in k results in small variation of the crit-
ical Reynolds number and the set of unstable wavenumbers. However,
an increase in k has a stabilizing effect on the flow by increasing the
critical Reynolds number.

Type-II: Flow without internal heat source and constant wall
temperature: In this configuration, the heat source is excluded and the
walls of the channel are such that there is no temperature slip. Having
a temperature gradient between the channel walls (T1 ¼ 300;T2 is
varied) with a particular re (re ¼ 0:4) and Re (Re¼ 7000), the increas-
ing temperature difference between the walls destabilizes the flow by
rising the maximum growth rate and widening the range of unstable
wavenumbers in the dispersion curves [Fig. 13(a)]. Note that, for the
considered parameters, the temperature gradient is decreasing in the
direction of the cross-flow, and the lower wall at y¼ –1 has a higher
temperature. Hence, the current results are consistent with the classical
Rayleigh–Benard instability mechanism. However, it is observed that
increasing the cross-flow Reynolds number suppresses the flow insta-
bility [Fig. 13(b)]. Conclusively, a minimal temperature difference
between the walls or a high upward cross-flow velocity favors the flow
stability in this case. Furthermore, the typical neutral stability curves
are plotted in Figs. 13(c) and 13(d) for a clear understanding and the
results follow similar conclusions as Figs. 13(a) and 13(b). The nega-
tive re in Fig. 13(d) suggests a downward cross-flow and it alters the
effect upon flow stability.

Type-III: Flow with a fixed temperature at one wall and thermal
slip on the other wall: In Figs. 14 and 15, the plots of neutral stability
curves demonstrate the effect of various physical parameters on the
stability of the channel flow for Type-III thermal boundary conditions.
From Figs. 14(a) and 14(b), the high values of velocity slip (b) or the
smaller values of lower plate temperature (T0) are observed to stabilize
the fluid flow. A significant increase in the critical Reynolds number
and a narrower unstable wavenumber range are noticed upon increase
in b or decrease in T0.

FIG. 12. Neutral stability curves in Re� a plane for varied: (a) velocity slip coefficient (b) with k ¼ 0:2 and (b) thermal slip coefficient (k) with b ¼ 0:005. The other parame-
ters are re ¼ 0:4 and Ra¼ 100.
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Additionally, the marginal stability boundaries are plotted in Fig.
15 to check the influences of re and k for a particular value of tempera-
ture at the lower wall (i.e., at T0 ¼ 100). Its seen that increasing cross-
flow Reynolds number re has a stabilizing effect on the flow, and the
critical Reynolds number for instability increases as re is increased
[Fig. 15(a)]. More significantly, an increase in the value of thermal slip
on the upper wall (y ¼ þH) stabilizes the flow owing to the increase
in the critical Reynolds number and decrease in the area of the unsta-
ble region [Fig. 15(b)].

A. Energy distribution analysis

In this subsection, the energy fluctuation inside the perturbed
flow system corresponding to various energy terms as described in Eq.
(30) is analyzed. The comparisons with growth rate for linear instabil-
ity can be easily applied, as the disturbance kinetic energy (DKE) of

the flow system is proportional to the temporal growth rate of pertur-
bations, and the stability or instability is characterized by DKE< 0 or
DKE> 0. Further, as the viscous dissipation energy (VDE) is always
negative (VDE< 0),42 hence, the energy needed for the growth of
small initial disturbances must be extracted from either the Reynolds
stress (BReS) or the cross-flow ðCReS)/thermal effects (TIE) or consoli-
date. Figure 16 illustrates the accuracy of the energy computation by
comparing the growth rates corresponding to the Orr–Sommerfeld
analysis and the Reynolds–Orr energy method. It may be noted that
the evaluated growth rate via either methods is in excellent agreement
and are numerically equal up to five decimal places.

