June 3, 2020

BRANCHING RULES AND COMMUTING PROBABILITIES FOR TRIANGULAR AND UNITRIANGULAR MATRICES

DILPREET KAUR, UDAY BHASKAR SHARMA, AND ANUPAM SINGH

Abstract

This paper concerns the enumeration of simultaneous conjugacy classes of k-tuples of commuting matrices in the upper triangular group $G T_{n}\left(\mathbf{F}_{q}\right)$ and unitriangular group $U T_{m}\left(\mathbf{F}_{q}\right)$ over the finite field \mathbf{F}_{q} of odd characteristic. This is done for $n=2,3,4$ and $m=3,4,5$, by computing the branching rules. Further, using the branching matrix thus computed, we explicitly get the commuting probabilities $c p_{k}$ for $k \leq 5$ in each case.

1. Introduction

Simultaneous conjugacy of commuting k-tuples in a group is understood by computing its branching matrix. In [Sh1] and [SS], the branching table/matrix of finite general linear, unitary and symplectic groups of small rank is computed. In this paper, we continue the work for certain solvable groups, namely, upper triangular matrices. Since, this work is continuation of that in [SS], we refer a reader to the same for definition of branching and other related notation. We work with the groups of upper-triangular invertible matrices, $G T_{n}\left(\mathbf{F}_{q}\right)$, and the groups of upper unitriangular matrices $U T_{n}\left(\mathbf{F}_{q}\right)$, over a finite field \mathbf{F}_{q} of odd characteristic. We compute the branching matrix for $G T_{2}\left(\mathbf{F}_{q}\right)$ (Theorem 2.1), $G T_{3}\left(\mathbf{F}_{q}\right)$ (Theorem 3.1), $G T_{4}\left(\mathbf{F}_{q}\right)$ (Theorem 4.1), $U T_{3}\left(\mathbf{F}_{q}\right)$ (Theorem 5.1), $U T_{4}\left(\mathbf{F}_{q}\right)$ (Theorem 6.1) and $U T_{5}\left(\mathbf{F}_{q}\right)$ (Theorem 7.1).

Further, for a group G, the relation of branching matrix B_{G} to commuting probabilities $c p_{k}(G)$ was explored in [SS, Theorem 1.1]. This relation is further explored in the survey article [SS2], where commuting probabilities $c p_{k}(G)$ up to $k \leq 5$ is computed for $G=G L_{2}\left(\mathbf{F}_{q}\right), G L_{3}\left(\mathbf{F}_{q}\right), U_{2}\left(\mathbf{F}_{q}\right)$ and $U_{3}\left(\mathbf{F}_{q}\right)$. It was also proved that $c p_{k}\left(G L_{2}\left(\mathbb{F}_{q}\right)\right)=$ $c p_{k}\left(U_{2}\left(\mathbf{F}_{q}\right)\right)$ for all k even though the branching matrices of the two groups are not same (see Proposition 3.3 [SS2]). In [GR] (see Theorem 12) bounds for commuting probability $c p_{2}$, when G is a solvable group or p-group, is computed. Using the branching matrix we compute the commuting probabilities $c p_{k}$, up to $k \leq 5$, for each of the groups $G T_{n}\left(\mathbf{F}_{q}\right)$ and $U T_{n}\left(\mathbf{F}_{q}\right)$ for which we have branching matrix (see Section 8).

[^0]For this work, we need conjugacy class types or z-classes (as defined in $[\mathrm{SS}]$ and also dealt in $[\mathrm{Bh}])$. This is defined as follows: two matrices are said to be of the same conjugacy class type $/ z$-class, if the centralizers of two elements are conjugate. However, a further weaker version is enough for our purpose here. We say that two matrices are of same type if their centralizers are isomorphic. This helps us reduce the size of computation (and size of branching matrix) and causes no loss of generality. Throughout, we assume q is odd. We hope our computation throws some light on the subject of commuting probability and will help us understand the groups better.

Acknowledgments. The authors would like to thank Amritanshu Prasad, IMSc Chennai, for his interest in this work.

2. Branching rules for $G T_{2}\left(\mathbf{F}_{q}\right)$

There are four conjugacy class types in $G L_{2}\left(\mathbf{F}_{q}\right)$ given by the following partitions (as in $[$ Sh1 $])(1,1)_{2},(2)_{1},(1)_{1}(1)_{1}$, and $(1)_{2}$. We use this to get the same for $G T_{2}\left(\mathbf{F}_{q}\right)$. Since we are looking at $G T_{2}\left(\mathbf{F}_{q}\right)$, the last one, $(1)_{2}$ doesn't exist in $G T_{2}\left(\mathbf{F}_{q}\right)$. In this paper, we shall not use the partition based nomenclature for the conjugacy class types. Instead we use alphanumeric nomenclature as follows (similar to the pattern in $[\mathrm{SS}]$).

Canonical Form	No. of Classes	Centralizer	Name of Class Type		
$\left.\begin{array}{c}\binom{a}{0}, \\ a \in\end{array}\right), \mathbf{F}_{q}^{*}$				$\quad q-1 \quad C \quad$	$G T_{2}\left(\mathbf{F}_{q}\right)$
:---:					

Theorem 2.1. The branching rules are summarized in the table below given by the branching matrix:

$$
B_{G T_{2}\left(\mathbf{F}_{q)}\right.}=\left(\begin{array}{ccc}
q-1 & 0 & 0 \\
q-1 & q(q-1) & 0 \\
(q-1)(q-2) & 0 & (q-1)^{2}
\end{array}\right) .
$$

We mention the branching rules below.
Proposition 2.2. For an upper triangular matrix of type C, the branching rules are as mentioned in the table above.

Proof. The result follows, as this type is central.
Proposition 2.3. For matrices of any of the two regular types:

- A matrix of type R_{1} has $q(q-1)$ branches of type R_{1}, and
- A matrix of type R_{2} has $(q-1)^{2}$ branches of type R_{2}.

Proof. The centralizer of a matrix of any of the above mentioned regular types is commutative, hence each element of the centralizer is a branch.

Proof of Theorem 2.1. The branching rules stated in the above propositions, are summarised in the the branching matrix, as mentioned in the statement of the thoerem.

3. Branching in $G T_{3}(q)$

Now, we compute the branching table for $G T_{3}\left(\mathbf{F}_{q}\right)$. The table for the conjugacy classes and their types are as follows:

Class Representative	Number of Classes	Centralizer size	Name of Type
$a I_{3}, a \neq 0$	$q-1$	$(q-1)^{3} q^{3}$	C
$\begin{gathered} \left(\begin{array}{cc} a & 1 \\ & a \\ & a \end{array}\right),\left(\begin{array}{cc} a & a \\ a & 1 \\ a & a \end{array}\right), \\ a \neq 0 \end{gathered}$	$2(q-1)$	$(q-1)^{2} q^{2}$	A_{1}
$\left(\begin{array}{cc}a & 1 \\ & a \\ & a\end{array}\right), a \neq 0$	$q-1$	$(q-1)^{2} q^{3}$	A_{2}
	$3(q-1)(q-2)$	$(q-1)^{3} q$	B_{1}
$\left(\begin{array}{ll}a & 1 \\ a & 1 \\ a\end{array}\right), a \neq 0$	$q-1$	$(q-1) q^{2}$	R_{1}
$\begin{gathered} \left(\begin{array}{cc} a & 1 \\ a & \\ a & b \end{array}\right),\left(\begin{array}{ll} a & 1 \\ & b \\ & a \end{array}\right), \\ \left(\begin{array}{ccc} b & a & \\ & a & a \end{array}\right), a \neq b \end{gathered}$	$3(q-1)(q-2)$	$(q-1)^{2} q$	R_{2}
$\begin{gathered} \left(\begin{array}{c} \left.{ }^{a}{ }^{{ }_{b}}{ }_{c}\right) \\ a \neq b \neq c \neq a \end{array}\right. \end{gathered}$	$(q-1)(q-2)(q-3)$	$(q-1)^{3}$	R_{3}

The branching rules are described by the branching matrix as follows.
Theorem 3.1. The branching matrix for the group $G T_{3}\left(\mathbf{F}_{q}\right)$ with types written in the order $\left\{C, A_{1}, A_{2}, B_{1}, R_{1}, R_{2}, R_{3}\right\}$ is $B_{G T_{3}\left(\mathbf{F}_{q}\right)}$

$$
=\left(\begin{array}{ccccccc}
q-1 & 0 & 0 & 0 & 0 & 0 & 0 \\
2(q-1) & q(q-1) & 0 & 0 & 0 & 0 & 0 \\
q-1 & 0 & q(q-1) & 0 & 0 & 0 & 0 \\
3(q-1)(q-2) & 0 & 0 & (q-1)^{2} & 0 & 0 & 0 \\
q-1 & q(q-1) & q^{2}-1 & 0 & (q-1) q^{2} & 0 & 0 \\
3(q-1)(q-2) & q(q-1)(q-2) & q(q-1)(q-2) & (q-1)^{2} & 0 & (q-1)^{2} q & 0 \\
(q-1)(q-2)(q-3) & 0 & 0 & (q-1)^{2}(q-2) & 0 & 0 & (q-1)^{3}
\end{array}\right) .
$$

Proposition 3.2. For an upper triangular matrix of type C, the branches are as in the second column of the table in the the opening paragraph of this section.

Proof. The result follows, since the matrices of type C are central.
Proposition 3.3. An upper triangular matrix of type A_{1} has $q(q-1)$ branches of type $A_{1}, q(q-1)$ branches of type R_{1}, and $q(q-1)(q-2)$ branches of type R_{2}.

Proof. Let $A=\left(\begin{array}{lll}a & 1 & \\ & a & \\ & & a\end{array}\right)$, a matrix of type A_{1}. The centralizer of A is: $Z_{G T_{3}\left(\mathbf{F}_{q}\right)}(A)=$ $\left\{\left.\left(\begin{array}{ccc}x_{0} & x_{1} & x_{2} \\ & x_{0} & \\ & & z_{0}\end{array}\right) \right\rvert\, x_{0}, z_{0} \neq 0\right\}$. Let $X=\left(\begin{array}{ccc}x_{0} & x_{1} & x_{2} \\ & x_{0} & \\ & & z_{0}\end{array}\right)$, be an invertible member of
$Z_{G T_{3}\left(\mathbf{F}_{q}\right)}(A)$. Let $B=\left(\begin{array}{ccc}a_{0} & a_{1} & a_{2} \\ & a_{0} & \\ & & c_{0}\end{array}\right)$, and $B^{\prime}=\left(\begin{array}{ccc}a_{0} & a_{1}^{\prime} & a_{2}^{\prime} \\ & a_{0} & \\ & & c_{0}\end{array}\right)=X B X^{-1}$. Thus equating $X B=B^{\prime} X$ leads us to the following equations:

$$
\begin{align*}
a_{1}^{\prime} & =a_{1} \tag{3.1}\\
x_{0} a_{2}+x_{2} c_{0} & =x_{2} a_{0}+z_{0} a_{2}^{\prime} \tag{3.2}
\end{align*}
$$

Case: $a_{0}=c_{0}$. Here, equation 3.2 becomes $x_{0} a_{2}=z_{0} a_{2}^{\prime}$. When $a_{2}=0$, then, we have B reduced to $\left(\begin{array}{ccc}a_{0} & a_{1} & \\ & a_{0} & \\ & & a_{0}\end{array}\right)$, with $Z_{G T_{3}\left(\mathbf{F}_{q}\right)}(A, B)=Z_{G T_{3}\left(\mathbf{F}_{q}\right)}(A)$. Thus (A, B) is of type A_{1}, and there are $q(q-1)$ such branches.

When $a_{2} \neq 0$, choose z_{0} so that $a_{2}=1$. Then B is reduced to $\left(\begin{array}{ccc}a_{0} & a_{1} & 1 \\ & a_{0} & \\ & & a_{0}\end{array}\right)$, and $Z_{G T_{3}\left(\mathbf{F}_{q}\right)}(A, B)=\left\{\left(\begin{array}{ccc}x_{0} & x_{1} & x_{2} \\ & x_{0} & \\ & & x_{0}\end{array}\right)\right\}$. This subgroup is commutative. Thus (A, B) is of type R_{1}, and there are $q(q-1)$ such branches. There are no further cases to see here. Case: $a_{0} \neq c_{0}$. In Equation 3.2, choose x_{2} so that $a_{2}^{\prime}=0$. Thus, B is reduced to $\left(\begin{array}{ccc}a_{0} & a_{1} & \\ & a_{0} & \\ & & c_{0}\end{array}\right)$, and $Z_{G T_{3}\left(\mathbf{F}_{q}\right)}(A, B)=\left\{\left(\begin{array}{ccc}x_{0} & x_{1} & \\ & x_{0} & \\ & & z_{0}\end{array}\right)\right\}$. This subgroup is commutative. Thus (A, B) is of type R_{2}, and there are $q^{2}(q-1)=q^{3}-q^{2}$ such branches.

These are all the cases here. Thus, we have a total of $q^{2}+q^{3}-q^{2}=q^{3}$ branches of type R.

Proposition 3.4. An upper triangular matrix of type A_{2} has $q(q-1)$ branches of type A_{2}, and $q^{2}-1$ branches of type R_{1}, and $q(q-1)(q-2)$ branches of type R_{2}.

Proof. Given $A=\left(\begin{array}{lll}a & & 1 \\ & a & \\ & & a\end{array}\right)$, the canonical form of a matrix of type A_{2}. The centralizer of $A, Z_{G T_{3}\left(\mathbf{F}_{q}\right)}(A)$ is $\left\{\left.\left(\begin{array}{ccc}x_{0} & x_{1} & x_{2} \\ & y_{0} & y_{1} \\ & & x_{0}\end{array}\right) \right\rvert\, x_{0}, y_{0} \neq 0\right\}$. Let $X=\left(\begin{array}{ccc}x_{0} & x_{1} & x_{2} \\ & y_{0} & y_{1} \\ & & x_{0}\end{array}\right) \in$ $Z_{G T_{3}\left(\mathbf{F}_{q}\right)}(A)$. Let $B=\left(\begin{array}{ccc}a_{0} & a_{1} & a_{2} \\ & b_{0} & b_{1} \\ & & a_{0}\end{array}\right)$, and $B^{\prime}=\left(\begin{array}{ccc}a_{0} & a_{1}^{\prime} & a_{2}^{\prime} \\ & b_{0} & b_{1}^{\prime} \\ & & a_{0}\end{array}\right)=X B X^{-1}$. Thus equating $X B=B^{\prime} X$ gives us the following equations:

$$
\begin{align*}
x_{0} a_{1}+x_{1} b_{0} & =x_{1} a_{0}+y_{0} a_{1}^{\prime} \tag{3.3}\\
y_{0} b_{1}+y_{1} a_{0} & =x_{0} b_{1}^{\prime}+y_{1} b_{0} \tag{3.4}\\
x_{0} a_{2}+x_{1} b_{1} & =x_{0} a_{2}^{\prime}+y_{1} a_{1}^{\prime} \tag{3.5}
\end{align*}
$$

Using these we reduce B to the mentioned branches.
Proposition 3.5. An upper triangular matrix of type B_{1} has $(q-1)^{2}$ branches of type B_{1}, and $(q-1)^{2}$ branches of type R_{2}, and $(q-1)^{2}(q-2)$ branches of type R_{3}.

Proof. One of the canonical forms of an upper triangular matrix of type B_{1} is $A=$ $\left(\begin{array}{ll}a I_{2} & \\ & b\end{array}\right)$, where $a \neq b \in \mathbf{F}_{q}^{*}$. Hence the centralizer of A is

$$
Z_{G T_{3}\left(\mathbf{F}_{q)}\right)}(A)=\left\{\left.\left(\begin{array}{ll}
X & \\
& z_{0}
\end{array}\right) \right\rvert\, X \in G T_{2}\left(\mathbf{F}_{q}\right), z_{0} \neq 0\right\} .
$$

Thus the branches of A are of the form $\left(\begin{array}{ll}C & \\ & \\ & d\end{array}\right)$, where $d \neq 0$, and C is a conjugacy class of $G T_{2}\left(\mathbf{F}_{q}\right)$. Hence, the result.

Proposition 3.6. For matrices of the Regular types:

- A matrix of type R_{1} has $(q-1) q^{2}$ branches of type R_{1}.
- For type R_{2}, there are $(q-1)^{2} q$ branches of type R_{2}.
- For type R_{3}, there are $(q-1)^{3}$ branches of type R_{3}

Proof. The result follows, as the centralizers of matrices of any of the Regular types are commutative.

Proof of Theorem 3.1. From the data in Propositions 3.2 to 3.6, the branching rules are summarized to the branching table/matrix described in the statement of the theorem.

4. Branching For $G T_{4}(q)$

In this section, we discuss the simultaneous conjugacy classes of tuples of commuting matrices of $G T_{4}\left(\mathbf{F}_{q}\right)$. The conjugacy classes of $G T_{4}\left(\mathbf{F}_{q}\right)$ is described in Appendix A. The branching rules are as follows (types written in the order listed in last column of Appendix A):

Theorem 4.1. The branching matrix for $G T_{4}\left(\mathbf{F}_{q}\right)$ is of size 28 (22 types of $G T_{4}\left(\mathbf{F}_{q}\right)$ and 6 new types), which we write as $B_{G T_{4}\left(\mathbf{F}_{q}\right)}=(\mathcal{A}|\mathcal{B}| \mathcal{C})$ (split in three parts along the columns for convenience of writing) described in Table 1, 2 and 3.

For the convenience, the branching of non-regular types are in part \mathcal{A}, those of regular types in part \mathcal{B}, and those of the new types in part \mathcal{C}. In each of the sub-tables, the regular branches are in blue, and the new types in red. The $0_{r, s}$ denotes the zero matrix of size $r \times s$. Rest of the section is devoted to proof of this.

Table 1. The matrix \mathcal{A}

Table 2. The matrix \mathcal{B}

$$
\mathcal{B}=\left(\begin{array}{ccccc}
R_{1} & R_{2} & R_{3} & R_{4} & R_{5} \\
& & 0_{17 \times 5} & & \\
& & & & \\
q^{4}-q^{3} & 0 & 0 & 0 & 0 \\
0 & q^{4}-2 q^{3}+q^{2} & 0 & 0 & 0 \\
0 & 0 & q^{4}-2 q^{3}+q^{2} & 0 & 0 \\
0 & 0 & 0 & q^{4}-3 q^{3}+3 q^{2}-q & 0 \\
0 & 0 & 0 & 0 & (q-1)^{4} \\
& & 0_{6 \times 5} & &
\end{array}\right)
$$

The first column of A corresponds to the central type C and the entries in the column are number of classes of each type in $G T_{4}\left(\mathbf{F}_{q}\right)$ which is the column two of table in Appendix A. For all the regular types $R_{1}, R_{2}, R_{3}, R_{4}$ and R_{5}, the only branch is that type itself, and the the number of branches is the size of its centralizer which is again listed in Appendix A. This fully describes the matrix \mathcal{B}. Thus, it only remain to explain the matrix \mathcal{A} and \mathcal{C}.
4.1. Branching rules for type A. Let us deal with type A classes as in Section A.

Table 3. The matrix \mathcal{C}

$$
\mathcal{C}=\left(\begin{array}{cccccc}
t N T_{1} & t N T_{2} & t N T_{3} & t N T_{4} & t N T_{5} & N R_{1} \\
& 0_{17 \times 6} & & & \\
q^{3}-q^{2} & 0 & q^{3}-q^{2} & q^{4}-2 q^{3}+q^{2} & q^{4}-q^{3}-q^{2}+q & 0 \\
0 & q^{4}-3 q^{3}+2 q^{2} & q^{4}-3 q^{3}+2 q^{2} & 0 & 0 & 0 \\
q^{4}-3 q^{3}+2 q^{2} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
q^{3}-q^{2} & 0 & 0 & 0 & 0 & 0 \\
0 & q^{3}-q^{2} & 0 & 0 & 0 & 0 \\
0 & 0 & q^{3}-q^{2} & 0 & 0 & 0 \\
0 & 0 & 0 & q^{3}-q^{2} & 0 & 0 \\
0 & 0 & 0 & 0 & q^{3}-q & 0 \\
0 & q^{4}-q^{2} & q^{3}-q & q^{4}-q^{3}-q^{2}+q & 0 & q^{5}-q^{4}
\end{array}\right)
$$

Proposition 4.2. The branching rules of a matrix of type A_{1} are:

Branch	No. Of Branches	Branch	No. of Branches
A_{1}	$q(q-1)$	R_{1}	$(q-1) q$
A_{7}	$q(q-1)$	R_{2}	$2 q(q-1)(q-2)$
A_{8}	$q(q-1)$	R_{3}	$q(q-1)(q-2)$
B_{3}	$2 q(q-1)(q-2)$	R_{4}	$q(q-1)(q-2)(q-3)$
B_{5}	$q(q-1)(q-2)$	$t N T_{1}$	$q(q-1)$.

type appears, called $t N T_{1}$, whose centralizer is $\left\{\left.\left(\begin{array}{ll}x_{0} x_{1} & x_{3} \\
x_{0} & z_{0} \\
\hline\end{array}\right) \right\rvert\, x_{0} z_{0} \neq 0\right\}$.

