Header menu link for other important links
Part I: Physical Insight into Carbon-Doping-Induced Delayed Avalanche Action in GaN Buffer in AlGaN/GaN HEMTs
V. Joshi, , M. Shrivastava
Published in Institute of Electrical and Electronics Engineers Inc.
Volume: 66
Issue: 1
Pages: 561 - 569
Physics behind the improvement in breakdown voltage of AlGaN/GaN HEMTs with carbon-doping of GaN buffer is discussed. Modeling of carbon as acceptor traps and self-compensating acceptor/donor traps is discussed with respect to their impact on avalanche breakdown. Impact of carbon behaving as a donor as well as acceptor traps on electric field relaxation and avalanche generation is discussed in detail to establish the true nature of carbon in GaN that delays the avalanche action. This understanding of the behavior of carbon-doping in GaN buffer is then utilized to discuss design parameters related to carbon doped buffer. Design parameters such as undoped channel thickness and relative trap concentration induced by carbon-doping are discussed with respect to the performance metrics of breakdown voltage, leakage current, sheet charge density, and dynamic ON-resistance. © 1963-2012 IEEE.
About the journal
JournalData powered by TypesetIEEE Transactions on Electron Devices
PublisherData powered by TypesetInstitute of Electrical and Electronics Engineers Inc.