The results discussed in Figs. 17–20 establish the base flow and
the thermal effects at the boundaries as leading mechanisms that drive
the instability in the considered flow system. In comparison to these
phenomena, the cross-flow has a weaker effect on the energy transfer
into the perturbed flow, as order of magnitude of CReS is very inferior

FIG. 13. Results for the Type-II configuration with different values of: [(a) and (c)] the temperature difference DT12 ¼ ðT1 � T2Þ between the walls with
T1 ¼ 300 ðT2 variedÞ; re ¼ 0:4;b ¼ 0:005; and [(b) and (d)] the cross-flow Reynolds number with T1 ¼ 300; T2 ¼ 200; b ¼ 0:005. In the subfigures [(a) and (b)] the growth
rate dispersion curves are drown with Re¼ 7000 and the neutral stability curves are plotted in [(c) and (d)].
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to that of both BRes and TIE. Moreover, as argued in Kelly et al.,40 the
analysis implementing a crude base velocity at high Reynolds numbers,
whereby viscous effects are negligible, but exact boundary conditions at
the channel walls are successful in describing such instability. Thus, for
unstable wavenumbers, depicted earlier in Sec. IV, DKE> 0 in Eq. (30)
implies that the small initial disturbances grow due to increase of the
Reynolds stress and thermally induced energies. Whereas for stable
wavenumbers, more energy is dissipated from the flow than transferred
into the flow, i.e., jVDEj > jBReSþ CReSþ TIEj, which also corre-
sponds to the negative rate of kinetic energies of the perturbations.

Figures 17 and 18 plot the energy components of Eq. (30) as the
function of wavenumber a for different values of cross-flow Reynolds

number re corresponding to the unstable region in Figs. 11 and 13,
respectively. In both figures, it is observed that as re is increased, even
though CReS and TIE increase, Reynolds stress BReS decreases, and
magnitude of viscous dissipation jVDEj also increases. Consequently,
the flow stabilizes upon increasing the cross-flow speed, as the effects
of energy transfer into the flow via cross-flow and thermal effects are
negated by the antithetical influence of Reynolds stress and viscous
dissipation which are larger in magnitude.

Variations of energy terms as the function of wavenumber a are
plotted in Figs. 19 and 20 corresponding to Type-III configuration.
These figures aim to illustrate the energy sources responsible for the
instabilities which are noticed in Fig. 14 for different values of velocity

FIG. 14. Neutral stability curves for Type-III with different values of (a) wall velocity slip b, when T0 ¼ 100; k ¼ 0:2; re ¼ 0:4 and (b) the lower wall temperature (T0), when
b ¼ 0:005; k ¼ 0:2 and re ¼ 0:4.

FIG. 15. Neutral stability curves for the Type-III configuration with T0 ¼ 100, having different values of (a) cross-flow Reynolds number (re) with k ¼ 0:2 and (b) thermal slip
parameter (k) with re ¼ 0:4.
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slip b and in Fig. 15 for different values of thermal slip k. It is observed
that as b is (Fig. 19), the Reynolds stress diminishes, which restricts
the energy transfer from the base flow to perturbed flow and damping
the change n kinetic energy. The same is also induced by the increase
in viscous dissipation (VDE) throughout the selected wavenumber
regime and the flow stabilizes with stronger wall velocity slip (b).

Further, an increase in b has a negligible energy damping effect
on TIE as well, and while the effect on CReS is substantial, the relative
magnitude is contemptible to have any authentic influence on overall
kinetic energy. Results in Fig. 20 suggest that an increase in the ther-
mal slip k dampens the Reynolds stress as well as energy contribution

from the thermal effects (TIE) to stabilize the overall flow. Further, it
boosts the viscous dissipation slightly and diminishes the cross-flow
energy term (CReS); however, the magnitude is very small to have any
effect on overall energy balance

V. CONCLUSIONS

The work explores the linear stability characteristics of a plane
Poiseuille flow modified with uniform cross-flow and a temperature
gradient between the channel walls having small permeability. The
temperature gradient is the result of the wall temperature difference
and/or the internal heat generation inside the flow. The two-

FIG. 16. Growth rate comparison corresponding to the Orr–Sommerfeld system and Reynolds–Orr energy analysis: (a) Type-I with Ra¼ 100, and (b) Type-II with
T1 ¼ 300; T2 ¼ 200. The other parameters are re ¼ 0:4; b ¼ 0:005 and k ¼ 0:2.