Proof. A matrix of type A_{1} has either of the canonical forms $\left(\begin{array}{llll}a & 1 & & \\ & a & & \\ & & a & \\ & & & a\end{array}\right)$, or $\left(\begin{array}{llll}a & & & \\ & a & & \\ & & a & 1 \\ & & & a\end{array}\right)$.
We may consider any one of them. WLOG, we take $A=\left(\begin{array}{llll}a & 1 & & \\ & a & & \\ & & a & \\ & & & a\end{array}\right)$. The centralizer $Z_{G T_{4}\left(\mathbf{F}_{q}\right)}(A)$ is $\left\{\left.\left(\begin{array}{cccc}a_{0} & a_{1} & a_{2} & a_{3} \\ & a_{0} & & \\ & & c_{0} & c_{1} \\ & & & d_{0}\end{array}\right) \right\rvert\, a_{0}, c_{0}, d_{0} \neq 0\right\}$. Let $B=\left(\begin{array}{llll}a_{0} & a_{1} & a_{2} & a_{3} \\ & a_{0} & & \\ & & c_{0} & c_{1} \\ & & & d_{0}\end{array}\right)$, $B^{\prime}=\left(\begin{array}{cccc}a_{0} & a_{1}^{\prime} & a_{2}^{\prime} & a_{3}^{\prime} \\ & a_{0} & & \\ & & c_{0} & c_{1}^{\prime} \\ & & & d_{0}\end{array}\right) X B X^{-1}$, where $X=\left(\begin{array}{cccc}x_{0} & x_{1} & x_{2} & x_{3} \\ & x_{0} & & \\ & & z_{0} & z_{1} \\ & & & w_{0}\end{array}\right)$. Equating $X B=$ $B^{\prime} X$ leads us to the following:

$$
\begin{aligned}
a_{1}^{\prime} & =a_{1} \\
\left(\begin{array}{cc}
z_{0} & z_{1} \\
& w_{0}
\end{array}\right)\left(\begin{array}{ll}
c_{0} & c_{1} \\
& d_{0}
\end{array}\right) & =\left(\begin{array}{ll}
c_{0} & c_{1}^{\prime} \\
& d_{0}
\end{array}\right)\left(\begin{array}{cc}
z_{0} & z_{1} \\
& w_{0}
\end{array}\right) .
\end{aligned}
$$

Let $C=\left(\begin{array}{cc}c_{0} & c_{1} \\ & d_{0}\end{array}\right)$, and $Z=\left(\begin{array}{cc}z_{0} & z_{1} \\ & w_{0}\end{array}\right)$. The second equation leads us to various conjugacy classes of $G T_{2}\left(\mathbf{F}_{q}\right)$. Hence, we take C to be some conjugacy class representative in $G T_{2}\left(\mathbf{F}_{q}\right)$, and $Z \in Z_{G T_{2}\left(\mathbf{F}_{q}\right)}(C)$. This leads us to the following equation:

$$
x_{0}\left(\begin{array}{ll}
a_{2} & a_{3}
\end{array}\right)+\left(\begin{array}{ll}
x_{2} & x_{3}
\end{array}\right) \cdot\left(C-a_{0} I_{2}\right)=\left(\begin{array}{ll}
a_{2}^{\prime} & a_{3}^{\prime} \tag{4.1}
\end{array}\right) \cdot Z
$$

When a_{0} is an eigenvalue of C :
When $\left(a_{2}, a_{3}\right)=(0,0)$: Equation 4.1 becomes $\left(\begin{array}{ll}x_{2} & x_{3}\end{array}\right) \cdot\left(C-a_{0} I_{2}\right)=\left(\begin{array}{ll}0 & 0\end{array}\right)$.

When $C=a_{0} I_{2}$, Equation 4.1 is void, and we have B reduced to $\left(\begin{array}{cccc}a_{0} & a_{1} & & \\ & a_{0} & & \\ & & a_{0} & \\ & & & a_{0}\end{array}\right)$, and $Z_{G T_{4}\left(\mathbf{F}_{q}\right)}(A, B)=Z_{G T_{4}\left(\mathbf{F}_{q}\right)}(A)$. Thus (A, B) is of type A_{1}, and there are $q(q-1)$ such branches

When $C=\left(\begin{array}{cc}a_{0} & 1 \\ & a_{0}\end{array}\right)$, Equation 4.1 becomes $\left(\begin{array}{ll}x_{2} & x_{3}\end{array}\right) \cdot\left(\begin{array}{ll}0 & 1 \\ & 0\end{array}\right)=\left(\begin{array}{ll}0 & 0\end{array}\right)$. Thus $x_{2}=0$. We have B reduced to $\left(\begin{array}{cccc}a_{0} & a_{1} & & \\ & a_{0} & & \\ & & a_{0} & 1 \\ & & & a_{0}\end{array}\right)$, and $Z_{G T_{4}\left(\mathbf{F}_{q}\right)}(A, B)=\left\{\left(\begin{array}{cccc}x_{0} & x_{1} & & x_{3} \\ & x_{0} & & \\ & & z_{0} & z_{1} \\ & & & z_{0}\end{array}\right)\right\}$. This centralizer is not isomorphic to the centralizers of te known types. Thus (A, B) is of a new type, which we will call $t N T_{1}$ and there are $q(q-1)$ such branches.

When $C=\left(\begin{array}{ll}a_{0} & \\ & b_{0}\end{array}\right)\left(a_{0} \neq b_{0}\right)$, Equation 4.1 becomes $\left(\begin{array}{ll}x_{2} & x_{3}\end{array}\right) \cdot\left(\begin{array}{l}\left(b_{0}-a_{0}\right)\end{array}\right)=$ (00). Thus $x_{3}=0$. We have B reduced to $\left(\begin{array}{cccc}a_{0} & a_{1} & & \\ & a_{0} & & \\ & & a_{0} & \\ & & & b_{0}\end{array}\right)$, and $Z_{G T_{4}\left(\mathbf{F}_{q}\right)}(A, B)=$ $\left\{\left(\begin{array}{llll}x_{0} & x_{1} & x_{2} & \\ & x_{0} & & \\ & & z_{0} & \\ & & & z_{2}\end{array}\right)\right\}$. Thus (A, B) is of type B_{3}, and there are $q(q-1)(q-2)$ such branches.

When $C=\left(\begin{array}{cc}b_{0} & \\ & a_{0}\end{array}\right)\left(a_{0} \neq b_{0}\right)$, Equation 4.1 becomes $\left(\begin{array}{ll}x_{2} & x_{3}\end{array}\right) \cdot\left(\begin{array}{l}\left(b_{0}-a_{0}\right) \\ \end{array}\right)=$ (0 0). Thus $x_{2}=0$. We have B reduced to $\left(\begin{array}{cccc}a_{0} & a_{1} & & \\ & a_{0} & & \\ & & b_{0} & \\ & & & a_{0}\end{array}\right)$, and $Z_{G T_{4}\left(\mathbf{F}_{q}\right)}(A, B)=$ $\left\{\left(\begin{array}{llll}x_{0} & x_{1} & & x_{3} \\ & x_{0} & & \\ & & z_{0} & \\ & & & z_{2}\end{array}\right)\right\}$. Thus (A, B) is of type B_{3}, and there are $q(q-1)(q-2)$ such branches.

When $\left(a_{2}, a_{3}\right) \neq(0,0)$:
When $C=a_{0} I_{2}$, Equation 4.1 becomes: $\left(\begin{array}{ll}a_{2} & a_{3}\end{array}\right)=\left(\begin{array}{ll}a_{2}^{\prime} & a_{3}^{\prime}\end{array}\right)\left(\begin{array}{cc}\frac{z_{0}}{x_{0}} & \frac{z_{1}}{x_{0}} \\ & \frac{z_{2}}{x_{0}}\end{array}\right)$.

We have from this:

$$
\begin{align*}
& a_{2}=\frac{z_{0}}{x_{0}} a_{2}^{\prime} \tag{4.2}\\
& a_{3}=\frac{z_{1}}{z_{0}} a_{2}^{\prime}+\frac{z_{2}}{x_{0}} a_{3}^{\prime} \tag{4.3}
\end{align*}
$$

When $a_{2} \neq 0$, choose x_{0} such that $a_{2}^{\prime}=1$. In the equation below, choose z_{1} so that $a_{3}^{\prime}=0$.
So, B reduces to $\left(\begin{array}{cccc}a_{0} & a_{1} & 1 & \\ & a_{0} & & \\ & & a_{0} & \\ & & & a_{0}\end{array}\right)$, and $Z_{G T_{4}\left(\mathbf{F}_{q}\right)}(A, B)=\left\{\left(\begin{array}{llll}x_{0} & x_{1} & x_{2} & x_{3} \\ & x_{0} & & \\ & & x_{0} & \\ & & & z_{2}\end{array}\right)\right\}$.
This (A, B) is of type A_{7}, and there are $q(q-1)$ such branches.
When $a_{2}=0, a_{3} \neq 0$, choose z_{2} such that $a_{3}^{\prime}=1$. Thus B is reduced to $\left(\begin{array}{llll}a_{0} & a_{1} & & 1 \\ & a_{0} & & \\ & & a_{0} & \\ & & & a_{0}\end{array}\right)$, and $Z_{G T_{4}\left(\mathbf{F}_{q}\right)}(A, B)=\left\{\left(\begin{array}{llll}x_{0} & x_{1} & x_{2} & x_{3} \\ & x_{0} & & \\ & & z_{0} & z_{1} \\ & & & x_{0}\end{array}\right)\right\}$. This (A, B) is of type A_{8}, and there are $q(q-1)$ such branches.

When $C=\left(\begin{array}{cc}a_{0} & 1 \\ & a_{0}\end{array}\right)$, here $Z=\left(\begin{array}{cc}x_{0} & x_{1} \\ & x_{0}\end{array}\right)$. Equation 4.1 becomes

$$
\left(\begin{array}{ll}
a_{2} & a_{3}
\end{array}\right)+\left(\begin{array}{ll}
\frac{x_{2}}{x_{0}} & \frac{x_{3}}{x_{0}}
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
a_{2}^{\prime} & a_{3}^{\prime}
\end{array}\right)\left(\begin{array}{cc}
\frac{z_{0}}{x_{0}} & \frac{z_{1}}{x_{0}} \\
& \frac{z_{0}}{x_{0}}
\end{array}\right) .
$$

We have:

$$
\begin{aligned}
a_{2} & =a_{2}^{\prime} \frac{z_{0}}{x_{0}} \\
a_{3}+\frac{x_{2}}{x_{0}} & =\frac{z_{1}}{z_{0}} a_{2}^{\prime}+\frac{z_{0}}{x_{0}} a_{3}^{\prime}
\end{aligned}
$$

Choose x_{2} such that $a_{3}^{\prime}=0$. As $\left(a_{2}, a_{3}\right) \neq(0,0)$, and $a_{3}=0$, we have $a_{2} \neq 0$. Choose z_{0} such that $a_{2}^{\prime}=1$. So, B is reduced to $\left(\begin{array}{cccc}a_{0} & a_{1} & 1 & \\ & a_{0} & & \\ & & a_{0} & 1 \\ & & & a_{0}\end{array}\right)$, and $Z_{G T_{4}\left(\mathbf{F}_{q}\right)}(A, B)=$ $\left\{\left(\begin{array}{llll}x_{0} & x_{1} & x_{2} & x_{3} \\ & x_{0} & & \\ & & x_{0} & x_{2} \\ & & & x_{0}\end{array}\right)\right\}$. This (A, B) is of type R_{1}, and there are $q(q-1)$ such branches.

When $C=\left(\begin{array}{cc}a_{0} & \\ & b_{0}\end{array}\right)$, where $a_{0} \neq b_{0}$. Here $Z=\left(\begin{array}{cc}z_{0} & \\ & z_{2}\end{array}\right)$. Here, Equation 4.1 becomes:

$$
\left(\begin{array}{ll}
\frac{x_{2}}{x_{0}} & \frac{x_{3}}{x_{0}}
\end{array}\right)\left(\begin{array}{ll}
0 & \\
0 & b_{0}-a_{0}
\end{array}\right)=\left(\begin{array}{ll}
a_{2}^{\prime} & a_{3}^{\prime}
\end{array}\right)\left(\begin{array}{ll}
\frac{z_{0}}{x_{0}} & \\
& \frac{z_{2}}{x_{0}}
\end{array}\right) .
$$

We have:

$$
\begin{aligned}
a_{2} & =a_{2}^{\prime} \frac{z_{0}}{x_{0}} \\
a_{3}+\frac{x_{3}}{x_{0}}\left(b_{0}-a_{0}\right) & =\frac{z_{0}}{x_{0}} a_{3}^{\prime} .
\end{aligned}
$$

As $b_{0}-a_{0} \neq 0$, choose x_{3} so that $a_{3}^{\prime}=0$. So we are left with $a_{2} \neq 0$. Choose z_{0} such that $a_{2}^{\prime}=1$. So B is reduced to $\left(\begin{array}{cccc}a_{0} & a_{1} & 1 & \\ & a_{0} & & \\ & & a_{0} & \\ & & & b_{0}\end{array}\right)$, and $Z_{G T_{4}\left(\mathbf{F}_{q}\right)}(A, B)=$ $\left\{\left(\begin{array}{llll}x_{0} & x_{1} & x_{2} & \\ & x_{0} & & \\ & & x_{0} & \\ & & & z_{2}\end{array}\right)\right\}$. Thus, (A, B) is of type R_{2}, and there are $q(q-1)(q-2)$ such branches.

When $C=\left(\begin{array}{cc}b_{0} & \\ & a_{0}\end{array}\right)$, where $a_{0} \neq b_{0}$. Here $Z=\left(\begin{array}{ll}z_{0} & \\ & z_{2}\end{array}\right)$. Here, Equation 4.1 becomes:

$$
\left(\begin{array}{ll}
\frac{x_{2}}{x_{0}} & \frac{x_{3}}{x_{0}}
\end{array}\right)\left(\begin{array}{cc}
b_{0}-a_{0} & \\
& 0
\end{array}\right)=\left(\begin{array}{ll}
a_{2}^{\prime} & a_{3}^{\prime}
\end{array}\right)\left(\begin{array}{ll}
\frac{z_{0}}{x_{0}} & \\
& \frac{z_{2}}{x_{0}}
\end{array}\right) .
$$

We have:

$$
\begin{aligned}
a_{2}+\frac{x_{2}}{x_{0}}\left(b_{0}-a_{0}\right) & =a_{2}^{\prime} \frac{z_{0}}{x_{0}} \\
a_{3} & =\frac{z_{0}}{x_{0}} a_{3}^{\prime} .
\end{aligned}
$$

As $b_{0}-a_{0} \neq 0$, choose x_{2} so that $a_{2}^{\prime}=0$. So we are left with $a_{3} \neq 0$. Choose z_{2} such that $a_{3}^{\prime}=1$. So B is reduced to $\left(\begin{array}{cccc}a_{0} & a_{1} & & 1 \\ & a_{0} & & \\ & & b_{0} & \\ & & & a_{0}\end{array}\right)$, and $Z_{G T_{4}\left(\mathbf{F}_{q}\right)}(A, B)=$ $\left\{\left(\begin{array}{llll}x_{0} & x_{1} & & x_{3} \\ & x_{0} & & \\ & & z_{0} & \\ & & & x_{0}\end{array}\right)\right\}$. Thus, (A, B) is of type R_{2}, and there are $q(q-1)(q-2)$ such branches.

Now, we come to the case of a_{0} not being an eigenvalue of C. In Equation 4.1, the matrix $\left(C-a_{0} I_{2}\right)$ is invertible. So, we can choose x_{2}, x_{3} such that both $a_{2}=a_{3}=0$. Thus, on replacing a_{2} and a_{3} with 0 each in Equation 4.1, we get $\left(\begin{array}{ll}x_{2} & x_{3}\end{array}\right)\left(C-a_{0} I_{2}\right)=\left(\begin{array}{ll}0 & 0\end{array}\right)$. So $x_{2}=x_{3}=0$. Thus, we have:
When $C=b_{0} I_{2}, b_{0} \neq a_{0}, B$ is reduced to $\left(\begin{array}{cccc}a_{0} & a_{1} & & \\ & a_{0} & & \\ & & b_{0} & \\ & & & b_{0}\end{array}\right)$, and $Z_{G T_{4}\left(\mathbf{F}_{q}\right)}(A, B)=$ $\left\{\left(\begin{array}{llll}x_{0} & x_{1} & & \\ & x_{0} & & \\ & & z_{0} & z_{1} \\ & & & z_{2}\end{array}\right)\right\} .(A, B)$ is of the type B_{5}, and there are $q(q-1)(q-2)$ such branches.

$$
\begin{aligned}
& \text { When } C=\left(\begin{array}{ll}
b_{0} & 1 \\
& b_{0}
\end{array}\right), b_{0} \neq a_{0}, B \text { is reduced to }\left(\begin{array}{cccc}
a_{0} & a_{1} & & \\
& a_{0} & & \\
& & b_{0} & 1 \\
& & & b_{0}
\end{array}\right) \text {, and } Z_{G T_{4}\left(\mathbf{F}_{q}\right)}(A, B)= \\
& \left\{\left(\begin{array}{lll}
x_{0} & x_{1} & \\
& x_{0} & \\
& & z_{0}
\end{array}\right.\right. \\
& \\
&
\end{aligned}
$$ branches.

When $C=\left(\begin{array}{ll}b_{0} & \\ & c_{0}\end{array}\right), b_{0} \neq a_{0} \neq c_{0} \neq b_{0}, B$ is reduced to $\left(\begin{array}{cccc}a_{0} & a_{1} & & \\ & a_{0} & & \\ & & b_{0} & \\ & & & c_{0}\end{array}\right)$, and $Z_{G T_{4}\left(\mathbf{F}_{q)}\right)}(A, B)=\left\{\left(\begin{array}{llll}x_{0} & x_{1} & & \\ & x_{0} & & \\ & & z_{0} & \\ & & & z_{2}\end{array}\right)\right\} .(A, B)$ is of the type R_{4}, and there are $q(q-$

1) $(q-2)(q-3)$ such branches.

We are left with no other cases.

Proposition 4.3. The branching rules of a matrix of type A_{1}^{\prime} are:

Branch	No. of Branches	Branch	No. of Branches
A_{1}^{\prime}	$q(q-1)$	R_{2}	$2 q(q-1)(q-2)$
A_{5}	$q(q-1)$	R_{3}	$q(q-1)(q-2)$
B_{3}	$2 q(q-1)(q-2)$	R_{4}	$q(q-1)(q-2)(q-3)$
B_{5}	$q(q-1)(q-2)$	$N R_{1}$	$q(q-1)(q+2)$
$t N T_{2}$	$2 q(q-1)$		

Two new types $N R_{1}$ and $t N T_{2}$ appear here. The centralizers of these new types are $\left\{\left.\left(\begin{array}{cc}x_{0} I_{2} & Y \\ & x_{0} I_{2}\end{array}\right) \right\rvert\, Y \in M_{2}\left(\mathbf{F}_{q}\right), x_{0} \neq 0\right\}$, and $\left\{\left.\left(\begin{array}{ccc}x_{0} & x_{2} & x_{3} \\ & x_{0} & y_{1} \\ & y_{0} & y_{2} \\ & x_{0} & y_{0}\end{array}\right) \right\rvert\, x_{0} y_{0} \neq 0\right\}$, respectively.

Proof. A matrix of type A_{1}^{\prime} has the canonical form: $A=\left(\begin{array}{llll}a & & & \\ & a & 1 & \\ & & a & \\ & & & a\end{array}\right)$. The centralizer $Z_{G T_{4}\left(\mathbf{F}_{q}\right)}(A)$, of A is $\left\{\left(\begin{array}{cccc}a_{0} & & a_{2} & a_{3} \\ & b_{0} & b_{1} & b_{2} \\ & & b_{0} & \\ & & & c_{0}\end{array}\right)\right\}$. Let $B=\left(\begin{array}{llll}a_{0} & & a_{2} & a_{3} \\ & b_{0} & b_{1} & b_{2} \\ & & b_{0} & \\ & & & c_{0}\end{array}\right)$, $B^{\prime}=\left(\begin{array}{cccc}a_{0} & & a_{2}^{\prime} & a_{3}^{\prime} \\ & b_{0} & b_{1}^{\prime} & b_{2}^{\prime} \\ & & b_{0} & \\ & & & c_{0}\end{array}\right)=X B X^{-1}$, and where $X=\left(\begin{array}{cccc}x_{0} & & x_{2} & x_{3} \\ & y_{0} & y_{1} & y_{2} \\ & & y_{0} & \\ & & & z_{0}\end{array}\right)$. Denote the submatrix $\left(\begin{array}{ll}a_{0} & a_{3} \\ & c_{0}\end{array}\right)$ of B by C, and the submatrix $\left(\begin{array}{ll}x_{0} & x_{3} \\ & z_{0}\end{array}\right)$ by Z. Then equating $X B=B^{\prime} X$ leads us to $Z C=C^{\prime} Z$. Thus, we can take C to be a canonical form in $G T_{2}\left(\mathbf{F}_{q}\right)$, and $Z \in Z_{G T_{2}\left(\mathbf{F}_{q}\right)}(C)$. Thus we have $b_{1}^{\prime}=b_{1}$, and the following equaitons:

$$
\begin{align*}
x_{0} a_{2}+x_{2} b_{0} & =x_{2} a_{0}+y_{0} a_{2}^{\prime} \tag{4.4}\\
y_{0} b_{2}+y_{2} c_{0} & =y_{2} b_{0}+z_{0} b_{2}^{\prime} \tag{4.5}
\end{align*}
$$

When C has b_{0} as an eigenvalue:

When $\left(a_{2}, b_{2}\right)=(0,0)$:
When $C=b_{0} I_{2}$, Equation 4.4 and 4.5 become void, and B becomes, $B=\left(\begin{array}{llll}b_{0} & & & \\ & b_{0} & b_{1} & \\ & & b_{0} & \\ & & & b_{0}\end{array}\right)$, and $Z_{G T_{4}\left(\mathbf{F}_{q}\right)}(A, B)=Z_{G T_{4}\left(\mathbf{F}_{q}\right)}(A) .(A, B)$ is of type A_{1}^{\prime}, and there are $q(q-1)$ such branches.

