The phrase convex optimization refers to the minimization of a convex function over a convex set. However the feasible convex set need not be always described by convex inequalities. In this article we consider a convex feasible set which is described by inequality constraints that are locally Lipschitz and not necessarily convex or differentiable. We show that if the Slater constraint qualification and a simple non-degeneracy condition is satisfied then the Karush-Kuhn-Tucker type optimality condition is both necessary and sufficient. © 2011 Springer-Verlag.