FIG. 17. Effect of cross-flow on energy terms for Type-I flow configuration with
Ra ¼ 100; Re ¼ 4627:5; b ¼ 0:005 and k ¼ 0:2.

FIG. 18. Effect of cross-flow on energy terms for Type-II flow configuration with
T1 ¼ 300; T2 ¼ 200; Re ¼ 7000; b ¼ 0:005 and k ¼ 0:2.
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dimensional model of the flow is studied for three different scenarios,
including the boundary slip or jump at the porous channel walls. A
modified Orr–Sommerfeld and energy equations system is derived
and thereby solved numerically to trigger out the instabilities for each
configuration; characterized by the Reynolds, cross-flow Reynolds,
and Rayleigh numbers together with the velocity and thermal slip. The
temporal growth rate curves and the neutral stability boundaries corre-
sponding to the disturbances are portrayed using the most unstable

eigenmode of the system, which provides the range of critical parame-
ters for temporal instability. The corresponding eigenfunctions of the
unstable eigenmode are also captured to know the possible mechanism
of the instability. Furthermore, the results are consolidated with an
energy balance analysis of the given model by deriving a modified
Reynolds–Orr Energy equation and exploring the energy changes,
leading a cohesive understanding of the instability of the flow system.

The first configuration combines the uniform internal heat gen-
eration with the heat source and sink at the channel walls.
Subsequently, a convenient thermal slip boundary condition models
the thermal variation at the walls. Numerical results with this configu-
ration suggest that, an increase in upward cross-flow velocity or a
decrease in the internal heat generation inside the flow act as stabiliz-
ing factors (Figs. 6, 8, and 11). It is illustrated by the suppression of the
unstable eigenmodes at various wavenumbers (Fig. 8) for higher re
and lower Ra, along with the temporal decay of the most unstable
mode and reduction of the marginal stability boundaries. Further, the
velocity and temperature slip have stabilizing influence.

In the second scenario, the internal heat source is absent, and the
channel walls are kept at a constant temperature (not necessarily
equal). The stability of flow system is generally exacerbated by the
increase in the Reynolds number and the temperature difference
between the walls [Fig. 13]. Whereas, the stronger cross-flow velocity
in terms of larger re has stabilizing effect. It is to be noted that in the
absence of cross-flow (re¼ 0), the result of the current study tally with
those of the classical Poiseuille–Rayleigh–B�enard instability.

Under the third aspect, one of the channel walls has a tempera-
ture jump and is modeled with the thermal slip, and the opposite wall
fosters an uniform constant temperature. Consequently, for a constant
temperature at the lower wall and the freely conducting upper wall,
when the lower wall temperature increases the configuration becomes
a more unstable thermal stratification [Fig. 14(b)]. However, the
upward cross-flow velocity and the thermal slip at the upper wall has a
reverse effect and stabilizes the flow [Figs. 15(a) and 15(b)].
Additionally, the wall velocity slip pushes to stabilize the flow by
changing the wall shear rate of the flow system [Fig. 14(a)].

An energy budget analysis is done to understand the underlying
instability mechanisms for all three types of configurations. It is
observed that the energy transferred from the base flow to the per-
turbed flow and the energy sourcing from the cross-flow as well as
thermal effect are responsible for the linear instability in the perturbed
system. Further, the wall velocity slip and thermal slip at the walls con-
trol the energy fluctuation from all the sources.

Conclusively, on comparison of the flow configuration with zero
temperature gradient (zero or equal wall temperatures), the flow with
different wall temperatures and/or internal heating is more unstable.
The upward cross-flow always has stabilizing influence. The
Poiseuille–Rayleigh–B�enard instability can be suppressed using veloc-
ity and thermal slip at the channel walls. The current study provides a
versatile array of passive control mechanisms for wall-bounded flows.
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FIG. 19. Effect of velocity slip on energy terms for Type-III flow configuration with
T1 ¼ 100; re ¼ 0:4; Re ¼ 7000 and k ¼ 0:2.