When $C=\left(\begin{array}{cc}b_{0} & 1 \\ & b_{0}\end{array}\right)$. Here too, Equations 4.4 and 4.5 are void. So, B reduces to $\left(\begin{array}{cccc}b_{0} & & & 1 \\ & b_{0} & b_{1} & \\ & & b_{0} & \\ & & & b_{0}\end{array}\right)$, and $Z_{G T_{4}\left(\mathbf{F}_{q}\right)}(A, B)=\left\{\left(\begin{array}{cccc}x_{0} & & x_{2} & x_{3} \\ & y_{0} & y_{1} & y_{2} \\ & & y_{0} & \\ & & & x_{0}\end{array}\right)\right\}$. This (A, B) is of type
A_{5}, and there are $q(q-1)$ such branches.
When $C=\left(\begin{array}{cc}b_{0} & \\ & c_{0}\end{array}\right), b_{0} \neq c_{0}$. Here Equation 4.4 stays void, but 4.5 becomes $y_{2} c_{0}=y_{2} b_{0}$, thus $y_{2}=0$. So, B reduces to $\left(\begin{array}{llll}b_{0} & & & \\ & b_{0} & b_{1} & \\ & & b_{0} & \\ & & & c_{0}\end{array}\right)$, and $Z_{G T_{4}\left(\mathbf{F}_{q}\right)}(A, B)=$ $\left\{\left(\begin{array}{llll}x_{0} & & x_{2} & \\ & y_{0} & y_{1} & \\ & & y_{0} & \\ & & & z_{0}\end{array}\right)\right\} \cdot(A, B)$ is of type B_{3}, and there are $q(q-1)(q-2)$ such branches.
When $C=\left(\begin{array}{cc}a_{0} & \\ & b_{0}\end{array}\right), b_{0} \neq a_{0}$. Here Equation 4.4 becomes $x_{2} b_{0}=x_{2} a_{0}$, hence $x_{2}=0$, and Equation 4.5 stays void. So, B reduces to $\left(\begin{array}{llll}c_{0} & & & \\ & b_{0} & b_{1} & \\ & & b_{0} & \\ & & & b_{0}\end{array}\right)$, and $Z_{G T_{4}\left(\mathbf{F}_{q}\right)}(A, B)=$ $\left\{\left(\begin{array}{llll}x_{0} & & & \\ & y_{0} & y_{1} & y_{2} \\ & & y_{0} & \\ & & & z_{0}\end{array}\right)\right\} .(A, B)$ is of type B_{3}, and there are $q^{2}(q-1)=q^{3}-q^{2}$ such branches.

When $\left(a_{2}, b_{2}\right) \neq(0,0)$:
When $C=b_{0} I_{2}$, Equations 4.4 and 4.5 become

$$
\begin{aligned}
x_{0} a_{2} & =y_{0} a_{2}^{\prime} \\
y_{0} b_{2} & =z_{0} b_{2}^{\prime}
\end{aligned}
$$

When $a_{2} \neq 0$, choose y_{0} such that $a_{2}^{\prime}=1$. When $b_{2} \neq 0$, choose z_{0} such that $b_{2}^{\prime}=1$.
So, B is reduced to $\left(\begin{array}{cccc}b_{0} & & 1 & \\ & b_{0} & b_{1} & 1 \\ & & b_{0} & \\ & & & b_{0}\end{array}\right)$, and $Z_{G T_{4}\left(\mathbf{F}_{q)}\right)}(A, B)=\left\{\left(\begin{array}{llll}y_{0} & & x_{2} & x_{3} \\ & y_{0} & y_{1} & y_{2} \\ & & y_{0} & \\ & & & y_{0}\end{array}\right)\right\}$.

This centralizer is not of any known type in $G T_{4}\left(\mathbf{F}_{q}\right)$, and it is clearly a commutative one. We call this new type $N R_{1}$. There are $q(q-1)$ such branches.
When $b_{2}=0$, then Equation 4.5 is void, and B is reduced to $\left(\begin{array}{llll}b_{0} & & & 1 \\ & b_{0} & b_{1} & \\ & & b_{0} & \\ & & & b_{0}\end{array}\right)$, and $Z_{G T_{4}\left(\mathbf{F}_{q}\right)}(A, B)=\left\{\left(\begin{array}{llll}y_{0} & & x_{2} & x_{3} \\ & y_{0} & y_{1} & y_{2} \\ & & y_{0} & \\ & & & z_{0}\end{array}\right)\right\}$. This centralizer too is not of any known type in $G T_{4}\left(\mathbf{F}_{q}\right)$, and definitely not of R_{1}, as this one is 6-dimensional. We call this new type $t N T_{2}$. There are q^{2} such branches.

When $a_{2}=0$, and $b_{2} \neq 0$, choose z_{0} such that $b_{2}^{\prime}=1$, and B is reduced to $\left(\begin{array}{cccc}b_{0} & & & \\ & b_{0} & b_{1} & 1 \\ & & b_{0} & \\ & & & b_{0}\end{array}\right)$, and $Z_{G T_{4}\left(\mathbf{F}_{q}\right)}(A, B)=\left\{\left(\begin{array}{cccc}x_{0} & & x_{2} & x_{3} \\ & y_{0} & y_{1} & y_{2} \\ & & y_{0} & \\ & & & y_{0}\end{array}\right)\right\}$. We have another q^{2}
branches of this new type $t N T_{2}$.
When $C=\left(\begin{array}{cc}b_{0} & 1 \\ & b_{0}\end{array}\right)$. Here $Z=\left(\begin{array}{cc}x_{0} & x_{3} \\ & x_{0}\end{array}\right)$. Equation 4.4 becomes $x_{0} a_{2}=y_{0} a_{2}^{\prime}$, and Equation 4.5 becomes $y_{0} b_{2}=x_{0} b_{2}^{\prime}$.

When $a_{2} \neq 0$, choose y_{0} such that $a_{2}^{\prime}=1$. Now, on substituting a_{2} by $a_{2}^{\prime}=1$ in the equation, we get $y_{0}=x_{0}$, and thus $b_{2}^{\prime}=b_{2}$. B is reduced to $\left(\begin{array}{llll}b_{0} & & 1 & 1 \\ & b_{0} & b_{1} & b_{2} \\ & & b_{0} & \\ & & & b_{0}\end{array}\right)$, with $Z_{G T_{4}\left(\mathbf{F}_{q}\right)}(A, B)=\left\{\left(\begin{array}{llll}y_{0} & & x_{2} & x_{3} \\ & y_{0} & y_{1} & y_{2} \\ & & y_{0} & \\ & & & y_{0}\end{array}\right)\right\} .(A, B)$ is of type $N R_{1}$, and there are $q^{2}(q-1)$ such branches.

When $a_{2}=0$, we look at $b_{2}^{\prime} \neq 0$, Choose x_{0} such that $b_{2}^{\prime}=1$. Then B is reduced to $\left(\begin{array}{cccc}b_{0} & & & 1 \\ & b_{0} & b_{1} & 1 \\ & & b_{0} & \\ & & & b_{0}\end{array}\right)$, with $Z_{G T_{4}\left(\mathbf{F}_{q)}\right)}(A, B)=\left\{\left(\begin{array}{cccc}y_{0} & & x_{2} & x_{3} \\ & y_{0} & y_{1} & y_{2} \\ & & y_{0} & \\ & & & y_{0}\end{array}\right)\right\} .(A, B)$ is of type R_{1},
and there are another $q(q-1)$ such branches.

When $C=\left(\begin{array}{cc}b_{0} & \\ & c_{0}\end{array}\right), b_{0} \neq c_{0}$, then $Z=\left(\begin{array}{cc}x_{0} & \\ & z_{0}\end{array}\right)$. Equation 4.4 becomes $x_{0} a_{2}=$ $y_{0} a_{2}^{\prime}$, and Equation 4.5 becomes $y_{0} b_{2}+y_{2} c_{0}=y_{2} b_{0}+z_{0} b_{2}^{\prime}$. As $b_{0} \neq c_{0}$, choose y_{2} such that $b_{2}^{\prime}=0$. So we have only one case here $a_{2} \neq 0$. Thus, choose x_{0} such that $a_{2}^{\prime}=1$.
Thus B is reduced to $\left(\begin{array}{cccc}b_{0} & & & 1 \\ & b_{0} & b_{1} & \\ & & b_{0} & \\ & & & c_{0}\end{array}\right)$, and $Z_{G T_{4}\left(\mathbf{F}_{q}\right)}(A, B)=\left\{\left(\begin{array}{llll}y_{0} & & x_{2} & \\ & y_{0} & y_{1} & \\ & & y_{0} & \\ & & & z_{0}\end{array}\right)\right\}$. (A, B) is of type R_{2}, and there are $q(q-1)(q-2)$ such branches.

When $C=\left(\begin{array}{cc}a_{0} & \\ & b_{0}\end{array}\right), a_{0} \neq b_{0}$, then $Z=\left(\begin{array}{cc}x_{0} & \\ & z_{0}\end{array}\right)$. Equation 4.4 becomes $x_{0} a_{2}+$ $x_{2} b_{0}=y_{0} a_{2}^{\prime}+x_{2} a_{0}$, and Equation 4.5 becomes $y_{0} b_{2}=z_{0} b_{2}^{\prime}$. As $b_{0} \neq c_{0}$, choose x_{2} such that $a_{2}^{\prime}=0$. So we have only one case here $b_{2} \neq 0$. Thus, choose z_{0} such that $b_{2}^{\prime}=1$.
Thus B is reduced to $\left(\begin{array}{cccc}a_{0} & & & \\ & b_{0} & b_{1} & 1 \\ & & b_{0} & \\ & & & b_{0}\end{array}\right)$, and $Z_{G T_{4}\left(\mathbf{F}_{q}\right)}(A, B)=\left\{\left(\begin{array}{cccc}x_{0} & & & \\ & y_{0} & y_{1} & y_{2} \\ & & y_{0} & \\ & & & y_{0}\end{array}\right)\right\}$. (A, B) is of type R_{2}, and there are $q(q-1)(q-2)$ such branches.

Now, the second main case of b_{0} not being an eigenvalue of C, i.e., $b_{0} \neq a_{0}$ and $b_{0} \neq c_{0}$. Here in Equation 4.4, choose x_{2} so that $a_{2}^{\prime}=0$, and in Equation 4.5 choose y_{2} so that $b_{2}^{\prime}=0$.
When $C=a_{0} I_{2}$, where $a_{0} \neq b_{0}, B$ is reduced to $\left(\begin{array}{llll}a_{0} & & & \\ & b_{0} & b_{1} & \\ & & b_{0} & \\ & & & a_{0}\end{array}\right)$, and $Z_{G T_{4}\left(\mathbf{F}_{q}\right)}(A, B)=$ $\left\{\left(\begin{array}{llll}x_{0} & & & x_{3} \\ & y_{0} & y_{1} & \\ & & y_{0} & \\ & & & z_{0}\end{array}\right)\right\} \cdot(A, B)$ is of type B_{5}, and there are $q(q-1)(q-2)$ such branches.

When $C=\left(\begin{array}{cc}a_{0} & 1 \\ & a_{0}\end{array}\right)$, where $a_{0} \neq b_{0}, B$ is reduced to $\left(\begin{array}{cccc}a_{0} & & & 1 \\ & b_{0} & b_{1} & \\ & & b_{0} & \\ & & & a_{0}\end{array}\right)$, and $Z_{G T_{4}\left(\mathbf{F}_{q}\right)}(A, B)=\left\{\left(\begin{array}{llll}x_{0} & & & x_{3} \\ & y_{0} & y_{1} & \\ & & y_{0} & \\ & & & x_{0}\end{array}\right)\right\} .(A, B)$ is of type R_{3}, and there are $q(q-$ 1) $(q-2)$ such branches.

When $C=\left(\begin{array}{ll}a_{0} & \\ & c_{0}\end{array}\right)$, where $a_{0}, c_{0} \neq b_{0}$, and $a_{0} \neq c_{0}, B$ is reduced to $\left(\begin{array}{cccc}a_{0} & & & \\ & b_{0} & b_{1} & \\ & & b_{0} & \\ & & & c_{0}\end{array}\right)$, and $Z_{G T_{4}\left(\mathbf{F}_{q}\right)}(A, B)=\left\{\left(\begin{array}{llll}x_{0} & & & \\ & y_{0} & y_{1} & \\ & & y_{0} & \\ & & & z_{0}\end{array}\right)\right\} .(A, B)$ is of type R, and there are $q(q-$ 1) $(q-2)(q-3)$ such branches.

With this there are no other cases left for us to analyse.
Adding up the branches of type $N R_{1}$, we have a total of $2 q(q-1)+q^{2}(q-1)=$ $q(q-1)(q+2)$ branches.

Proposition 4.4. The branching rules of a matrix of type A_{2} are given below:

Branch	No. of Branches	Branch	No. of Branches
A_{2}	$q(q-1)$	R_{2}	$3\left(q^{2}-q\right)(q-2)$
A_{5}	$q(q-1)$	R_{3}	$\left(q^{2}-q\right)(q-2)$
A_{7}	$q(q-1)$	R_{4}	$q(q-1)(q-2)(q-3)$
B_{3}	$\left(q^{2}-q\right)(q-2)$	$t N T_{2}$	$q-1$
B_{4}	$\left(q^{2}-q\right)(q-2)$	$t N T_{3}$	$q(q-1)$
B_{5}	$\left(q^{2}-q\right)(q-2)$	$N R_{1}$	$q^{2}-1$.
R_{1}	$q(q-1)$		

A further new type $t N T_{3}$ appears here, whose centralizer is $\left\{\left.\left(\begin{array}{cccc}x_{0} & x_{1} & x_{2} & x_{3} \\ & y_{0} & y_{1} & y_{2} \\ & x_{0} & x_{0} \\ & & x_{0}\end{array}\right) \right\rvert\, x_{0}, y_{0} \neq 0\right\}$.
Proof. Matrices of this type have two non-similar canonical forms: $\left(\begin{array}{llll}a & & 1 & \\ & a & & \\ & & a & \\ & & & a\end{array}\right)$, and $\left(\begin{array}{llll}a & & & \\ & a & & 1 \\ & & a & \\ & & & a\end{array}\right)$. Proving this for anyone of them is enough. We consider $A=\left(\begin{array}{lll}a & & 1 \\ & & \\ & a & \\ & & a \\ & & \\ & & \end{array}\right)$.
The centralizer $Z_{G T_{4}\left(\mathbf{F}_{q}\right)}(A)$ of A is: $\left\{\left(\begin{array}{cccc}a_{0} & a_{1} & a_{2} & a_{3} \\ & b_{0} & b_{1} & b_{2} \\ & & a_{0} & \\ & & & c_{0}\end{array}\right)\right\}$. Let $B=\left(\begin{array}{cccc}a_{0} & a_{1} & a_{2} & a_{3} \\ & b_{0} & b_{1} & b_{2} \\ & & a_{0} & \\ & & & \\ & & & c_{0}\end{array}\right)$,
and $B^{\prime}=\left(\begin{array}{cccc}a_{0} & a_{1}^{\prime} & a_{2}^{\prime} & a_{3}^{\prime} \\ & b_{0} & b_{1}^{\prime} & b_{2}^{\prime} \\ & & a_{0} & \\ & & & c_{0}\end{array}\right)$, be a conjugate of B by $X=\left(\begin{array}{cccc}x_{0} & x_{1} & x_{2} & x_{3} \\ & y_{0} & y_{1} & y_{2} \\ & & x_{0} & \\ & & & z_{0}\end{array}\right)$. Denote $C=\left(\begin{array}{cc}b_{0} & b_{2} \\ & c_{0}\end{array}\right)$, and $Z=\left(\begin{array}{cc}y_{0} & y_{2} \\ & z_{0}\end{array}\right)$. Equating $X B=B^{\prime} X$, we have first $Z C=C^{\prime} Z$. Thus, we may take C to be a canonical form from $G T_{2}\left(\mathbf{F}_{q}\right)$, and $Z \in Z_{G T_{2}\left(\mathbf{F}_{q}\right)}(C)$. With these, we have the following equations:

$$
\begin{align*}
& x_{0} \cdot\left(\begin{array}{ll}
a_{1} & a_{3}
\end{array}\right)+\left(\begin{array}{ll}
x_{1} & x_{3}
\end{array}\right)\left(C-a_{0} I_{2}\right)=\left(\begin{array}{ll}
a_{1}^{\prime} & a_{3}^{\prime}
\end{array}\right) \cdot Z \tag{4.6}\\
& y_{0} b_{1}+y_{1} a_{0}=x_{0} b_{1}^{\prime}+y_{1} b_{0} \tag{4.7}\\
& x_{0} a_{2}+x_{1} b_{1}=x_{0} a_{2}^{\prime}+y_{1} a_{1}^{\prime} \tag{4.8}
\end{align*}
$$

We have two main cases, under each of which there are subcases:
When a_{0} is an eigenvalue of C When $C=a_{0} I_{2}$:, Equation 4.6 becomes:

$$
\left(\begin{array}{ll}
x_{0} a_{1} & x_{0} a_{3}
\end{array}\right)=\left(\begin{array}{ll}
y_{0} a_{1}^{\prime} & y_{2} a_{1}^{\prime}+z_{0} a_{3}^{\prime} \tag{4.9}
\end{array}\right)
$$

Equation 4.7 becomes $y_{0} b_{1}=x_{0} b_{1}^{\prime}$.
When $a_{1}=b_{1}=0$: From Equation 4.9 we have $x_{0} a_{3}=z_{0} a_{3}^{\prime}$, and from Equation 4.8 $a_{2}^{\prime}=a_{2}$

We have two subcases:
When $a_{3}=0: B$ is reduced to $\left(\begin{array}{cccc}a_{0} & & a_{2} & \\ & a_{0} & & \\ & & a_{0} & \\ & & & a_{0}\end{array}\right)$, and $Z_{G T_{4}\left(\mathbf{F}_{q}\right)}(A, B)=Z_{G T_{4}\left(\mathbf{F}_{q)}\right)}(A)$.
(A, B) is of type A_{2}, and there are $q(q-1)$ such branches.
When $a_{3} \neq 0$, choose z_{0} so that $a_{3}^{\prime}=1$. B is reduced to $\left(\begin{array}{llll}a_{0} & & a_{2} & 1 \\ & a_{0} & & \\ & & a_{0} & \\ & & & a_{0}\end{array}\right)$, with $Z_{G T_{4}\left(\mathbf{F}_{q)}\right)}(A, B)=\left\{\left(\begin{array}{llll}x_{0} & x_{1} & x_{2} & x_{3} \\ & y_{0} & y_{1} & y_{2} \\ & & x_{0} & \\ & & & x_{0}\end{array}\right)\right\}$. Now, this centralizer is not isomorphic to any
known centralizer of a matrix in $G T_{4}\left(\mathbf{F}_{q}\right)$, and neither it is isomorphic to those of the three new types we encountered in the previous propositions. We have a new type $t N T_{3}$, and there are $q(q-1)$ such branches.

When $a_{1}=0$, and $b_{1} \neq 0$. In Equation 4.7 choose y_{0} such that $b_{1}^{\prime}=1$. Then Equation 4.8 becomes $x_{0} a_{2}+x_{1}=x_{0} a_{2}^{\prime}$. Choose x_{1} such that $a_{2}^{\prime}=0$.

Here, when $a_{3}=0, B$ is reduced to $\left(\begin{array}{cccc}a_{0} & & & \\ & a_{0} & 1 & \\ & & a_{0} & \\ & & & a_{0}\end{array}\right)$, with $Z_{G T_{4}\left(\mathbf{F}_{q)}\right)}(A, B)=$ $\left\{\left(\begin{array}{cccc}x_{0} & & x_{2} & x_{3} \\ & x_{0} & y_{1} & y_{2} \\ & & x_{0} & \\ & & & z_{0}\end{array}\right)\right\} .(A, B)$ is of type $t N T_{2}$, and there are $q-1$ such branches.
When $a_{3} \neq 0$, choose z_{0} such that $a_{3}^{\prime}=1$. Thus B is reduced to $\left(\begin{array}{ccccc}a_{0} & & & 1 \\ & a_{0} & 1 & \\ & & a_{0} & \\ & & & a_{0}\end{array}\right)$,
with $Z_{G T_{4}\left(\mathbf{F}_{q}\right)}(A, B)=\left\{\left(\begin{array}{llll}x_{0} & & x_{2} & x_{3} \\ & x_{0} & y_{1} & y_{2} \\ & & x_{0} & \\ & & & x_{0}\end{array}\right)\right\} .(A, B)$ is of type $N R_{1}$, and there are $q-1$ such branches.

When $a_{1} \neq 0$, in Equation 4.9, choose y_{0} such that $a_{1}^{\prime}=1$. Thus, on replacing a_{1} with $a_{1}^{\prime}=1$ in Equation 4.9, we get $y_{0}=x_{0}$. In the same equation, choose y_{2} such that $a_{3}^{\prime}=0$.

From Equation 4.7, we get $b_{1}^{\prime}=b_{1}$. Equation 4.8 becomes $x_{0} a_{2}+x_{1} b_{1}=x_{0} a_{2}^{\prime}+$ y_{1}. Choose y_{1} such that $a_{2}^{\prime}=0$. Here, B is reduced to $\left(\begin{array}{cccc}a_{0} & 1 & & \\ & a_{0} & b_{1} & \\ & & a_{0} & \\ & & & a_{0}\end{array}\right)$, with $Z_{G T_{4}\left(\mathbf{F}_{q}\right)}(A, B)=\left\{\left(\begin{array}{cccc}x_{0} & x_{1} & x_{2} & x_{3} \\ & x_{0} & b_{1} x_{1} & \\ & & x_{0} & \\ & & & z_{0}\end{array}\right)\right\} .(A, B)$ is of type A_{7}, and there are $q(q-1)$ such branches.
When $C=\left(\begin{array}{cc}a_{0} & 1 \\ & a_{0}\end{array}\right)$: Equation 4.6 becomes

$$
\left(\begin{array}{ll}
x_{0} a_{1} & x_{0} a_{3}
\end{array}\right)+\left(\begin{array}{ll}
0 & x_{1}
\end{array}\right)=\left(\begin{array}{ll}
y_{0} a_{1}^{\prime} & y_{2} a_{1}^{\prime}+y_{0} a_{3}^{\prime} \tag{4.10}
\end{array}\right) .
$$

Choose x_{1} such that $a_{3}^{\prime}=0$. Hence, on replacing a_{3} by $a_{3}^{\prime}=0$ in the above equation, we have $x_{1}=a_{1}^{\prime} y_{2}$.

Equation 4.7 becomes $x_{0} b_{1}^{\prime}=y_{0} b_{1}$.

When $a_{1}=b_{1}=0$, from Equation $4.8 a_{2}^{\prime}=a_{2}, B$ is reduced to $\left(\begin{array}{llll}a_{0} & & a_{2} & \\ & a_{0} & & 1 \\ & & a_{0} & \\ & & & a_{0}\end{array}\right)$, with $Z_{G T_{4}\left(\mathbf{F}_{q}\right)}(A, B)=\left\{\left(\begin{array}{cccc}x_{0} & & x_{2} & x_{3} \\ & y_{0} & y_{1} & y_{2} \\ & & x_{0} & \\ & & & y_{0}\end{array}\right)\right\} .(A, B)$ is of type A_{5}. There are $q(q-1)$ such branches.

When $a_{1}=0$, and $b_{1} \neq 0$, we choose y_{0} in Equation 4.7 so that $b_{1}^{\prime}=1$. So, Equation 4.8 becomes $x_{0} a_{2}=x_{0} a_{2}^{\prime}$, since $x_{1}=y_{2} a_{1}=0$. Hence $a_{2}^{\prime}=a_{2}$. So B is reduced to $\left(\begin{array}{cccc}a_{0} & & a_{2} & \\ & a_{0} & 1 & 1 \\ & & a_{0} & \\ & & & a_{0}\end{array}\right)$, with $Z_{G T_{4}\left(\mathbf{F}_{q}\right)}(A, B)=\left\{\left(\begin{array}{cccc}x_{0} & & x_{2} & x_{3} \\ & x_{0} & y_{1} & y_{2} \\ & & x_{0} & \\ & & & x_{0}\end{array}\right)\right\}$. So, we have another $q(q-1)$ branches of type $N R_{1}$ here.

When $a_{1} \neq 0$, in Equation 4.6, choose y_{0} so that $a_{1}^{\prime}=1$. So, $x_{1}=y_{2}$, and on replacing a_{1}^{\prime} with a_{1} in the same equation, we have $y_{0}=x_{0}$, and hence from Equation 4.7, $b_{1}^{\prime}=b_{1}$.

With these, Equation 4.8 becomes $x_{0} a_{2}+x_{1} b_{1}=x_{0} a_{2}^{\prime}+y_{1}$. Choose y_{1} so that $a_{2}^{\prime}=0$.
Thus B is reduced to $\left(\begin{array}{cccc}a_{0} & 1 & & \\ & a_{0} & b_{1} & 1 \\ & & a_{0} & \\ & & & a_{0}\end{array}\right)$, with $Z_{G T_{4}\left(\mathbf{F}_{q}\right)}(A, B)=\left\{\left(\begin{array}{cccc}x_{0} & x_{1} & x_{2} & x_{3} \\ & x_{0} & b_{1} x_{1} & x_{1} \\ & & x_{0} & \\ & & & x_{0}\end{array}\right)\right\}$.
By a routine check, one can see that this subgroup is commutative. Thus (A, B) is of type R_{1}, and there are $q(q-1)$ such branches.

When $C=\left(\begin{array}{cc}a_{0} & \\ & b_{0}\end{array}\right), b_{0} \neq a_{0}$: Here $Z=\left(\begin{array}{cc}y_{0} & \\ & z_{0}\end{array}\right)$. Equation 4.6 becomes

$$
\left(\begin{array}{ll}
x_{0} a_{1} & x_{0} a_{3}
\end{array}\right)+\left(\begin{array}{ll}
0 & \left(b_{0}-a_{0}\right) x_{3}
\end{array}\right)=\left(\begin{array}{ll}
y_{0} a_{1}^{\prime} & z_{0} a_{3}^{\prime} \tag{4.11}
\end{array}\right)
$$

And, Equation 4.7 becomes $y_{0} b_{1}=x_{0} b_{1}^{\prime}$.
Choose x_{3} such that $a_{3}^{\prime}=0$.
When $a_{1}=b_{1}=0$, from Equation 4.8, we have $a_{2}^{\prime}=a_{2}$, and B is reduced to $\left(\begin{array}{cccc}a_{0} & & a_{2} & \\ & a_{0} & & \\ & & a_{0} & \\ & & & b_{0}\end{array}\right)$, with $Z_{G T_{4}\left(\mathbf{F}_{q)}\right)}(A, B)=\left\{\left(\begin{array}{cccc}x_{0} & x_{1} & x_{2} & \\ & y_{0} & y_{1} & \\ & & x_{0} & \\ & & & z_{0}\end{array}\right)\right\}$. This (A, B) is of
type B_{4}, and there are $q(q-1)(q-2)$ such branches.
When $a_{1}=0$, and $b_{1} \neq 0$. In Equation 4.7, choose y_{0} so that $b_{1}^{\prime}=1$. And, Equation 4.8 becomes $x_{0} a_{2}+x_{1}=x_{0} a_{2}^{\prime}$. We choose x_{1} so that $a_{2}^{\prime}=0$. Hence, B is reduced to

$$
\left(\begin{array}{cccc}
a_{0} & & & \\
& a_{0} & 1 & \\
& & a_{0} & \\
& & & b_{0}
\end{array}\right), \text { with } Z_{G T_{4}\left(\mathbf{F}_{q)}\right)}(A, B)=\left\{\left(\begin{array}{cccc}
x_{0} & & x_{2} & \\
& x_{0} & y_{1} & \\
& & x_{0} & \\
& & & z_{0}
\end{array}\right)\right\} . \text { By a routine check, }
$$

one can see that this subgroup is commutative. Thus (A, B) is of type R_{2}, and there are $q(q-1)(q-2)$ such branches.

When $a_{1} \neq 0$, in Equation 4.6, choose y_{0} so that $a_{1}^{\prime}=1$. Hence, on replacing a_{1} by $a_{1}^{\prime}=1$ on both sides of Equation 4.11, we get $x_{0}=y_{0}$. Hence, Equation 4.7 becomes $x_{0} b_{1}=x_{0} b_{1}^{\prime}$, thus leaving use with $b_{1}^{\prime}=b_{1}$. Equation 4.8 becomes $x_{0} a_{2}+x_{1} b_{1}=y_{1}+x_{0} a_{2}^{\prime}$.
Thus, choose y_{1} such that $a_{2}^{\prime}=0$. Hence B is reduced to $\left(\begin{array}{cccc}a_{0} & 1 & & \\ & a_{0} & b_{1} & \\ & & a_{0} & \\ & & & b_{0}\end{array}\right)$, with $Z_{G T_{4}\left(\mathbf{F}_{q)}\right)}(A, B)=\left\{\left(\begin{array}{cccc}x_{0} & x_{1} & x_{2} & \\ & x_{0} & b_{1} x_{1} & \\ & & x_{0} & \\ & & & z_{0}\end{array}\right)\right\}$. By a routine check, one can see that this subgroup is commutative. Thus (A, B) is of type R_{2}, and there are $q(q-1)(q-2)$ such branches.

When $C=\left(\begin{array}{cc}b_{0} & \\ & a_{0}\end{array}\right), a_{0} \neq b_{0}$: Here too $Z=\left(\begin{array}{cc}y_{0} & \\ & z_{0}\end{array}\right)$. In this case, Equation 4.6 is reduced to $\left(\begin{array}{ll}x_{0} a_{1} & x_{0} a_{3}\end{array}\right)+\left(\left(\begin{array}{ll}\left.b_{0}-a_{0}\right) x_{1} & 0\end{array}\right)=\left(\begin{array}{ll}y_{0} a_{1}^{\prime} & z_{0} a_{3}^{\prime}\end{array}\right)\right.$. Choose x_{1} so that $a_{1}^{\prime}=0$.

Equation 4.7 becomes $y_{0} b_{1}+y_{1} a_{0}=y_{1} b_{0}+x_{0} b_{1}^{\prime}$. As $a_{0} \neq b_{0}$, choose y_{1} such that $b_{1}^{\prime}=0$. With these, Equation 4.8 becomes $x_{0} a_{2}=x_{0} a_{2}^{\prime}$, thus leaving us with $a_{2}^{\prime}=a_{2}$.

Now, we are left to deal with a_{3}.
When $a_{3}=0, B$ is reduced to $\left(\begin{array}{cccc}a_{0} & & a_{2} & \\ & b_{0} & & \\ & & a_{0} & \\ & & & a_{0}\end{array}\right)$, with $Z_{G T_{4}\left(\mathbf{F}_{q}\right)}(A, B)=\left\{\left(\begin{array}{llll}x_{0} & & x_{2} & x_{3} \\ & y_{0} & & \\ & & x_{0} & \\ & & & z_{0}\end{array}\right)\right\}$.
This subgroup is isomorphic to the subgroup $\left\{\left(\begin{array}{llll}y_{0} & & & \\ & x_{0} & x_{2} & x_{3} \\ & & x_{0} & \\ & & & z_{0}\end{array}\right)\right\}$, which is the cen-
tralizer of a matrix of type B_{3}. Hence, we have $q(q-1)(q-2)$ branches of type B_{3}.

When $a_{3} \neq 0$, choose z_{0} so that $a_{3}^{\prime}=1$. Hence B is reduced to $\left(\begin{array}{lll}a_{0} & & a_{2} \\ & & 1 \\ & b_{0} & \\ & & a_{0} \\ \\ & & \\ & & \\ & & \end{array}\right)$, with $Z_{G T_{4}\left(\mathbf{F}_{q}\right)}(A, B)=\left\{\left(\begin{array}{llll}x_{0} & & x_{2} & x_{3} \\ & y_{0} & & \\ & & x_{0} & \\ & & & x_{0}\end{array}\right)\right\}$. By a routine check, one can see that this subgroup is commutative. Thus (A, B) is of type R_{2}, and there are $q(q-1)(q-2)$ such branches. With this we have looked at all the cases, when a_{0} is an eigenvalue of C.
When a_{0} is not an eigenvalue oc C : When a_{0} is not an eigenvalue of $C, C-a_{0} I_{2}=$ $\left(\begin{array}{cc}b_{0}-a_{0} & b_{2} \\ & c_{0}-a_{0}\end{array}\right)$, with $b_{0}-a_{0} \neq 0$, and $c_{0}-a_{0} \neq 0$. Hence, in equation 4.6 , we can choose $\left(\begin{array}{ll}x_{1} & x_{3}\end{array}\right)$ such that $a_{1}^{\prime}=0$, and $a_{3}^{\prime}=0$. In Equation 4.7 choose y_{1} so that $b_{1}^{\prime}=0$. Hence Equation 4.8 becomes $x_{0} a_{2}=x_{0} a_{2}^{\prime}$. Therefore $a_{2}^{\prime}=a_{2}$.

On replacing a_{1} and a_{3} by 0 in Equation 4.6, we get $x_{1}=x_{3}=0$, and on replacing b_{1} by 0 in Eqaution 4.7, we get $y_{1}=0$. Now, we can look at the various cases of C.

$$
\begin{aligned}
& \text { When } C=b_{0} I_{2}, b_{0} \neq a_{0}: B \text { is reduced to }\left(\begin{array}{cccc}
a_{0} & & a_{2} & \\
& b_{0} & & \\
& & a_{0} & \\
& & & b_{0}
\end{array}\right) \text { and } Z_{G T_{4}\left(\mathbf{F}_{q}\right)}(A, B)= \\
& \left.\left\{\begin{array}{llll}
x_{0} & & x_{2} & \\
& y_{0} & & y_{2} \\
& & x_{0} & \\
& & & z_{0}
\end{array}\right)\right\} . \operatorname{Thus}(A, B) \text { is of type } B_{5}, \text { and there are } q(q-1)(q-2) \text { such }
\end{aligned}
$$ branches.

$$
\begin{aligned}
& \text { When } C=\left(\begin{array}{ll}
b_{0} & 1 \\
& b_{0}
\end{array}\right), b_{0} \neq a_{0}: B \text { is reduced to }\left(\begin{array}{cccc}
a_{0} & & a_{2} & \\
& b_{0} & & 1 \\
& & a_{0} & \\
& & & \\
& \left\{\begin{array}{lll}
x_{0} & & x_{2}
\end{array}\right. \\
& y_{0} & & y_{2} \\
& & x_{0} & \\
& & & \\
& & \\
\text { branches. }
\end{array}\right. \\
& \text { and } Z_{G T_{4}\left(\mathbf{F}_{q}\right)}(A, B)= \\
&
\end{aligned}
$$

When $C=\left(\begin{array}{ll}b_{0} & \\ & c_{0}\end{array}\right), b_{0} \neq c_{0}, a_{0} \notin\left\{b_{0}, c_{0}\right\}: B$ is reduced to $\left(\begin{array}{cccc}a_{0} & & a_{2} & \\ & b_{0} & & \\ & & a_{0} & \\ & & & c_{0}\end{array}\right)$ and $Z_{G T_{4}\left(\mathbf{F}_{q)}\right)}(A, B)=\left\{\left(\begin{array}{llll}x_{0} & & x_{2} & \\ & y_{0} & & \\ & & x_{0} & \\ & & & z_{0}\end{array}\right)\right\}$. Thus (A, B) is of type R_{4}, and there are $q(q-1)(q-2)(q-3)$ such branches.

Adding up the branches of type $N R_{1}$, we have a total of $q-1+q(q-1)=q^{2}-1$ branches of type R_{1}.

Proposition 4.5. For a matrix of type A_{3}, the branching rules are in the table below:

Branch	No. of Branches	Branch	No. of Branches
A_{3}	$q(q-1)$	R_{1}	$q^{2}-1$
A_{5}	$q(q-1)$	R_{2}	$2\left(q^{2}-1\right)(q-2)$
A_{8}	$2 q(q-1)$	R_{3}	$\left(q^{2}-q\right)(q-2)$
A_{9}	$q(q-1)$	R_{4}	$\left(q^{2}-q\right)(q-2)(q-3)$
B_{4}	$2\left(q^{2}-q\right)(q-1)$	$t N T_{3}$	$2(q-1)$
B_{5}	$\left(q^{2}-q\right)(q-1)$	$t N T_{4}$	$q-1$.

A new type $t N T_{4}$ appears here, whose centralizer is $\left\{\left.\left(\begin{array}{cccc}x_{0} & x_{1} & x_{2} & x_{3} \\ x_{0} & y_{1} & y_{2} \\ & x_{0} & x_{1} \\ & x_{0}\end{array}\right) \right\rvert\, x_{0} \neq 0\right\}$.

Proof. A matrix of type A_{3} has the canonical form $A=\left(\begin{array}{llll}a & & & 1 \\ & a & & \\ & & a & \\ & & & a\end{array}\right)$. Then we have
$Z_{G T_{4}\left(\mathbf{F}_{q}\right)}(A)=\left\{\left(\begin{array}{ccc}a_{0} & t \vec{b} & a_{1} \\ & C & \vec{d} \\ & & a_{0}\end{array}\right) \quad \begin{array}{c}\left.\right|^{t} \vec{b}=\left(b_{1} b_{2}\right) \in M_{1 \times 2}\left(\mathbf{F}_{q}\right) \\ \vec{d}=\binom{d_{1}}{d_{2}} \in M_{2 \times 1}\left(\mathbf{F}_{q}\right)\end{array}\right\}$. Let $B=\left(\begin{array}{ccc}a_{0} & { }^{t} \vec{b} & a_{1} \\ & C & \vec{d} \\ & & a_{0}\end{array}\right)$,
and $B^{\prime}=\left(\begin{array}{ccc}a_{0} & { }^{t} \vec{b}^{\prime} & a_{1}^{\prime} \\ & C^{\prime} & \overrightarrow{d^{\prime}} \\ & & a_{0}\end{array}\right)=X B A^{-1}$, where $X=\left(\begin{array}{ccc}x_{0} & t \vec{y} & x_{1} \\ & Z & \vec{w} \\ & & x_{0}\end{array}\right) . X B=B^{\prime} X$ leads to
firstly, $Z C=C^{\prime} Z$, hence we shall take C to be a canonical conjugacy class representative
in $G T_{2}\left(\mathbf{F}_{q}\right)$, and $Z \in Z_{G T_{2}\left(\mathbf{F}_{q}\right)}(C)$. Then we have the following set of equations:

$$
\begin{align*}
x_{0}{ }^{t} \vec{b}+{ }^{t} \vec{y} \cdot\left(C-a_{0} I_{2}\right) & ={ }^{t} \vec{b}^{\prime} . Z \tag{4.12}\\
Z \cdot \vec{d}+\left(a_{0} I_{2}-C\right) \vec{w} & =x_{0} \vec{d}^{\prime} \tag{4.13}\\
x_{0} a_{1}+y_{1} d_{1}+y_{2} d_{2} & =x_{0} a_{1}^{\prime}+b_{1}^{\prime} w_{1}+b_{2}^{\prime} w_{2} \tag{4.14}
\end{align*}
$$

When a_{0} is an eigenvalue of C :

When $\vec{b}=\vec{d}=\overrightarrow{0}$:
Here, Equation 4.12 becomes ${ }^{t} \vec{y}\left(C-a_{0} I_{2}\right)={ }^{t} \overrightarrow{0}$, Equation 4.13 becomes $\left(a_{0} I_{2}-\right.$ C) $\vec{w}=\overrightarrow{0}$, and Equation 4.14 becomes $x_{0} a_{1}=x_{0} a_{1}^{\prime}$. Hence we have $a_{1}^{\prime}=a_{1}$.

When $C=a_{0} I_{2}$: Equations 4.12 and 4.13 are void. Hence B is reduced to $\left(\begin{array}{lll}a_{0} & & \\ & & \\ & a_{0} & \\ & & \\ & & a_{0} \\ & & \\ & & \\ & & a_{0}\end{array}\right)$,
and $Z_{G T_{4}\left(\mathbf{F}_{q}\right)}(A, B)=Z_{G T_{4}\left(\mathbf{F}_{q}\right)}(A) .(A, B)$ is of type A_{2}, and there are $q(q-1)$ such branches.
When $C=\left(\begin{array}{cc}a_{0} & 1 \\ & a_{0}\end{array}\right)$: Here Equation 4.12 becomes: $\left(\begin{array}{ll}0 & y_{1}\end{array}\right)=\left(\begin{array}{ll}0 & 0\end{array}\right)$, and Equation 4.13 becomes $\binom{-w_{2}}{0}=\binom{0}{0}$. Thus $y_{1}=0$, and $w_{2}=0 . \quad B$ is reduced to $\left(\begin{array}{cccc}a_{0} & & & a_{2} \\ & a_{0} & 1 & \\ & & a_{0} & \\ & & & a_{0}\end{array}\right)$, and $Z_{G T_{4}\left(\mathbf{F}_{q)}\right)}(A, B)=\left\{\left(\begin{array}{ccc}x_{0} & & y_{2}\end{array} x_{1}\right)\left(\begin{array}{ccc} & z_{0} & z_{1} \\ w_{1} \\ & & z_{0} \\ & & \\ & & x_{0}\end{array}\right)\right\} .(A, B)$ is of type
A_{5}, and there are $q(q-1)$ such branches.
When $C=\left(\begin{array}{ll}a_{0} & \\ & c_{0}\end{array}\right), a_{0} \neq c_{0}$: Here Equation 4.12 becomes: $\left(\begin{array}{ll}0 & \left.y_{2}\left(c_{0}-a_{0}\right)\right)= \\ & \end{array}\right.$ $\left(\begin{array}{ll}0 & 0\end{array}\right)$, and Equation 4.13 becomes $\left(\left(a_{0}-c_{0}\right) w_{2}\right)=\binom{0}{0}$. Thus $y_{2}=0$, and $w_{2}=0 . B$ is reduced to $\left(\begin{array}{cccc}a_{0} & & & a_{2} \\ & a_{0} & & \\ & & c_{0} & \\ & & & a_{0}\end{array}\right)$, and $Z_{G T_{4}\left(\mathbf{F}_{q}\right)}(A, B)=\left\{\left(\begin{array}{llll}x_{0} & y_{1} & & x_{1} \\ & z_{0} & & w_{1} \\ & & z_{2} & \\ & & & x_{0}\end{array}\right)\right\} \cdot(A, B)$

When $C=\left(\begin{array}{ll}b_{0} & \\ & a_{0}\end{array}\right), a_{0} \neq b_{0}$: Here Equation 4.12 becomes: $\left(\begin{array}{lll}\left(b_{0}-a_{0}\right) y_{1} & 0\end{array}\right)=$ $\left(\begin{array}{ll}0 & 0\end{array}\right)$, and Equation 4.13 becomes $\left(\begin{array}{c}\left(b_{0}-a_{0}\right) w_{1} \\ 0 \\ 25\end{array}\right)=\binom{0}{0}$. Thus $y_{1}=0$, and $w_{1}=0$.
B is reduced to $\left(\begin{array}{cccc}a_{0} & & & a_{2} \\ & b_{0} & & \\ & & a_{0} & \\ & & & a_{0}\end{array}\right)$, and $Z_{G T_{4}\left(\mathbf{F}_{q}\right)}(A, B)=\left\{\left(\begin{array}{llll}x_{0} & & y_{2} & x_{1} \\ & z_{0} & & \\ & & z_{2} & w_{2} \\ & & & x_{0}\end{array}\right)\right\}$. This
(A, B) too is of type B_{4}, and there are $q(q-1)(q-2)$ such branches.
When $(\vec{b}, \vec{d}) \neq(\overrightarrow{0}, \overrightarrow{0})$.
When $C=a_{0} I_{2}$: Equation 4.12 becomes:

$$
\left(\begin{array}{ll}
x_{0} b_{1} & x_{0} b_{2}
\end{array}\right)=\left(\begin{array}{ll}
z_{0} b_{1}^{\prime} & z_{1} b_{1}^{\prime}+z_{2} b_{2} \tag{4.15}
\end{array}\right)
$$

and Equation 4.13 becomes:

$$
\begin{equation*}
\binom{z_{0} d_{1}+z_{1} d_{2}}{z_{2} d_{2}}=\binom{x_{0} d_{1}^{\prime}}{x_{0} d_{2}^{\prime}} . \tag{4.16}
\end{equation*}
$$

When $b_{1}=0$ and $b_{2} \neq 0$. In Equation 4.15 choose z_{2} so that $b_{2}^{\prime}=1$. Hence, on replacing b_{2} by $b_{2}^{\prime}=1$ in Equation 4.15, we get $x_{0}=z_{2}$. Hence in Equation 4.16, $x_{0} d_{2}^{\prime}=x_{0} d_{2}$. Thus $d_{2}=d_{2}^{\prime}$.