FIG. 20. Effect of thermal slip on energy terms for Type-III flow configuration with
T1 ¼ 100; re ¼ 0:4; Re ¼ 7000 and b ¼ 0:005.
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APPENDIX: PROCEDURE OF BASE-FLOW
SOLUTIONS

The nondimensional base flow governing equations can be
obtained from the Navier–Stokes equations (9)–(12) after assuming
that the mean flow is unidirectional, fully developed, and locally
parallel as

�@xPb þ @yyUb ¼ ReV0 @yUb; (A1)

�@yPb þ Tb ¼ 0; (A2)

@yyTb � re@yTb ¼ �Ra; (A3)

where, Pb and Tb are base pressure and temperature, respectively.
Note that, the solution of Eq. (A3) will provide the base tempera-
ture profile Tb, and it is assumed that there is no or negligible varia-
tion of base temperature in the streamwise direction. Once TbðyÞ is
known, the base pressure Pb can be derived from Eq. (A2). Whereas
the base velocity component Ub is the solution of Eq. (A1).
Moreover, ReV0 ¼ re and the velocity boundary conditions contain
the parameter b thus the base velocity profile depends on re and b.

Further, a constant pressure gradient acts in the streamwise
direction and drives the fluid flow with base velocity profile UbðyÞ,
and the temperature gradient between the two walls maintains the
mean temperature profile TbðyÞ. As a consequence, the pressure
gradient @xPb ¼ �P0 is fixed and for the case of Poiseuille type
channel flow, it is a usual assumption. Furthermore, Eq. (A1) gives
the solution for the base velocity UbðyÞ that is independent of the x
coordinate.

1. Base temperature profiles

Following the standard procedure in conjunction with the ear-
lier literature5,8,30 and using the base/equilibrium flow assumptions,
the equation for the base temperature ðTbÞ,

@yyTb � re@yTb þ Ra ¼ 0 (A4)

is derived from the energy equation (12). Clearly, Eq. (A4) as well
as the boundary conditions for temperature are only dependent on
the variable y. Considering no or negligible variation of base tem-
perature with respect to x, the solution Tb of Eq. (A4) is a function
of y alone. According to the formulation of the problem, the chan-
nel walls are maintained with constant uniform temperature along
x� direction, and there is a volumetric uniform heat source with
constant strength Q inside the flow domain. The Rayleigh number
Ra is the nondimensional form of uniform internal heating Q.
Here, the effect of internal heating taken into account and so, the
base temperature (Tb) given in Eq. (17) contains the Rayleigh num-
ber Ra and the Tb profile changes with different Ra (see Fig. 3).

2. Base velocity profile

The equation for the base velocity [Eq. (A1)] contains the base
pressure gradient with respect to x (@xPb). Whereas Eq. (A2)
together with the condition @xPb ¼ �P0 and Tb from Eq. (A3) gives
the expression for the base pressure Pbðx; yÞ. Thus, first, the follow-
ing two equations are used to obtain the base pressure profile:

�@yPb þ Tb ¼ 0; (A5)

�@xPb ¼ P0: (A6)

Integrating Eq. (A5) with respect to y, one can write

Pb ¼
ð

TbðyÞdy ¼ gðyÞ þ f ðxÞ þ c; (A7)

where f and g are only function of x and y, respectively, and c is a
constant. Such a form of the Pb is possible because Tb is a function
of y alone. Putting the above Pb in Eq. (A6),

df

dx
¼ �P0; (A8)

which implies f(x) is a linear function of x and thus Tb also linearly
dependent on x. Moreover, we can express the base pressure as

Pbðx; yÞ ¼
ð

TbðyÞdy � P0x ¼ cþ gðyÞ � P0x: (A9)

In the current study, a constant pressure gradient in the x-direction
drives the flow, hence its clear that the gradient @Pb

@x will not be a
function of y. Finally, using the velocity boundary conditions, the
streamwise base velocity (Ub) can be obtained explicitly as given in
Eq. (16).
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