Here, if $d_{2}=0$, in Equation 4.16, we have $x_{0} d_{1}^{\prime}=z_{0} d_{1}$. When $d_{1}=0$; Equation 4.14 becomes $x_{0} a_{1}=x_{0} a_{1}^{\prime}+w_{2}$. Choose w_{2} so that $a_{1}^{\prime}=0$. Hence B is reduced to $\left(\begin{array}{cccc}a_{0} & & 1 & \\ & a_{0} & & \\ & & a_{0} & \\ & & & a_{0}\end{array}\right)$, and $Z_{G T_{4}\left(\mathbf{F}_{q}\right)}(A, B)=\left\{\left(\begin{array}{cccc}x_{0} & y_{1} & y_{2} & x_{1} \\ & z_{0} & z_{1} & w_{1} \\ & & x_{0} & \\ & & & x_{0}\end{array}\right)\right\} .(A, B)$ is of type $t N T_{3}$, and there are $q-1$ such branches.

When $d_{1} \neq 0$, choose z_{0} so that $d_{1}^{\prime}=1$. Then Equation 4.14 becomes $x_{0} a_{1}+y_{1}=$ $x_{0} a_{1}^{\prime} w_{2}$. Choose w_{2} such that $a_{1}^{\prime}=0$. With these, B is reduced to: $\left(\begin{array}{cccc}a_{0} & & 1 & \\ & a_{0} & & 1 \\ & & a_{0} & \\ & & & a_{0}\end{array}\right)$, and $Z_{G T_{4}\left(\mathbf{F}_{q}\right)}(A, B)=\left\{\left(\begin{array}{cccc}x_{0} & y_{1} & y_{2} & x_{1} \\ & x_{0} & z_{1} & w_{1} \\ & & x_{0} & y_{1} \\ & & & x_{0}\end{array}\right)\right\}$.Now, this is a centralizer we have not seen so far. Thus we have a new type, $t N T_{4}$. There are $q-1$ such branches.

When $d_{2} \neq 0$, in Equation 4.16, choose z_{1} so that $d_{1}^{\prime}=0$. Equation 4.14 becomes $x_{0} a_{1}+$ $y_{2} d_{2}=x_{0} a_{1}^{\prime}+w_{2}$. Choose w_{2} such that $a_{1}^{\prime}=0$. So, B is reduced to $\left(\begin{array}{cccc}a_{0} & & & \\ & a_{0} & & \\ & & a_{0} & d_{2} \\ & & & a_{0}\end{array}\right)$
and $Z_{G T_{4}\left(\mathbf{F}_{q}\right)}(A, B)=\left\{\left(\begin{array}{cccc}x_{0} & y_{1} & y_{2} & x_{1} \\ & z_{0} & & w_{1} \\ & & x_{0} & d_{2} y_{2} \\ & & & x_{0}\end{array}\right)\right\} .(A, B)$ is of type A_{8}, and there are $(q-1)^{2}$ such branches.

When $b_{1}=b_{2}=d_{2}=0$. Here $d_{1} \neq 0$. Choose z_{0} so that $d_{1}^{\prime}=1$. Then, in Equation 4.14, we have $x_{0} a_{1}+y_{1}=x_{0} a_{1}^{\prime}$. Choose y_{1} so that $a_{1}^{\prime}=0$. Thus B is reduced to: $\left(\begin{array}{cccc}a_{0} & & & \\ & a_{0} & & 1 \\ & & a_{0} & \\ & & & a_{0}\end{array}\right)$, and $Z_{G T_{4}\left(\mathbf{F}_{q}\right)}(A, B)=\left\{\left(\begin{array}{cccc}x_{0} & & y_{2} & x_{1} \\ & x_{0} & z_{1} & w_{1} \\ & & z_{2} & w_{2} \\ & & & x_{0}\end{array}\right)\right\} .(A, B)$ is of type $t N T_{3}$. There are $q-1$ such branches.

When $b_{1}=b_{2}=0$, and $d_{2} \neq 0$. In Equation 4.16, choose z_{2} such that $d_{2}^{\prime}=1$, and in the same equation, choose z_{1} so that $d_{1}^{\prime}=0$. With these, Equation 4.14 becomes
$x_{0} a_{1}+y_{2}=x_{0} a_{1}^{\prime}$. Choose y_{2} such that $a_{1}^{\prime}=0$. Thus B is reduced to: $\left(\begin{array}{llll}a_{0} & & & \\ & a_{0} & & \\ & & a_{0} & 1 \\ & & & a_{0}\end{array}\right)$, and $Z_{G T_{4}\left(\mathbf{F}_{q}\right)}(A, B)=\left\{\left(\begin{array}{llll}x_{0} & y_{1} & & x_{1} \\ & z_{0} & & w_{1} \\ & & x_{0} & w_{2} \\ & & & x_{0}\end{array}\right)\right\}$. This too is of type A_{8}. There are $q-1$ such branches.

When $b_{1} \neq 0$. In Equation 4.15, choose z_{0} so that $b_{1}^{\prime}=1$, and choose z_{1} so that $b_{2}^{\prime}=0$. On replacing b_{1} with $b_{1}^{\prime}=1$, and b_{2} with $b_{2}^{\prime}=0$ in Equation 4.15, we get $z_{0}=x_{0}$, and $z_{1}=0$. Putting these in equation 4.16 leaves us with $d_{1}^{\prime}=d_{1}$ and $z_{2} d_{2}=x_{0} d_{2}^{\prime}$.

With these, Equation 4.14 is reduced to $x_{0} a_{1}+d_{1} y_{1}=x_{0} a_{1}^{\prime}+w_{1}$. Choose w_{1} so that $a_{1}^{\prime}=0$.

When $d_{2}=0, B$ is reduced to $\left(\begin{array}{cccc}a_{0} & 1 & & \\ & a_{0} & & \\ & & a_{0} & \\ & & & a_{0}\end{array}\right)$, and $Z_{G T_{4}\left(\mathbf{F}_{q}\right)}(A, B)=\left\{\left(\begin{array}{cccc}x_{0} & y_{1} & y_{2} & x_{1} \\ & x_{0} & & d_{1} y_{1} \\ & & z_{2} & w_{2} \\ & & & x_{0}\end{array}\right)\right\}$.
This too is of type A_{8}. There are $q(q-1)$ such branches.
When $d_{2} \neq 0$, in Equation 4.16, choose z_{2} so that $d_{2}^{\prime}=1$. With these Equation 4.14 becomes $x_{0} a_{1}+y_{1} d_{1}+y_{2}=x_{0} a_{1}^{\prime}+w_{1}$. Choose w_{1} such that $a_{1}^{\prime}=0$. Thus B is reduced
to $\left(\begin{array}{cccc}a_{0} & 1 & & \\ & a_{0} & & d_{1} \\ & & a_{0} & 1 \\ & & & a_{0}\end{array}\right)$, and $Z_{G T_{4}\left(\mathbf{F}_{q}\right)}(A, B)=\left\{\left(\begin{array}{cccc}x_{0} & y_{1} & y_{2} & x_{1} \\ & x_{0} & & y_{2}+d_{1} y_{1} \\ & & x_{0} & w_{2} \\ & & & x_{0}\end{array}\right)\right\}$. This is of
type A_{9}. There are $q(q-1)$ such branches.
So, with these, we are done with all the cases, when $C=a_{0} I_{2}$.
When $C=\left(\begin{array}{cc}a_{0} & 1 \\ & a_{0}\end{array}\right)$: Here $Z=\left(\begin{array}{cc}z_{0} & z_{1} \\ & z_{0}\end{array}\right)$. Equation 4.12 becomes:

$$
\left(\begin{array}{ll}
x_{0} b_{1} & x_{0} b_{2}
\end{array}\right)+\left(\begin{array}{ll}
0 & y_{1}
\end{array}\right)=\left(\begin{array}{ll}
z_{0} b_{1}^{\prime} & z_{1} b_{1}^{\prime}+z_{0} b_{2}^{\prime}
\end{array}\right)
$$

Choose y_{1} such that $b_{2}^{\prime}=0$. On substituting b_{2} with $b_{2}^{\prime}=0$ in the above equation, we have $y_{1}=z_{1} b_{1}^{\prime}$.

Similarly, Equation 4.13 becomes

$$
\binom{z_{0} d_{1}+z_{1} d_{2}}{z_{0} d_{2}}+\binom{-w_{2}}{0}=\binom{x_{0} b_{1}^{\prime}}{x_{0} b_{2}^{\prime}} .
$$

Choose w_{2} such that $d_{1}^{\prime}=0$. On substituting d_{1} with $d_{1}^{\prime}=0$ in the above equation, we have $w_{2}=d_{2} z_{1}$.

When $b_{1} \neq 0$, choose z_{0} so that $b_{1}^{\prime}=1$. Then, on substituting b_{1} with $b_{1}^{\prime}=1$ in Equation 4.12, we get $z_{0}=x_{0}$, and thus $d_{2}^{\prime}=d_{2}$. With these, Equation 4.14 becomes $x_{0} a_{1}+y_{2} d_{2}=x_{0} a_{1}^{\prime}+w_{1}$. Choose w_{1} such that $a_{1}^{\prime}=0$. Thus, B is reduced to $\left(\begin{array}{cccc}a_{0} & 1 & & \\ & a_{0} & 1 & \\ & & a_{0} & d_{2} \\ & & & a_{0}\end{array}\right)$, and $Z_{G T_{4}\left(\mathbf{F}_{q)}\right)}(A, B)=\left\{\left(\begin{array}{cccc}x_{0} & z_{1} & y_{2} & x_{1} \\ & x_{0} & z_{1} & d_{2} y_{2} \\ & & x_{0} & d_{2} z_{1} \\ & & & x_{0}\end{array}\right)\right\}$. This (A, B) is of type R_{1}, and there are $q(q-1)$ such branches.

When $b_{1}=0$, and $d_{2} \neq 0 y_{1}=0$. In Equation 4.13, choose z_{0} so that $d_{2}^{\prime}=1$. With these, Equation 4.14 becomes $x_{0} a_{1}+y_{2}=x_{0} a_{1}^{\prime}$. Choose y_{2} so that $a_{1}^{\prime}=0$. Thus, B is reduced to $\left(\begin{array}{cccc}a_{0} & & & \\ & a_{0} & 1 & \\ & & a_{0} & 1 \\ & & & a_{0}\end{array}\right)$, and $Z_{G T_{4}\left(\mathbf{F}_{q}\right)}(A, B)=\left\{\left(\begin{array}{cccc}x_{0} & & & x_{1} \\ & x_{0} & z_{1} & w_{1} \\ & & x_{0} & z_{1} \\ & & & x_{0}\end{array}\right)\right\}$. By a routine check, one can see that this is commutative. Thus (A, B) is of type R_{1}, and there are $q-1$ such branches.

$$
\begin{gathered}
\text { When } C=\left(\begin{array}{ll}
a_{0} & \\
& b_{0}
\end{array}\right), b_{0} \neq a_{0}: \text { Here } Z=\left(\begin{array}{ll}
z_{0} & \\
& z_{2}
\end{array}\right) . \text { Equation } 4.12 \text { becomes : } \\
\left(\begin{array}{ll}
x_{0} b_{1} & x_{0} b_{2}
\end{array}\right)+\left(\begin{array}{cc}
0 & \left(b_{0}-a_{0}\right) y_{2}
\end{array}\right)=\left(\begin{array}{ll}
z_{0} b_{1}^{\prime} & z_{2} b_{2}^{\prime}
\end{array}\right)
\end{gathered}
$$

As $b_{0}-a_{0} \neq 0$, choose y_{2} such that $b_{2}^{\prime}=0$. Hence, on replacing b_{2} by $b_{2}^{\prime}=0$ in the above equation, we get $y_{2}=0$.

Similarly Equation 4.13 becomes:

$$
\left(\begin{array}{ll}
z_{0} d_{1} & z_{2} d_{2}
\end{array}\right)+\binom{0}{\left(a_{0}-b_{0}\right) w_{2}}=\left(\begin{array}{ll}
x_{0} d_{1}^{\prime} & x_{0} d_{2}^{\prime}
\end{array}\right)
$$

Choose w_{2} so that $d_{2}^{\prime}=0$. So, if we replace d_{2} by $d_{2}^{\prime}=0$ in the above equation, we have $w_{2}=0$.

When $b_{1}=0$ and $d_{1} \neq 0$, choose z_{0} so that $d_{1}^{\prime}=1$. With these, Equation 4.14 becomes $x_{0} a_{1}+y_{1}=x_{0} a_{1}^{\prime}$. Choose y_{1} so that $a_{1}^{\prime}=0 . B$ is thus reduced to $\left(\begin{array}{cccc}a_{0} & & & \\ & a_{0} & & 1 \\ & & b_{0} & \\ & & & a_{0}\end{array}\right)$, and $Z_{G T_{4}\left(\mathbf{F}_{q}\right)}(A, B)=\left\{\left(\begin{array}{llll}x_{0} & & & x_{1} \\ & x_{0} & & w_{1} \\ & & z_{2} & \\ & & & x_{0}\end{array}\right)\right\}$. By a routine check, we can see that this centralizer is commutative. Thus (A, B) is of type R_{2}, and there are $(q-1)(q-2)$ such branches.

When $b_{1} \neq 0$. in Equation 4.12 for this C, choose z_{0} so that $b_{1}^{\prime}=1$. Thus on substituting b_{1} with $b_{1}^{\prime}=1$ in the same, we get $z_{0}=x_{0}$. Hence, from Equation 4.13 for this case, we have $d_{1}^{\prime}=d_{1}$. With these Equation 4.14 becomes $x_{0} a_{1}+d_{1} y_{1}=$ $x_{0} a_{1}^{\prime}+w_{1}$. Choose w_{1} so that $a_{1}^{\prime}=0$. Hence B is reduced to $\left(\begin{array}{cccc}a_{0} & 1 & & \\ & a_{0} & & d_{1} \\ & & b_{0} & \\ & & & a_{0}\end{array}\right)$ and $Z_{G T_{4}\left(\mathbf{F}_{q}\right)}(A, B)=\left\{\left(\begin{array}{cccc}x_{0} & y_{1} & & x_{1} \\ & x_{0} & & d_{1} y_{1} \\ & & z_{2} & \\ & & & x_{0}\end{array}\right)\right\}$. Easy to see that this centralizer too is commutative. Thus (A, B) is of type R_{2}, and there are $q(q-1)(q-2)$ such branches.

When $C=\left(\begin{array}{cc}b_{0} & \\ & a_{0}\end{array}\right), b_{0} \neq a_{0}$: Here $Z=\left(\begin{array}{cc}z_{0} & \\ & z_{2}\end{array}\right)$. Equation 4.12 becomes :

$$
\left(\begin{array}{ll}
x_{0} b_{1} & x_{0} b_{2}
\end{array}\right)+\left(\begin{array}{ll}
\left(b_{0}-a_{0}\right) y_{1} & 0
\end{array}\right)=\left(\begin{array}{ll}
z_{0} b_{1}^{\prime} & z_{2} b_{2}^{\prime}
\end{array}\right)
$$

As $b_{0}-a_{0} \neq 0$, choose y_{1} such that $b_{1}^{\prime}=0$. Hence, on replacing b_{1} by $b_{1}^{\prime}=0$ in the above equation, we get $y_{1}=0$.

Similarly Equation 4.13 becomes $\left(\begin{array}{ll}z_{0} d_{1} & z_{2} d_{2}\end{array}\right)+\binom{\left(a_{0}-b_{0}\right) w_{1}}{0}=\left(\begin{array}{ll}x_{0} d_{1}^{\prime} & x_{0} d_{2}^{\prime}\end{array}\right)$. Choose w_{1} so that $d_{1}^{\prime}=0$. So, if we replace d_{1} by $d_{1}^{\prime}=0$ in the above equation, we have $w_{1}=0$.

When $b_{2}=0$ and $d_{2} \neq 0$, choose z_{2} so that $d_{2}^{\prime}=1$. With these, Equation 4.14 becomes $x_{0} a_{1}+y_{2}=x_{0} a_{1}^{\prime}$. Choose y_{2} so that $a_{1}^{\prime}=0 . \quad B$ is thus reduced to $\left(\begin{array}{cccc}a_{0} & & & \\ & b_{0} & & \\ & & a_{0} & 1 \\ & & & a_{0}\end{array}\right)$, and $Z_{G T_{4}\left(\mathbf{F}_{q}\right)}(A, B)=\left\{\left(\begin{array}{llll}x_{0} & & & x_{1} \\ & z_{0} & & \\ & & x_{0} & w_{2} \\ & & & x_{0}\end{array}\right)\right\}$. By a routine check, we can see that this centralizer is commutative. This (A, B) is of type R_{2}, and there are $(q-1)(q-2)$ such branches.

When $b_{2} \neq 0$, in Equation 4.12 for this C, choose z_{2} so that $b_{2}^{\prime}=1$. Thus on substituting b_{2} with $b_{2}^{\prime}=1$ in the same, we get $z_{2}=x_{0}$. Hence, from Equation 4.13 for this case, we have $d_{2}^{\prime}=d_{2}$. With these Equation 4.14 becomes $x_{0} a_{1}+d_{2} y_{2}=$ $x_{0} a_{1}^{\prime}+w_{2}$. Choose w_{2} so that $a_{1}^{\prime}=0$. Hence B is reduced to $\left(\begin{array}{cccc}a_{0} & 1 & & \\ & a_{0} & & d_{1} \\ & & b_{0} & \\ & & & a_{0}\end{array}\right)$ and $Z_{G T_{4}\left(\mathbf{F}_{q}\right)}(A, B)=\left\{\left(\begin{array}{cccc}x_{0} & & y_{2} & x_{1} \\ & z_{0} & & \\ & & x_{0} & d_{2} y_{2} \\ & & & x_{0}\end{array}\right)\right\}$. Easy to see that this centralizer is commutative. This (A, B) too is of type R, and there are $q(q-1)(q-2)$ such branches.

With these, we have covered all the subcases under the case of a_{0} being an eigenvalue of C.
When a_{0} is not an eigenvalue of C : In this case $C-a_{0} I_{2}$ is invertible. Hence, in Equation 4.12, choose y_{1}, y_{2} so that $b_{1}^{\prime}=b_{2}^{\prime}=0$. Similarly, in Equation 4.13, choose w_{1}, w_{2} so that $d_{1}^{\prime}=d_{2}^{\prime}=0$.

So, Equation 4.14 becomes $x_{0} a_{1}=x_{0} a_{1}^{\prime}$, thus $a_{1}^{\prime}=a_{1}$.

When $C=b_{0} I_{2}, b_{0} \neq a_{0}: B$ is reduced to $\left(\begin{array}{cccc}a_{0} & & & a_{1} \\ & b_{0} & & \\ & & b_{0} & \\ & & & a_{0}\end{array}\right)$, and $Z_{G T_{4}\left(\mathbf{F}_{q}\right)}(A, B)=$ $\left\{\left(\begin{array}{cccc}x_{0} & & & x_{1} \\ & z_{0} & z_{1} & \\ & & z_{2} & \\ & & & x_{0}\end{array}\right)\right\}$. This (A, B) is of type B_{5}. There are $q(q-1)(q-2)$ such branches.

When $C=\left(\begin{array}{cc}b_{0} & 1 \\ & b_{0}\end{array}\right), b_{0} \neq a_{0}$:In this case, B is reduced to $\left(\begin{array}{cccc}a_{0} & & & \\ & b_{0} & 1 & \\ & & b_{0} & \\ & & & a_{0}\end{array}\right)$, and $Z_{G T_{4}\left(\mathbf{F}_{q)}\right)}(A, B)=\left\{\left(\begin{array}{llll}x_{0} & & & x_{1} \\ & z_{0} & z_{1} & \\ & & z_{0} & \\ & & & x_{0}\end{array}\right)\right\}$. This one is a commutative centralizer. This
(A, B) is of type R_{3}, and there are $q(q-1)(q-2)$ such branches.
When $C=\left(\begin{array}{ll}b_{0} & \\ & c_{0}\end{array}\right), b_{0}, c_{0} \neq a_{0}$, and $b_{0} \neq c_{0}:$ In this case, B is reduced to

$$
\left(\begin{array}{cccc}
a_{0} & & & a_{1} \\
& b_{0} & & \\
& & c_{0} & \\
& & & a_{0}
\end{array}\right) \text {, and } Z_{G T_{4}\left(\mathbf{F}_{q}\right)}(A, B)=\left\{\left(\begin{array}{llll}
x_{0} & & & x_{1} \\
& z_{0} & & \\
& & z_{2} & \\
& & & x_{0}
\end{array}\right)\right\} . \text { This }(A, B) \text { is of }
$$

type R, and there are $q(q-1)(q-2)(q-3)$ such branches.
So, those are all the cases available.
Adding up all the branches of type A_{8}, we have a total of $q-1+q(q-1)+(q-1)^{2}=$ $2 q(q-1)$ branches.

Proposition 4.6. A matrix of type A_{4} has:

Branch	No. of Branches	Branch	No. of Branches
A_{4}	$q(q-1)$	$t N T_{1}$	$q(q-1)^{2}$
R_{1}	$q^{3}-q^{2}$	$t N T_{5}$	$q(q-1)$
R_{3}	$q^{2}(q-1)(q-2)$		

A new type $t N T_{5}$ appears with centralizer $\left\{\left.\underset{31}{ }\left\{\begin{array}{ccc}a_{0} & a_{1} & b_{0} \\ & b_{1} \\ a_{0} & b_{0} \\ & & a_{0} \\ & a_{1} \\ a_{0}\end{array}\right) \right\rvert\, a_{0} \neq 0\right\}$.

Proof. The canonical form of a matrix of this type is $A=\left(\begin{array}{llll}a & 1 & & \\ & a & & \\ & & a & 1 \\ & & & a\end{array}\right)$. Then $Z_{G T_{4}\left(\mathbf{F}_{q}\right)}(A)=\left\{\left.\left(\begin{array}{cccc}a_{0} & a_{1} & b_{0} & b_{1} \\ & a_{0} & & b_{0} \\ & & c_{0} & c_{1} \\ & & & c_{0}\end{array}\right) \right\rvert\, a_{0}, c_{0} \neq 0\right\}$. Let $B=\left(\begin{array}{cccc}a_{0} & a_{1} & b_{0} & b_{1} \\ & a_{0} & & b_{0} \\ & & c_{0} & c_{1} \\ & & & c_{0}\end{array}\right)$, and $B^{\prime}=\left(\begin{array}{cccc}a_{0} & a_{1} & b_{0}^{\prime} & b_{1}^{\prime} \\ & a_{0} & & b_{0}^{\prime} \\ & & c_{0} & c_{1} \\ & & & c_{0}\end{array}\right)=X B X^{-1}$, where $X=\left(\begin{array}{cccc}x_{0} & x_{1} & y_{0} & y_{1} \\ & x_{0} & & y_{0} \\ & & z_{0} & z_{1} \\ & & & z_{0}\end{array}\right) . \quad X B=B^{\prime} X$
gives us the following:

$$
\begin{align*}
x_{0} b_{0}+y_{0} c_{0} & =z_{0} b_{0}^{\prime}+y_{0} a_{0} \tag{4.17}\\
x_{0} b_{1}+x_{1} b_{0}+y_{0} c_{1}+y_{1} c_{0} & =y_{1} a_{0}+y_{0} a_{1}+z_{1} b_{0}^{\prime}+z_{0} b_{1}^{\prime} \tag{4.18}
\end{align*}
$$

When $a_{0}=c_{0}$: From Equation 4.17, we have $x_{0} b_{0}=z_{0} b_{0}^{\prime}$.
When $b_{0}=0$: Equation 4.18 becomes $x_{0} b_{1}+y_{0} c_{1}=z_{0} b_{1}^{\prime}+y_{0} a_{1}$. Here we first look at what happens when $a_{1}=c_{1}$, and $b_{1}=0$. Here B reduces to $\left(\begin{array}{cccc}a_{0} & a_{1} & & \\ & a_{0} & & \\ & & a_{0} & a_{1} \\ & & & a_{0}\end{array}\right)$, $Z_{G T_{4}\left(\mathbf{F}_{q}\right)}(A, B)=Z_{G T_{4}\left(\mathbf{F}_{q}\right)}(A) .(A, B)$ is of type A_{4}, and there are $q(q-1)$ such branches. When $a_{1}=c_{1}$, and $b_{1} \neq 0$. We can choose x_{0} such that $b_{1}^{\prime}=1$. Thus B is reduced to $\left(\begin{array}{cccc}a_{0} & a_{1} & & 1 \\ & a_{0} & & \\ & & a_{0} & a_{1} \\ & & & a_{0}\end{array}\right)$, and $Z_{G T_{4}\left(\mathbf{F}_{q}\right)}(A, B)=\left\{\left(\begin{array}{cccc}x_{0} & x_{1} & y_{0} & y_{1} \\ & x_{0} & & y_{0} \\ & & x_{0} & z_{1} \\ & & & x_{0}\end{array}\right)\right\}$. We see a centralizer,
not isomorphic to the ones seen so far. Thus, we have a new type $t N T_{5} .(A, B)$ is of type $t N T_{5}$, and there are $q(q-1)$ such branches.

When $a_{1} \neq c_{1}$, in Equation 4.18, we can choose y_{0}, so that $b_{1}^{\prime}=0$. Thus, B is reduced to $\left(\begin{array}{cccc}a_{0} & a_{1} & & \\ & a_{0} & & \\ & & a_{0} & c_{1} \\ & & & a_{0}\end{array}\right)$, and $Z_{G T_{4}\left(\mathbf{F}_{q}\right)}(A, B)=\left\{\left(\begin{array}{cccc}x_{0} & x_{1} & & y_{1} \\ & x_{0} & & \\ & & z_{0} & z_{1} \\ & & & z_{0}\end{array}\right)\right\}(A, B)$ is of type $t N T_{1}$, and there are $q(q-1)^{2}$ such branches.

When $b_{0} \neq 0$: In Equation 4.17, choose x_{0} such that $b_{0}^{\prime}=1$. Then, on replacing b_{0} and b_{0}^{\prime} by 1 in the same equation, we have $x_{0}=z_{0}$. Hence, Equation 4.18 becomes $x_{0} b_{1}+x_{1}+y_{0} c_{1}=x_{0} b_{1}^{\prime}+z_{1}+y_{0} a_{1}$. Hence, choose z_{1} so that $b_{1}^{\prime}=0$. Then, B is reduced
to $\left(\begin{array}{cccc}a_{0} & a_{1} & 1 & \\ & a_{0} & & 1 \\ & & a_{0} & c_{1} \\ & & & a_{0}\end{array}\right)$, and $Z_{G T_{4}\left(\mathbf{F}_{q}\right)}(A, B)=\left\{\left(\begin{array}{cccc}x_{0} & x_{1} & & y_{1} \\ & x_{0} & & \\ & & x_{0} & y_{0}\left(c_{1}+a_{1}\right) \\ & & & x_{0}\end{array}\right)\right\}(A, B)$ is of type R_{1}, and there are $q^{2}(q-1)$ such branches.
When $a_{0} \neq c_{0}$: In Equation 4.17, choose y_{0} so that $b_{0}^{\prime}=0$. With this, Equation 4.18 becomes $x_{0} b_{1}+y_{1} c_{0}=z_{0} b_{1}^{\prime}+y_{1} a_{0}$. Choose y_{1} such that $b_{1}^{\prime}=0$. Thus, B is reduced to $\left(\begin{array}{cccc}a_{0} & a_{1} & & \\ & a_{0} & & \\ & & c_{0} & c_{1} \\ & & & c_{0}\end{array}\right)$, and $Z_{G T_{4}\left(\mathbf{F}_{q}\right)}(A, B)=\left\{\left(\begin{array}{llll}x_{0} & x_{1} & & \\ & x_{0} & & \\ & & z_{0} & z_{1} \\ & & & z_{0}\end{array}\right)\right\} .(A, B)$ is of type R_{3},
and there are $q^{2}(q-1)(q-2)=q^{4}-q^{3}$ such branches. Thus, there are no more cases left to deal with.

Proposition 4.7. An upper triangular matrix of type A_{5} has $q^{2}(q-1)$ branches of type $A_{5}, q^{2}(q-1)(q-2)$ branches of type R_{3}, and $q^{2}\left(q^{2}-1\right)$ branches of type $N R_{1}$.

Proof. A matrix of type A_{5} has the canonical form: $A=\left(\begin{array}{llll}a & & & 1 \\ & a & 1 & \\ & & a & \\ & & & a\end{array}\right)$. Thus its centralizer $Z_{G T_{4}\left(\mathbf{F}_{q}\right)}(A)$ is: $\left\{\left(\begin{array}{llll}a_{0} & & a_{2} & a_{3} \\ & b_{0} & b_{1} & b_{2} \\ & & b_{0} & \\ & & & a_{0}\end{array}\right)\right\}$. Let $B=\left(\begin{array}{llll}a_{0} & & a_{2} & a_{3} \\ & b_{0} & b_{1} & b_{2} \\ & & b_{0} & \\ & & & a_{0}\end{array}\right)$, and $B^{\prime}=\left(\begin{array}{cccc}a_{0} & & a_{2}^{\prime} & a_{3}^{\prime} \\ & b_{0}^{\prime} & b_{1}^{\prime} & b_{2} \\ & & b_{0} & \\ & & & a_{0}\end{array}\right)=X B X^{-1}$, where $X=\left(\begin{array}{cccc}x_{0} & & x_{2} & x_{3} \\ & y_{0} & y_{1} & y_{2} \\ & & y_{0} & \\ & & & x_{0}\end{array}\right)$. Thus, from $X B=$ $B^{\prime} X$, we have $a_{3}^{\prime}=a_{3}, b_{1}^{\prime}=b_{1}$, and the following equations:

$$
\begin{align*}
x_{0} a_{2}+x_{2} b_{0} & =y_{0} a_{2}^{\prime}+x_{2} a_{0} \tag{4.19}\\
y_{0} b_{2}+a_{0} y_{2} & =x_{0} b_{2}^{\prime}+y_{2} b_{0} \tag{4.20}
\end{align*}
$$

Case $a_{0}=b_{0}$. Equations 4.19 and 4.20 become $x_{0} a_{2}=y_{0} a_{2}^{\prime}$, and $y_{0} b_{2}=x_{0} b_{2}^{\prime}$ respectively.

If $a_{2}=b_{2}=0$, the above equations are void, and we have B reduced to $\left(\begin{array}{llll}a_{0} & & & \\ & & a_{3} \\ & a_{0} & b_{1} & \\ & & a_{0} & \\ & & & a_{0}\end{array}\right)$,
and $Z_{G T_{4}\left(\mathbf{F}_{q}\right)}(A, B)=Z_{G T_{4}\left(\mathbf{F}_{q}\right)}(A)$. Thus (A, B) is a branch of type A_{5}, and there are $q^{2}(q-1)$ such branches.

If $a_{2} \neq 0$, then choose x_{0} so that $a_{2}^{\prime}=1$. Substituting a_{2} with $a_{2}^{\prime}=1$ in the equation $x_{0} a_{2}=y_{0} a_{2}^{\prime}$, we get $x_{0}=y_{0}$, thus leaving us with $b_{2}^{\prime}=b_{2}$. Hence B is reduced to $\left(\begin{array}{cccc}a_{0} & & 1 & a_{3} \\ & a_{0} & b_{1} & b_{2} \\ & & a_{0} & \\ & & a_{0}\end{array}\right)$, and $Z_{G T_{4}\left(\mathbf{F}_{q}\right)}(A, B)=\left\{\left(\begin{array}{cccc}x_{0} & & x_{2} & x_{3} \\ & x_{0} & y_{1} & y_{2} \\ & & x_{0} & \\ & & & x_{0}\end{array}\right)\right\}$. Thus (A, B) is a
branch of type $N R_{1}$, and there are $q^{3}(q-1)$ such branches.
If $a_{2}=0$ and $b_{2} \neq 0$, then we choose y_{0} such that $b_{2}^{\prime}=1$. Thus B is reduced to $\left(\begin{array}{cccc}a_{0} & & & a_{3} \\ & a_{0} & b_{1} & 1 \\ & & a_{0} & \\ & & & a_{0}\end{array}\right)$, and $Z_{G T_{4}\left(\mathbf{F}_{q}\right)}(A, B)=\left\{\left(\begin{array}{cccc}x_{0} & & x_{2} & x_{3} \\ & x_{0} & y_{1} & y_{2} \\ & & x_{0} & \\ & & & x_{0}\end{array}\right)\right\}$. This branch too is of type $N R_{1}$, and there are $q^{2}(q-1)$ such branches.

If $a_{0} \neq b_{0}$. Then, in Equation 4.19, choose x_{2} such that $a_{2}^{\prime}=0$. Similarly in Equation 4.20, choose y_{2} such that $b_{2}^{\prime}=0$. Thus B boils down to $\left(\begin{array}{llll}a_{0} & & & a_{3} \\ & b_{0} & b_{1} & \\ & & b_{0} & \\ & & & a_{0}\end{array}\right)$, and $Z_{G T_{4}\left(\mathbf{F}_{q)}\right)}(A, B)=\left\{\left(\begin{array}{cccc}x_{0} & & & x_{3} \\ & y_{0} & y_{1} & \\ & & y_{0} & \\ & & & x_{0}\end{array}\right)\right\}$. This (A, B) is of type R_{3}, and there are $q 2^{2}(q-1)(q-2)$ such branches.

Adding up the branches of type $N R_{1}$, we have a total of $q^{3}(q-1)+q^{2}(q-1)=q^{2}\left(q^{2}-1\right)$ branches of type $N R_{1}$.

Proposition 4.8. For a matrix of type A_{6}, the branchings are:

Branch	No. of Branches	Branch	No. of Branches
A_{6}	$q(q-1)$	R_{3}	$q^{2}(q-1)(q-2)$
A_{5}	$q(q-1)^{2}$	$t N T_{4}$	$q^{2}(q-1)$
R_{1}	$q^{2}(q-1)$	$N R_{1}$	$q^{2}(q-1)$.

Proof. A matrix of type A_{6} has the canonical form $\left(\begin{array}{lll}a & & 1 \\ & & \\ & a & \\ & & 1 \\ & & a \\ & & \\ & & \end{array}\right)$. The centralizer subgroup $Z_{G T_{4}\left(\mathbf{F}_{q}\right)}(A)$ is $\left\{\left.\left(\begin{array}{cc}C & D \\ & C\end{array}\right) \right\rvert\, C \in G T_{2}\left(\mathbf{F}_{q}\right)\right\}$, where $D=\left(\begin{array}{ll}d_{0} & d_{1} \\ d_{2} & d_{3}\end{array}\right)$, and $W=$ $\left(\begin{array}{ll}w_{0} & w_{1} \\ w_{2} & w_{3}\end{array}\right)$.

Let $B=\left(\begin{array}{ll}C & D \\ & C\end{array}\right)$, and $B^{\prime}=\left(\begin{array}{ll}C^{\prime} & D^{\prime} \\ & C^{\prime}\end{array}\right)=X B X^{-1}$, where $X=\left(\begin{array}{cc}Z & W \\ & Z\end{array}\right)$. So $X B=B^{\prime} X$ leads to $Z C=C^{\prime} Z$. Hence, we can take C to be a representative of a conjugacy class in $G T_{2}\left(\mathbf{F}_{q}\right)$, and $Z=Z_{G T_{2}\left(\mathbf{F}_{q}\right)}(C)$. We have the following equation

$$
\begin{equation*}
Z D+W C=C W+D^{\prime} Z \tag{4.21}
\end{equation*}
$$

So the cases to deal with here are the three conjugacy class types in $G T_{2}\left(\mathbf{F}_{q}\right)$.
Case $C=\left(\begin{array}{ll}a_{0} & 1 \\ & a_{0}\end{array}\right)$: here $Z=\left(\begin{array}{ll}x_{0} & x_{1} \\ & x_{0}\end{array}\right)$, and Equation 4.21 becomes:

$$
\left(\begin{array}{cc}
x_{0} d_{0}+x_{1} d_{2} & x_{0} d_{1}+x_{1} d_{3}+w_{0} \\
x_{0} d_{2} & x_{0} d_{3}+w_{2}
\end{array}\right)=\left(\begin{array}{cc}
w_{2}+x_{0} d_{0}^{\prime} & w_{3}+x_{1} d_{0}^{\prime}+x_{0} d_{1} \\
x_{0} d_{2}^{\prime} & x_{1} d_{2}^{\prime}+x_{0} d_{3}
\end{array}\right)
$$

Choose w_{2} so that $d_{0}^{\prime}=0$. Thus, on replacing d_{0} by 0 , we get $w_{2}=x_{1} d_{2}$, and hence $d_{3}^{\prime}=d_{3}$.

We can choose w_{0} such that $d_{1}^{\prime}=0$. Thus B is reduced to $\left(\begin{array}{cccc}a_{0} & 1 & & \\ & a_{0} & d_{2} & d_{3} \\ & & a_{0} & 1 \\ & & & a_{0}\end{array}\right)$, and $Z_{G T_{4}\left(\mathbf{F}_{q}\right)}(A, B)=\left\{\left(\begin{array}{cccc}x_{0} & x_{1} & w_{0} & w_{1} \\ & x_{0} & x_{1} d_{2} & w_{0}+x_{1} d_{3} \\ & & x_{0} & x_{1} \\ & & & x_{0}\end{array}\right)\right\}$. This (A, B) is of type R_{1}, and there
are $q^{2}(q-1)$ such branches.
Case $C=\left(\begin{array}{ll}a_{0} & \\ & b_{0}\end{array}\right), a_{0} \neq b_{0}$: here $Z=\left(\begin{array}{ll}x_{0} & \\ & x_{3}\end{array}\right)$, and Equation 4.21 becomes:

$$
\left(\begin{array}{ll}
x_{0} d_{0}+a_{0} w_{0} & x_{0} d_{1}+w_{1} b_{0} \\
x_{3} d_{2}+a_{0} w_{2} & x_{3} d_{3}+b_{0} w_{3}
\end{array}\right)=\left(\begin{array}{ll}
a_{0} w_{0}+x_{0} d_{0}^{\prime} & w_{1} a_{0}+x_{3} d_{1} \\
b_{0} w_{2}+x_{0} d_{2} & b_{0} w_{3}+x_{3} d_{3}
\end{array}\right) .
$$

We have $d_{0}^{\prime}=d_{0}$ and $d_{3}^{\prime}=d_{3}$. As $a_{0} \neq b_{0}$, choose w_{2} such that $d_{2}^{\prime}=0$, and w_{1} so that $d_{1}^{\prime}=0$. Thus B is reduced to $\left(\begin{array}{cccc}a_{0} & & d_{0} & \\ & b_{0} & & d_{3} \\ & & a_{0} & \\ & & & d_{0}\end{array}\right)$, and $Z_{G T_{4}\left(\mathbf{F}_{q}\right)}(A, B)=$ $\left\{\left(\begin{array}{llll}x_{0} & & w_{0} & \\ & x_{3} & & w_{3} \\ & & x_{0} & \\ & & & x_{3}\end{array}\right)\right\}$. This (A, B) is of type R_{3}, and there are $q^{2}(q-1)(q-2)$ such branches.
Case $C=a_{0} I_{2}$: Here Equation 4.21 becomes: $Z D=D^{\prime} Z$, where $Z \in T_{2}\left(\mathbf{F}_{q}\right)$. With $Z=\left(\begin{array}{ll}x_{0} & x_{1} \\ & x_{2}\end{array}\right)$, we see that:

$$
\left(\begin{array}{cc}
x_{0} d_{0}+x_{1} d_{2} & x_{0} d_{1}+x_{1} d_{3} \tag{4.22}\\
x_{3} d_{2} & x_{3} d_{3}
\end{array}\right)=\left(\begin{array}{cc}
x_{0} d_{0}^{\prime} & x_{1} d_{0}^{\prime}+x_{3} d_{1}^{\prime} \\
x_{0} d_{2}^{\prime} & x_{1} d_{2}^{\prime}+x_{3} d_{3}^{\prime}
\end{array}\right) .
$$

We see that $x_{0} d_{2}^{\prime}=x_{3} d_{2}$. We have two main cases here:
Case $d_{2}=0$. In this case, from Equation 4.22 we have $d_{0}^{\prime}=d_{0}$, and $d_{3}^{\prime}=d_{3}$, and we have $x_{0} d_{1}+\left(d_{3}-d_{0}\right) x_{1}=x_{3} d_{1}^{\prime}$.

When $d_{0}=d_{3}$, we have $x_{0} d_{1}=x_{3}^{\prime} d_{1}$. Now, if $d_{1}=0$. we have $B=\left(\begin{array}{cc}a_{0} I_{2} & d_{0} I_{2} \\ & a_{0} I_{2}\end{array}\right)$, and $Z_{G T_{4}\left(\mathbf{F}_{q}\right)}(A, B)=Z_{G T_{4}\left(\mathbf{F}_{q}\right)}(A)$. Thus, (A, B) is of type A_{6}, and there are $q(q-1)$ such branches.

If $d_{1} \neq 0$, choose x_{0} so that $d_{1}^{\prime}=1$. Thus B is reduced to $\left(\begin{array}{cccc}a_{0} & & d_{0} & 1 \\ & a_{0} & & d_{3} \\ & & a_{0} & \\ & & & a_{0}\end{array}\right)$, and

$$
Z_{G T_{4}\left(\mathbf{F}_{q}\right)}(A, B)=\left\{\left(\begin{array}{cccc}
x_{0} & x_{1} & w_{1} & w_{2} \\
& x_{0} & w_{2} & w_{3} \\
& & x_{0} & x_{1} \\
& & & x_{0}
\end{array}\right)\right\} .
$$

(A, B) is therefore of type $t N T_{4}$, and there are $q^{2}(q-1)$ such branches.
When $d_{0} \neq d_{3}$, in the (1,2)th entry of Equation 4.22, we choose x_{1} so that $d_{1}^{\prime}=0$. Thus
B is reduced to $\left(\begin{array}{cccc}a_{0} & & d_{0} & \\ & a_{0} & & d_{3} \\ & & a_{0} & \\ & & & a_{0}\end{array}\right)$, and $Z_{G T_{4}\left(\mathbf{F}_{q}\right)}(A, B)=\left\{\left(\begin{array}{llll}x_{0} & & w_{1} & w_{2} \\ & x_{3} & w_{2} & w_{3} \\ & & x_{0} & \\ & & & x_{3}\end{array}\right)\right\}$.

This is isomorphic to the centralizer of a matrix of type A_{5}. Thus (A, B) is a branch of type A_{5}, and there are $q^{2}(q-1)$ such branches.

Case $d_{2} \neq 0$. First, we choose x_{0} such that $d_{2}^{\prime}=1$. On replacing d_{2} with $d_{2}^{\prime}=1$ in Equation 4.22, and equating, we get $x_{0}=x_{3}$.

In the same equation, we can choose x_{1} such that $d_{0}^{\prime}=0$. On replacing d_{0} with $d_{0}^{\prime}=0$ and equating, we get $x_{1}=0$. Thus, $d_{3}^{\prime}=d_{3}$. Lastly, we have $x_{0} d_{1}=x_{0} d_{1}^{\prime}$, hence $d_{1}^{\prime}=d_{1}$.

Thus B is reduced to $\left(\begin{array}{cccc}a_{0} & & & d_{1} \\ & a_{0} & 1 & d_{3} \\ & & a_{0} & \\ & & & a_{0}\end{array}\right)$, and $Z_{G T_{4}\left(\mathbf{F}_{q}\right)}(A, B)=\left\{\left.\left(\begin{array}{cc}x_{0} I_{2} & W \\ & x_{0} I_{2}\end{array}\right) \right\rvert\, W \in M_{2}\left(\mathbf{F}_{q}\right)\right\}$.
(A, B) is a branch of type $N R_{1}$, and there are $q^{2}(q-1)$ such branches.
There are no other cases.

Proposition 4.9. The branching rules of remaining A types are as follows.
(1) For a matrix of type A_{7}, there are $q^{2}(q-1)$ branches of type $A_{7}, q^{2}(q-1)$ branches of type R_{1}, and $q^{2}(q-1)(q-2)$ branches of type R_{2}.
(2) The type A_{8} has $q^{2}(q-1)$ branches of type $A_{8}, q^{3}-q$ branches of type R_{1}, and $q^{2}(q-1)(q-2)$ branches of type R_{2}.
(3) The type A_{9} has $q^{2}(q-1)$ branches of type $A_{9},\left(q^{2}-q\right)\left(q^{2}-1\right)$ branches of type R_{1}.

Proof. (1) A matrix of type A_{7} has two non-similar canonical forms,

$$
\left(\begin{array}{llll}
a & 1 & & \\
& a & 1 & \\
& & a & \\
& & & a
\end{array}\right)
$$ and $\left(\begin{array}{cccc}a & & & \\ & a & 1 & \\ & & a & 1 \\ & & & a\end{array}\right)$. As their centralizer subgroups in $T_{4}\left(\mathbf{F}_{q}\right)$ are conjugate in $G L_{4}\left(\mathbf{F}_{q}\right)$, we may prove the branching for any one. Let $A=\left(\begin{array}{cccc}a & 1 & & \\ & a & 1 & \\ & & a & \\ & & & a\end{array}\right)$. Then $Z_{G T_{4}\left(\mathbf{F}_{q}\right)}(A)=\left\{\left.\left(\begin{array}{cccc}a_{0} & a_{1} & a_{2} & a_{3} \\ & a_{0} & a_{1} & \\ & & a_{0} & \\ & & & d_{0}\end{array}\right) \right\rvert\, a_{0}, d_{0} \neq 0\right\}$.

Let $B=\left(\begin{array}{cccc}a_{0} & a_{1} & a_{2} & a_{3} \\ & a_{0} & a_{1} & \\ & & a_{0} & \\ & & & d_{0}\end{array}\right)$, and $B^{\prime}=\left(\begin{array}{cccc}a_{0} & a_{1}^{\prime} & a_{2}^{\prime} & a_{3}^{\prime} \\ & a_{0} & a_{1}^{\prime} & \\ & & a_{0} & \\ & & & d_{0}\end{array}\right)=X B X^{-1}$, where
$X=\left(\begin{array}{cccc}x_{0} & x_{1} & x_{2} & x_{3} \\ & x_{0} & x_{1} & \\ & & x_{0} & \\ & & & z_{0}\end{array}\right)$. From $X B=B^{\prime} X$ we have $a_{1}^{\prime}=a_{1}, a_{2}^{\prime}=a_{2}$, and this equation:

$$
\begin{equation*}
x_{0} a_{3}+x_{3} d_{0}=z_{0} a_{3}^{\prime}+x_{3} a_{0} \tag{4.23}
\end{equation*}
$$

If $a_{0}=d_{0}$, then Equation 4.23 becomes $x_{0} a_{3}=z_{0} z_{3}^{\prime}$.
Here, if $a_{3}=0$, then B is reduced to $\left(\begin{array}{cccc}a_{0} & a_{1} & a_{2} & \\ & a_{0} & a_{1} & \\ & & a_{0} & \\ & & & a_{0}\end{array}\right)$, and $Z_{G T_{4}\left(\mathbf{F}_{q}\right)}(A, B)=$ $Z_{G T_{4}\left(\mathbf{F}_{q}\right)}(A)$. Thus (A, B) is of type A_{7}, and there are $q^{2}(q-1)$ such branches,.
If $a_{3} \neq 0$, then choose z_{0} so that $a_{3}^{\prime}=1$. Thus, B is reduced to $\left(\begin{array}{cccc}a_{0} & a_{1} & a_{2} & 1 \\ & a_{0} & a_{1} & \\ & & a_{0} & \\ & & & a_{0}\end{array}\right)$,
and $Z_{G T_{4}\left(\mathbf{F}_{q}\right)}(A, B)=\left\{\left(\begin{array}{llll}x_{0} & x_{1} & x_{2} & x_{3} \\ & x_{0} & x_{1} & \\ & & x_{0} & \\ & & & x_{0}\end{array}\right)\right\}$. This (A, B) is of type R_{1}, and
there are $q^{2}(q-1)$ such branches.
When $a_{0} \neq d_{0}$, then, in Equation 4.23, choose x_{3} so that $a_{3}^{\prime}=0$. Thus B is reduced to $\left(\begin{array}{cccc}a_{0} & a_{1} & a_{2} & \\ & a_{0} & a_{1} & \\ & & a_{0} & \\ & & & d_{0}\end{array}\right)$, and $Z_{G T_{4}\left(\mathbf{F}_{q}\right)}(A, B)=\left\{\left(\begin{array}{cccc}x_{0} & x_{1} & x_{2} & \\ & x_{0} & x_{1} \\ & & x_{0} & \\ & & & z_{0}\end{array}\right)\right\}$.
This too is commutative (by a routine check). (A, B) is of type R, and there are $q^{2}(q-1)(q-2)$ such branches. There are no other cases left to analyze, so these are all the branches.
(2) Matrices of type A_{8} have either of the two non-similar canonical forms: $\left(\begin{array}{llll}a & 1 & & \\ & a & & 1 \\ & & a & \\ & & & a\end{array}\right)$, and $\left(\begin{array}{cccc}a & & 1 & \\ & a & & \\ & & a & 1 \\ & & & a\end{array}\right)$. As their centralizers are conjugate in $G L_{4}\left(\mathbf{F}_{q}\right)$, it is enough to prove for any one of the canonical forms. Let $A=\left(\begin{array}{cccc}a & 1 & & \\ & a & & 1 \\ & & a & \\ & & & a\end{array}\right)$. Then the centralizer of A is $Z_{G T_{4}\left(\mathbf{F}_{q}\right)}(A)=\left\{\left(\begin{array}{cccc}a_{0} & a_{1} & b & a_{2} \\ & a_{0} & & a_{1} \\ & & d & c \\ & & & a_{0}\end{array}\right)\right\}$. let $B \in Z_{G T_{4}\left(\mathbf{F}_{q}\right)}(A)$ be the matrix $\left(\begin{array}{cccc}a_{0} & a_{1} & b & a_{2} \\ & a_{0} & & a_{1} \\ & & & d \\ & c \\ & & & a_{0}\end{array}\right)$, and let $B^{\prime}=\left(\begin{array}{cccc}a_{0} & a_{1}^{\prime} & b^{\prime} & a_{2}^{\prime} \\ & a_{0} & & a_{1}^{\prime} \\ & & d & c^{\prime} \\ & & & a_{0}\end{array}\right)=X B X^{-1}$, where $X=\left(\begin{array}{cccc}x_{0} & x_{1} & y & x_{2} \\ & x_{0} & & x_{1} \\ & & z & w \\ & & & x_{0}\end{array}\right)$. Now $X B=X B^{\prime} X$ leads us to $a_{1}^{\prime}=a_{1}$, and the following equations:

$$
\begin{align*}
x_{0} b+y d & =z b^{\prime}+y a_{0} \tag{4.24}\\
z c+w a_{0} & =x_{0} c^{\prime}+w d \tag{4.25}\\
x_{0} a_{2}+y c & =w b^{\prime}+x_{0} a_{2}^{\prime} \tag{4.26}
\end{align*}
$$

When $a_{0}=d$: Here, Equations 4.24 and 4.25 become $x_{0} b=z b^{\prime}$, and $z c=x_{0} c^{\prime}$ respectively.

When $b=c=0$, Equation 4.26 becomes $x_{0} a_{2}=x_{0} a_{2}^{\prime}$, hence $a_{2}^{\prime}=a_{2}$. B is reduced to $\left(\begin{array}{cccc}a_{0} & a_{1} & & a_{2} \\ & a_{0} & & a_{1} \\ & & a_{0} & \\ & & & a_{0}\end{array}\right)$, and $Z_{G T_{4}\left(\mathbf{F}_{q}\right)}(A, B)=Z_{G T_{4}\left(\mathbf{F}_{q}\right)}(A) .(A, B)$ is of type A_{8}, and there are $q^{2}(q-1)$ such branches.

When $b \neq 0$, choose z such that $b^{\prime}=1$. Then, on substituting b with $b^{\prime}=1$ in Equation 4.24, we get $z=x_{0}$. Thus, we have $c=c^{\prime}$. And, in Equa-
tion 4.26, choose w so that $a_{2}^{\prime}=0$. Thus B is reduced to $\left(\begin{array}{cccc}a_{0} & a_{1} & 1 & \\ & a_{0} & & a_{1} \\ & & a_{0} & \\ & & & a_{0}\end{array}\right)$, and $Z_{G T_{4}\left(\mathbf{F}_{q}\right)}(A, B)=\left\{\left(\begin{array}{llll}x_{0} & x_{1} & y & x_{2} \\ & x_{0} & & x_{1} \\ & & x_{0} & c y \\ & & & x_{0}\end{array}\right)\right\} .(A, B)$ is of type R_{1}, and there are $q^{2}(q-1)$ such branches.

When $b=0$ and $c \neq 0$, in Equation 4.25, choose x_{0} such that $c^{\prime}=1$. Then Equation 4.26 becomes $x_{0} a_{2}+y=x_{0} a_{2}^{\prime}$. Thus, choose y so that $a_{2}^{\prime}=0$. Hence B is reduced to $\left(\begin{array}{cccc}a_{0} & a_{1} & & \\ & a_{0} & & a_{1} \\ & & a_{0} & 1 \\ & & & a_{0}\end{array}\right)$, and $Z_{G T_{4}\left(\mathbf{F}_{q}\right)}(A, B)=\left\{\left(\begin{array}{cccc}x_{0} & x_{1} & & x_{2} \\ & x_{0} & & x_{1} \\ & & x_{0} & w \\ & & & x_{0}\end{array}\right)\right\}$. (A, B) is of type R_{1}, and there are $q(q-1)$ such branches.

There are no further cases for us to look at here. We now look at the case of $a_{0} \neq d$.
When $a_{0} \neq d$: In Equation 4.24, choose y such that $b^{\prime}=0$, and in Equation 4.25, choose w such that $c^{\prime}=0$. Then Equation 4.26 becomes $x_{0} a_{2}=$ $a_{0} a_{2}^{\prime}$, implying $a_{2}^{\prime}=a_{2}$. B reduces to $\left(\begin{array}{cccc}a_{0} & a_{1} & & a_{2} \\ & a_{0} & & a_{1} \\ & & d & \\ & & & a_{0}\end{array}\right)$, and $Z_{G T_{4}\left(\mathbf{F}_{q}\right)}(A, B)=$ $\left\{\left(\begin{array}{llll}x_{0} & x_{1} & & x_{2} \\ & x_{0} & & x_{1} \\ & & z & \\ & & & x_{0}\end{array}\right)\right\}$. This too is a commutative centralizer. (A, B) is of type
R_{2}, and there are $q^{2}(q-1)(q-2)$ such branches. Now, there are no more cases to look at. Adding up all the branches of type R_{1}, we have a total of $q^{2}(q-1)+q(q-1)=q^{3}-q$ branches of type R_{1}.
(3) A matrix of type A_{9} has the following canonical form: $A=\left(\begin{array}{cccc}a & 1 & 1 & \\ & a & & \\ & & a & 1 \\ & & & a\end{array}\right)$. Then we have $Z_{G T_{4}\left(\mathbf{F}_{q)}\right)}(A)=\left\{\left(\begin{array}{cccc}a_{0} & a_{1} & b & a_{2} \\ & a_{0} & & c \\ & & a_{0} & b-c \\ & & & a_{0}\end{array}\right)\right\}$. Let $B=\left(\begin{array}{cccc}a_{0} & a_{1} & b & a_{2} \\ & a_{0} & c \\ & & a_{0} & b-c \\ & & & a_{0}\end{array}\right)$, and $B^{\prime}=\left(\begin{array}{cccc}a_{0} & a_{1}^{\prime} & b^{\prime \prime} & a_{2} \\ & a_{0} & & c^{\prime} \\ & & a_{0} & b^{\prime}-c^{\prime} \\ & & & a_{0}\end{array}\right)=X B X^{-1}$, where $X=\left(\begin{array}{cccc}x_{0} & x_{1} & y & x_{2} \\ & x_{0} & & w \\ & & x_{0} & y-w \\ & & & x_{0}\end{array}\right)$,
with $x_{0} \neq 0$. So, $X B=B^{\prime} X$ leaves us with $a_{1}^{\prime}=a_{1}, b^{\prime}=b$, and $c^{\prime}=c$, and the following equation:

$$
x_{0} a_{2}+\left(x_{1}-x_{2}\right) c=x_{0} a_{2}^{\prime}+\left(a_{1}-b\right) w
$$

When $a_{1}=b$ and $c=0$ Here Equation 4.27 ends up as $a_{2}^{\prime}=a_{2} . B$ is thus
reduced to $\left(\begin{array}{cccc}a_{0} & a_{1} & a_{1} & a_{2} \\ & a_{0} & & \\ & & a_{0} & a_{1} \\ & & & a_{0}\end{array}\right)$, and $Z_{G T_{4}\left(\mathbf{F}_{q}\right)}(A, B)=Z_{G T_{4}\left(\mathbf{F}_{q}\right)}(A)$. Thus (A, B)
is of type A_{9}, and there are $q^{2}(q-1)$ such branches.
When $a_{1} \neq b$: Here, in Equation 4.27, we choose w such that $a_{2}^{\prime}=0$. B is thus re-
duced to $\left(\begin{array}{cccc}a_{0} & a_{1} & b & \\ & a_{0} & & c \\ & & a_{0} & b-c \\ & & & a_{0}\end{array}\right)$, with $Z_{G T_{4}\left(\mathbf{F}_{q}\right)}(A, B)=\left\{\left(\begin{array}{cccc}x_{0} & x_{1} & y & x_{2} \\ & x_{0} & & \frac{\left(x_{1}-y\right)}{a_{1}-b} c \\ & & x_{0} & y-\frac{\left(x_{1}-y\right)}{a_{1}-b} c\end{array}\right)\right\}$.
(A, B) is therefore of type R_{1}, and there are $q^{2}(q-1)^{2}$ such branches.
When $a_{1}=b$, and $c \neq 0$: In Equation 4.27, choose x_{1} or y such that $a_{2}^{\prime}=0$.
Thus, B is reduced to $\left(\begin{array}{cccc}a_{0} & a_{1} & a_{1} & \\ & a_{0} & & c \\ & & a_{0} & a_{1}-c \\ & & & a_{0}\end{array}\right)$. So $Z_{G T_{4}\left(\mathbf{F}_{q}\right)}(A, B)=\left\{\left(\begin{array}{cccc}x_{0} & x_{1} & x_{1} & x_{2} \\ & x_{0} & & w \\ & & x_{0} & x_{1}-w \\ & & & x_{0}\end{array}\right)\right\}$.
This (A, B) too is of type R_{1}, and there are $q(q-1)^{2}$ such branches.
With this, we have no other cases to look at. Thus, we have q^{3} branches of type A_{9}, and $q(q-1)^{2}+q^{2}(q-1)^{2}=\left(q^{2}-q\right)\left(q^{2}-1\right)$ branches of type R_{1}.
4.2. Branching rules for type B. Matrices of types $B 1, B 2, B 3, B 4, B 5$ are in block form of the kind $A=\left(\begin{array}{ll}C_{1} & \\ & C_{2}\end{array}\right)$, where $C_{1} \in G T_{m_{1}}\left(\mathbf{F}_{q}\right)$, and $C_{2} \in G T_{m_{2}}\left(\mathbf{F}_{q}\right)$, where $m_{1}+m_{2}=4$. Thus, $Z_{G T_{4}\left(\mathbf{F}_{q}\right)}(A)=\left\{\left(\begin{array}{cc}X_{1} & \\ & X_{2}\end{array}\right)\right\}$ where $X_{1} \in Z_{G T_{m_{1}}}\left(C_{1}\right)$ and $X_{2} \in$ $Z_{G T_{m_{2}}}\left(C_{2}\right)$. Thus, the branches of A are of the form $\left(\begin{array}{ll}D_{1} & \\ & D_{2}\end{array}\right)$, where D_{1} is a branch of C_{1}, and D_{2} is a branch of C_{2}. With this argument, we can prove the following proposition.

Proposition 4.10. The branching rules are as follows:
(1) For a matrix of type B_{1}, there are:

Branch	No. of Branches	Branch	No. of Branches
B_{1}	$(q-1)^{2}$	R_{3}	$(q-1)^{2}$
B_{5}	$2(q-1)^{2}$	R_{4}	$2(q-1)^{2}(q-2)$
B_{6}	$2(q-1)^{2}(q-2)$	R_{5}	$(q-1)^{2}(q-2)^{2}$

(2) For a matrix of type B_{2}, there are:

Branch	No. of Branches	Branch	No. of Branches
B_{2}	$(q-1)^{2}$	R_{2}	$(q-1)^{2}$
B_{3}	$(q-1)^{2}$	R_{4}	$(q-1)^{2}(q-2)$
B_{4}	$(q-1)^{2}$	R_{5}	$(q-1)^{2}(q-2)(q-3)$
B_{6}	$(q-1)^{2}(q-2)$		

(3) For a matrix of type B_{3}, there are $q(q-1)^{2}$ branches of type $B_{3}, q(q-1)^{2}$ branches of type R_{2}, and $q(q-1)^{2}(q-2)$ branches of type R_{4}.
(4) For a matrix of type B_{4}, there are, $q(q-1)^{2}$ branches of type $B_{4},\left(q^{2}-1\right)(q-1)$ branches of type R_{2}, and $q(q-1)^{2}(q-2)$ branches of type R_{4}.
(5) For a matrix of type B_{5}, there are $q(q-1)^{2}$ branches of type $B_{5}, q(q-1)^{2}$ branches of type R_{3}, and $q(q-1)^{2}(q-2)$ branches of type R_{4}.

Finally,
Proposition 4.11. For a matrix of type B_{6}, there are, $(q-1)^{3}$ branches of type B_{6}, $(q-1)^{3}$ branches of type R_{4}, and $(q-1)^{3}(q-2)$ branches of type R_{5}.
Proof. A matrix of type B_{6} has the canonical form: $A=\left(\begin{array}{ccc}a & & \\ & a & \\ & & \\ & & c\end{array}\right)$. Here, $Z_{G T_{4}\left(\mathbf{F}_{q}\right)}(A)=$ $\left\{\left.\left(\begin{array}{lll}C & & \\ & c_{0} & \\ & & d_{0}\end{array}\right) \right\rvert\, C \in G T_{2}\left(\mathbf{F}_{q}\right), c_{0}, d_{0} \neq 0\right\}$. Enumerating the conjugacy classes of $G T_{2}\left(\mathbf{F}_{q}\right)$ gives us the branches mentioned.
4.3. Branching Rules of the New Types. While determining the branching rules of the existing types of conjugacy classes of $G T_{4}\left(\mathbf{F}_{q}\right)$, we came across six new types of
simultaneous conjugacy classes of pairs of commuting matrices. We called them $t N T_{1}$, $t N T_{2}, t N T_{3}, t N T_{4}, t N T_{5}$, and $N R_{1}$. In this subsection, we shall focus on the branching rules of these new types.

Proposition 4.12. A commuting tuple of type $t N T_{1}$ has $q^{2}(q-1)$ branches of type $t N T_{1}$, $q^{2}(q-1)$ branches of type R_{1}, and $q^{2}(q-1)(q-2)$ branches of type R_{3}.

Proof. For a commuting pair (A, B) of matrices of type $t N T_{1}$, the centralizer is $Z_{G T_{4}\left(\mathbf{F}_{q}\right)}(A, B)=$ $\left\{\left.\left(\begin{array}{cccc}a_{0} & a_{1} & & a_{3} \\ & a_{0} & & \\ & & c_{0} & c_{1} \\ & & & c_{0}\end{array}\right) \right\rvert\, a_{0}, c_{0} \neq 0\right\}$. Let $C=\left(\begin{array}{cccc}a_{0} & a_{1} & & a_{3} \\ & a_{0} & & \\ & & c_{0} & c_{1} \\ & & & c_{0}\end{array}\right)$, and $C^{\prime}=\left(\begin{array}{ccc}a_{0} & a_{1}^{\prime} & \\ & a_{0}^{\prime} & \\ & & c_{0} \\ & c_{1}^{\prime} \\ & & \\ & & \\ & & c_{0}\end{array}\right)=$ $X C X^{-1}$ by $X=\left(\begin{array}{cccc}x_{0} & x_{1} & & \\ & x_{3} \\ & x_{0} & & \\ & & z_{0} & z_{1} \\ & & & z_{0}\end{array}\right) . X C=C^{\prime} X$ leads us to $a_{1}^{\prime}=a_{1}, c_{1}^{\prime}=c_{1}$, and just one equation:

$$
\begin{equation*}
x_{0} a_{3}+x_{3} b_{0}=z_{0} a_{3}^{\prime}+x_{3} a_{0} . \tag{4.28}
\end{equation*}
$$

When $a_{0}=c_{0}$: Here Equation 4.28 becomes $x_{0} a_{3}=z_{0} a_{3}^{\prime}$.
So, we have two cases over here: $a_{3}=0$, and $a_{3} \neq 0$.
When $a_{3}=0, C$ is reduced to $\left(\begin{array}{cccc}a_{0} & a_{1} & & \\ & a_{0} & & \\ & & a_{0} & c_{1} \\ & & & a_{0}\end{array}\right)$, with $Z_{G T_{4}\left(\mathbf{F}_{q}\right)}(A, B, C)=Z_{G T_{4}\left(\mathbf{F}_{q}\right)}(A, B)$.
(A, B, C) is of type $t N T_{1}$, and there are $q^{2}(q-1)$ such branches.
When $a_{3} \neq 0$, we choose z_{0} such that $a_{3}^{\prime}=1$. Here, C is reduced to $\left(\begin{array}{cccc}a_{0} & a_{1} & & 1 \\ & a_{0} & & \\ & & a_{0} & c_{1} \\ & & & a_{0}\end{array}\right)$, with $Z_{G T_{4}\left(\mathbf{F}_{q)}\right)}(A, B, C)=\left\{\left(\begin{array}{cccc}x_{0} & x_{1} & & x_{3} \\ & x_{0} & & \\ & & x_{0} & z_{1} \\ & & & x_{0}\end{array}\right)\right\}$. This (A, B, C) is of type R_{1}, and there are $q^{2}(q-1)$ such branches.

So now, with $a_{0}=c_{0}$, we have no other cases left to analyse. We move on to the case of $a_{0} \neq c_{0}$.

When $a_{0} \neq c_{0}$: Here, in Equation 4.28, we can choose x_{3} so that $a_{3}^{\prime}=0$. So C is reduced to $\left(\begin{array}{cccc}a_{0} & a_{1} & & \\ & a_{0} & & \\ & & c_{0} & c_{1} \\ & & & c_{0}\end{array}\right)$, with $Z_{G T_{4}\left(\mathbf{F}_{q)}\right)}(A, B, C)=\left\{\left(\begin{array}{cccc}x_{0} & x_{1} & & \\ & x_{0} & & \\ & & z_{0} & z_{1} \\ & & & z_{0}\end{array}\right)\right\}$. This (A, B, C) is of type R_{3}, and there are $q^{2}(q-1)(q-2)$ such branches.

So, with this, we have no other cases to look at.

Proposition 4.13. The new type $t N T_{2}$ has $q^{2}(q-1)$ branches of type $t N T_{2}, q^{2}(q-1)(q-$ 2) branches of type R_{2}, and $q^{2}\left(q^{2}-1\right)$ branches of type $N R_{1}$.

Proof. For a commuting pair (A, B) of type $t N T_{2}$, the centralizer is

$$
\begin{aligned}
& Z_{G T_{4}\left(\mathbf{F}_{q}\right)}(A, B)=\left\{\left.\left(\begin{array}{cccc}
a_{0} & & b_{0} & b_{1} \\
& a_{0} & b_{2} & b_{3} \\
& & a_{0} & \\
& & & c_{0}
\end{array}\right) \right\rvert\, \begin{array}{c}
a_{0}, b_{0}, b_{1} \\
b_{2}, b_{3}, c_{0} \in \mathbf{F}_{q}
\end{array}\right\} . \text { Let } C=\left(\begin{array}{cccc}
a_{0} & & b_{0} & b_{1} \\
& a_{0} & b_{2} & b_{3} \\
& & a_{0} & \\
& & & c_{0}
\end{array}\right), \\
& \text { and } C^{\prime}=\left(\begin{array}{cccc}
a_{0} & & b_{0}^{\prime} & b_{1}^{\prime} \\
& a_{0} & b_{2}^{\prime} & b_{3}^{\prime} \\
& & a_{0} & \\
& & & c_{0}
\end{array}\right)=X C X^{-1} \text { for some } X=\left(\begin{array}{cccc}
x_{0} & & y_{0} & y_{1} \\
& x_{0} & y_{2} & y_{3} \\
& & x_{0} & \\
& & & z_{0}
\end{array}\right) \text {. So, equating }
\end{aligned}
$$

$X C=C^{\prime} X$ leads us to $b_{0}^{\prime}=b_{0}, b_{2}^{\prime}=b_{2}$, and the following equations:

$$
\begin{align*}
& x_{0} b_{1}+y_{1} c_{0}=z_{0} b_{1}^{\prime}+y_{1} a_{0} \tag{4.29}\\
& x_{0} b_{3}+y_{3} c_{0}=z_{0} b_{3}^{\prime}+y_{3} a_{0} \tag{4.30}
\end{align*}
$$

We have two main cases: $a_{0}=c_{0}$, and $a_{0} \neq c_{0}$:
When $a_{0}=c_{0}$: Here, Equation 4.29 becomes $x_{0} b_{1}=z_{0} b_{1}^{\prime}$, and Equation 4.30 becomes $x_{0} b_{3}=z_{0} b_{3}^{\prime}$.
When $b_{1}=b_{3}=0, C$ is reduced to $\left(\begin{array}{cccc}a_{0} & & b_{0} & \\ & a_{0} & b_{2} & \\ & & a_{0} & \\ & & & a_{0}\end{array}\right)$, with $Z_{G T_{4}\left(\mathbf{F}_{q}\right)}(A, B, C)=$ $Z_{G T_{4}\left(\mathbf{F}_{q}\right)}(A, B)$. Thus (A, B, C) is of type $t N T_{2}$, and there are $q^{2}(q-1)$ such branches.

When $b_{1} \neq 0$. In Equation 4.29, choose z_{0} such that $b_{1}^{\prime}=1$. Then, on replacing b_{1} and b_{1}^{\prime} by 1 in the same equation, we get $z_{0}=x_{0}$. Hence, Equation 4.30 becomes $x_{0} b_{3}=$
$x_{0} b_{3}^{\prime}$, hence $b_{3}^{\prime}=b_{3}$. C is reduced to $\left(\begin{array}{cccc}a_{0} & & b_{0} & 1 \\ & a_{0} & b_{2} & b_{3} \\ & & a_{0} & \\ & & & a_{0}\end{array}\right)$, with $Z_{G T_{4}\left(\mathbf{F}_{q}\right)}(A, B, C)=$ $\left\{\left(\begin{array}{cccc}x_{0} & & y_{0} & y_{1} \\ & x_{0} & y_{2} & y_{3} \\ & & x_{0} & \\ & & & x_{0}\end{array}\right)\right\} .(A, B, C)$ is of type $N R_{1}$. There are $q^{3}(q-1)$ such branches.

When $b_{1}=0$, and $b_{3} \neq 0$. In Equation 4.30, choose z_{0} so that $b_{3}^{\prime}=1$. Thus C is reduced to $\left(\begin{array}{cccc}a_{0} & & b_{0} & \\ & a_{0} & b_{2} & 1 \\ & & a_{0} & \\ & & & a_{0}\end{array}\right)$, with $Z_{G T_{4}\left(\mathbf{F}_{q)}\right)}(A, B, C)=\left\{\left(\begin{array}{cccc}x_{0} & & y_{0} & y_{1} \\ & x_{0} & y_{2} & y_{3} \\ & & x_{0} & \\ & & & x_{0}\end{array}\right)\right\}$.
(A, B, C) is of type $N R_{1}$. There are $q^{2}(q-1)$ such branches. We have exhausted all the cases under $a_{0}=c_{0}$.
When $a_{0} \neq c_{0}$: Here, in Equation 4.29, choose y_{1} so that $b_{1}^{\prime}=0$, and in Equa-
tion 4.30, choose y_{3} so that $b_{3}^{\prime}=0 . C$ is thus reduced to $\left(\begin{array}{llll}a_{0} & & b_{0} & \\ & a_{0} & b_{2} & \\ & & a_{0} & \\ & & & b_{0}\end{array}\right)$, with $Z_{G T_{4}\left(\mathbf{F}_{q}\right)}(A, B, C)=\left\{\left(\begin{array}{llll}x_{0} & & y_{0} & \\ & x_{0} & y_{2} & \\ & & x_{0} & \\ & & & z_{0}\end{array}\right)\right\}$. This (A, B, C) is of type R_{2}, and there are $q^{2}(q-1)(q-2)$ such branches.

This leaves us with no further cases to analyse. Adding up the branches of type $N R_{1}$, we have a total of $q^{2}(q-1)+q^{3}(q-1)=q^{2}\left(q^{2}-1\right)$ branches of type $N R_{1}$.

Proposition 4.14. A commuting pair of type $t N T_{3}$ has $q^{2}(q-1)$ branches of type $t N T_{3}$, $q^{2}(q-1)$ branches of type $R_{1}, q^{2}(q-1)(q-2)$ branches of type R_{2}, and $q\left(q^{2}-1\right)$ branches of type $N R_{1}$.

Proof. Let (A, B) be a pair of commuting matrices of type $t N T_{3}$. Their common centralizer is $Z_{G T_{4}\left(\mathbf{F}_{q}\right)}(A, B)=\left\{\left.\left(\begin{array}{cc}D & E \\ & D_{11} I_{2}\end{array}\right) \right\rvert\, D \in T_{2}\left(\mathbf{F}_{q}\right), E \in M_{2}\left(\mathbf{F}_{q}\right)\right\}$. Let $C=\left(\begin{array}{cc}D & E \\ & a_{0} I_{2}\end{array}\right)$, where $D=\left(\begin{array}{cc}a_{0} & a_{1} \\ & b_{0}\end{array}\right)$ and $E=\left(\begin{array}{cc}b_{0} & b_{1} \\ b_{2} & b_{3}\end{array}\right)$. Let $C^{\prime}=\left(\begin{array}{cc}D^{\prime} & E^{\prime} \\ & a_{0} I_{2}\end{array}\right)=X C X^{-1}$, where $X=$ $\left(\begin{array}{cc}Z & Y \\ & x_{0} I_{2}\end{array}\right) \in Z_{G T_{4}\left(\mathbf{F}_{q}\right)}(A, B)$, where $Z=\left(\begin{array}{cc}x_{0} & x_{1} \\ & z_{0}\end{array}\right) \in G T_{2}\left(\mathbf{F}_{q}\right)$, and $Y=\left(\begin{array}{cc}y_{0} & y_{1} \\ y_{2} & y_{3}\end{array}\right)$.

So $X C=C^{\prime} X$ leaves us with the following $Z D=D^{\prime} Z$. Thus D can be taken to be a representative of a conjugacy class in $G T_{2}\left(\mathbf{F}_{q}\right)$, and $Z \in Z_{G T_{2}\left(\mathbf{F}_{q}\right)}(D)$. We are therefore left with the following equation:

$$
Z E+a_{0} Y=D Y+x_{0} E^{\prime}
$$

Exapanding this, we have:

$$
\left(\begin{array}{cc}
x_{0} b_{0}+x_{1} b_{2} & x_{0} b_{1}+x_{1} b_{3} \tag{4.31}\\
z_{0} b_{2} & z_{0} b_{3}
\end{array}\right)+\left(\begin{array}{cc}
-a_{1} y_{2} & -a_{1} y_{3} \\
\left(a_{0}-b_{0}\right) y_{2} & \left(a_{0}-b_{0}\right) y_{3}
\end{array}\right)=\left(\begin{array}{ll}
x_{0} b_{0}^{\prime} & x_{0} b_{1}^{\prime} \\
x_{0} b_{2}^{\prime} & x_{0} b_{3}^{\prime}
\end{array}\right)
$$

When $D=a_{0} I_{2}$: Here Equation 4.31 becomes:

$$
\left(\begin{array}{cc}
x_{0} b_{0}+x_{1} b_{2} & x_{0} b_{1}+x_{1} b_{2} \\
z_{0} b_{2} & z_{0} b_{3}
\end{array}\right)+=\left(\begin{array}{cc}
x_{0} b_{0}^{\prime} & x_{0} b_{1}^{\prime} \\
x_{0} b_{2}^{\prime} & x_{0} b_{3}^{\prime}
\end{array}\right)
$$

When $b_{2}=b_{3}=0$, we have $b_{0}^{\prime}=b_{0}$, and $b_{1}^{\prime}=b_{1}$. Thus, C is reduced to $\left(\begin{array}{ccc}a_{0} & & b_{0}\end{array} b_{1}\left(\begin{array}{lll} & & a_{0} \\ & & \\ & & a_{0} \\ \\ & & \\ & & \\ & & \\ & & \end{array}\right)\right.$,
and $Z_{G T_{4}\left(\mathbf{F}_{q}\right)}(A, B, C)=Z_{G T_{4}\left(\mathbf{F}_{q}\right)}(A, B) . \quad(A, B, C)$ is of type $t N T_{3}$, and there are $q^{2}(q-1)$ such branches.

When $b_{2} \neq 0$, choose z_{0} such that $b_{2}^{\prime}=1$. Thus, on replacing b_{0} by $b_{0}^{\prime}=1$ in Equation 4.31, we get $z_{0}=x_{0}$. Hence $b_{3}^{\prime}=b_{3}$. With these, Eqaution 4.31 becomes

$$
\left(\begin{array}{cc}
x_{0} b_{0}+x_{1} & x_{0} b_{1}+x_{1} b_{2} \\
1 & b_{3}
\end{array}\right)+=\left(\begin{array}{cc}
x_{0} b_{0}^{\prime} & x_{0} b_{1}^{\prime} \\
1 & b_{3}^{\prime}
\end{array}\right)
$$

Choose x_{1} so that $b_{0}^{\prime}=0$. On replacing b_{0} by $b_{0}^{\prime}=0$ in the above equation, we have $x_{1}=0$. Thus $b_{1}^{\prime}=b_{1}$. So C is reduced to $\left(\begin{array}{cccc}a_{0} & & & b_{1} \\ & a_{0} & 1 & b_{3} \\ & & a_{0} & \\ & & & \\ & & & a_{0}\end{array}\right)$ with $Z_{G T_{4}\left(\mathbf{F}_{q}\right)}(A, B, C)=$ $\left\{\left(\begin{array}{llll}x_{0} & & y_{0} & y_{1} \\ & x_{0} & y_{2} & y_{3} \\ & & x_{0} & \\ & & & x_{0}\end{array}\right)\right\} .(A, B, C)$ is of type $N R_{1}$, and there are $q^{2}(q-1)$ such branches.

When $b_{2}=0$ and $b_{3} \neq 0$. Choose z_{0} so that $b_{3}^{\prime}=1$. Equation 4.31 becomes

$$
\left(\begin{array}{cc}
x_{0} b_{0} & x_{0} b_{1}+x_{1} \\
0 & 1
\end{array}\right)_{46}+=\left(\begin{array}{cc}
x_{0} b_{0}^{\prime} & x_{0} b_{1}^{\prime} \\
0 & 1
\end{array}\right)
$$

Hence, $b_{0}^{\prime}=b_{0}$, and choose x_{1} so that $b_{1}^{\prime}=0 . C$ is reduced to $\left(\begin{array}{cccc}a_{0} & & b_{0} & \\ & a_{0} & & 1 \\ & & a_{0} & \\ & & & a_{0}\end{array}\right)$, with $Z_{G T_{4}\left(\mathbf{F}_{q}\right)}(A, B, C)=\left\{\left(\begin{array}{llll}x_{0} & & y_{0} & y_{1} \\ & x_{0} & y_{2} & y_{3} \\ & & x_{0} & \\ & & & x_{0}\end{array}\right)\right\}$. This (A, B, C) too is of type $N R_{1}$, and there are $q(q-1)$ such branches.

With this, we have no other cases to analyse when $D=a_{0} I_{2}$.
When $D=\left(\begin{array}{cc}a_{0} & 1 \\ & a_{0}\end{array}\right)$: Here $Z=\left(\begin{array}{ll}x_{0} & x_{1} \\ & x_{0}\end{array}\right)$. Equation 4.31 becomes:

$$
\left(\begin{array}{cc}
x_{0} b_{0}+x_{1} b_{2} & x_{0} b_{1}+x_{1} b_{3} \\
x_{0} b_{2} & x_{0} b_{3}
\end{array}\right)+\left(\begin{array}{cc}
-y_{2} & -y_{3} \\
0 & 0
\end{array}\right)=\left(\begin{array}{cc}
x_{0} b_{0}^{\prime} & x_{0} b_{1}^{\prime} \\
x_{0} b_{2}^{\prime} & x_{0} b_{3}^{\prime}
\end{array}\right)
$$

We have from this $b_{2}^{\prime}=b_{2}, b_{3}^{\prime}=b_{3}$, and we can choose y_{2} so that $b_{0}^{\prime}=0$ and y_{3} such that $b_{1}^{\prime}=0$. Hence C is reduced to $\left(\begin{array}{cccc}a_{0} & 1 & & \\ & a_{0} & b_{2} & b_{3} \\ & & a_{0} & \\ & & & a_{0}\end{array}\right)$, with $Z_{G T_{4}\left(\mathbf{F}_{q)}\right)}(A, B, C)=$ $\left\{\left(\begin{array}{cccc}x_{0} & x_{1} & x_{2} & x_{3} \\ & x_{0} & b_{2} x_{1} & b_{3} x_{1} \\ & & x_{0} & \\ & & & x_{0}\end{array}\right)\right\}$. This (A, B, C) is of type R_{1}, and there are $q^{2}(q-1)$ such branches.
When $C=\left(\begin{array}{ll}a_{0} & \\ & c_{0}\end{array}\right), c_{0} \neq a_{0}$: Here $Z=\left(\begin{array}{cc}x_{0} & \\ & z_{0}\end{array}\right)$. Equation 4.31 becomes:

$$
\left(\begin{array}{cc}
x_{0} b_{0} & x_{0} b_{1} \\
z_{0} b_{2} & z_{0} b_{3}
\end{array}\right)+\left(\begin{array}{cc}
\\
\left(a_{0}-c_{0}\right) y_{2} & \left(a_{0}-c_{0}\right) y_{3}
\end{array}\right)=\left(\begin{array}{ll}
x_{0} b_{0}^{\prime} & x_{0} b_{1}^{\prime} \\
x_{0} b_{2}^{\prime} & x_{0} b_{3}^{\prime}
\end{array}\right)
$$

We have $b_{0}^{\prime}=b_{0}$ and $b_{1}^{\prime}=b_{1}$. Choose y_{2} and y_{3} such that $b_{2}^{\prime}=b_{3}^{\prime}=0 . C$ is reduced to

$$
\left(\begin{array}{cccc}
a_{0} & & b_{0} & b_{1} \\
& c_{0} & & \\
& & a_{0} & \\
& & & a_{0}
\end{array}\right) \text {, and }\left\{\left(\begin{array}{cccc}
x_{0} & & y_{0} & y_{1} \\
& z_{0} & & \\
& & x_{0} & \\
& & & x_{0}
\end{array}\right)\right\} . \text { Here }(A, B, C) \text { is of type } R_{2}, \text { and there }
$$

are $q^{2}(q-1)(q-2)$ such branches.
With this, we have no other cases to deal with.
Adding up the branches of type $N R_{1}$, we have a total of $q(q-1)+q^{2}(q-1)=q\left(q^{2}-1\right)$ branches of this type.

Proposition 4.15. For a pair of commuting matrices of type $t N T_{4}$, there are $q^{2}(q-1)$ branches of type $t N T_{4}, q^{2}(q-1)^{2}$ branches of type R_{1}, and $q\left(q^{2}-1\right)(q-1)$ branches of type $N R_{1}$.

Proof. The centralizer of a commuting pair (A, B) of this type is

$$
Z_{G T_{4}\left(\mathbf{F}_{q)}\right)}(A, B)=\left\{\left.\left(\begin{array}{ccc}
a_{0} & a_{1} & B_{1} \\
& a_{0} & B_{1} \\
& a_{0} & a_{0}
\end{array}\right) \right\rvert\, a_{0} \neq 0, B_{1} \in M_{2}(F q)\right\} .
$$

This was seen, and proved in [Sh1, , Lemma 5.14] as the new type $N T_{1}$.

Proposition 4.16. For a commuting pair of type $t N T_{5}$, there are $q^{2}(q-1)$ branches of type $t N T_{5}$, and $q\left(q^{2}-1\right)(q-1)$ branches of type R_{1}.

Proof. The centralizer of a commuting pair (A, B) of type $t N T_{5}$ is:

$$
Z_{G T_{4}\left(\mathbf{F}_{q}\right)}(A, B)=\left\{\left.\left(\begin{array}{cccc}
a_{0} & a_{1} & b_{0} & b_{1} \\
& a_{0} & & b_{0} \\
& & a_{0} & c_{1} \\
& & & a_{0}
\end{array}\right) \right\rvert\, a_{0} \neq 0\right\} .
$$

Let $C=\left(\begin{array}{cccc}a_{0} & a_{1} & b_{0} & b_{1} \\ & a_{0} & & b_{0} \\ & & a_{0} & c_{1} \\ & & & a_{0}\end{array}\right)$, and $C^{\prime}=\left(\begin{array}{cccc}a_{0} & a_{1} & b_{0}^{\prime} & b_{1}^{\prime} \\ & a_{0} & & b_{0}^{\prime} \\ & & a_{0} & c_{1} \\ & & & a_{0}\end{array}\right)=X C X^{-1}$, for some $X=$ $\left(\begin{array}{cccc}x_{0} & x_{1} & y_{0} & y_{1} \\ & x_{0} & & y_{0} \\ & & x_{0} & z_{1} \\ & & & x_{0}\end{array}\right)$. So $X C=C^{\prime} X$ leads us to $b_{0}^{\prime}=b_{0}$, and the equation:

$$
\begin{equation*}
x_{0} b_{1}+x_{1} b_{0}+y_{0} c_{1}=x_{0} b_{1}^{\prime}+z_{1} b_{0}+y_{0} a_{1} . \tag{4.32}
\end{equation*}
$$

We have two main cases: $a_{1}=c_{1}$ and $a_{1} \neq c_{1}$.
When $a_{1}=c_{1}$: Equation 4.32 becomes $x_{0} b_{1}+x_{1} b_{0}=x_{0} b_{1}^{\prime}+z_{1} b_{0}$.
When $b_{0}=0$, we have $b_{1}^{\prime}=b_{1}$. C is reduced to $\left(\begin{array}{cccc}a_{0} & a_{1} & & b_{1} \\ & a_{0} & & \\ & & a_{0} & a_{1} \\ & & & a_{0}\end{array}\right)$, with $Z_{G T_{4}\left(\mathbf{F}_{q}\right)}(A, B, C)=$
$Z_{G T_{4}\left(\mathbf{F}_{q}\right)}(A, B) .(A, B, C)$ is thus of type $t N T_{5}$, and there are $q^{2}(q-1)$ such branches.

When $b_{0} \neq 0$, choose z_{1} such that $b_{1}^{\prime}=0$. C is reduced to $\left(\begin{array}{cccc}a_{0} & a_{1} & b_{0} & \\ & a_{0} & & b_{0} \\ & & a_{0} & a_{1} \\ & & & a_{0}\end{array}\right)$, with $Z_{G T_{4}\left(\mathbf{F}_{q)}\right)}(A, B, C)=\left\{\left(\begin{array}{llll}x_{0} & x_{1} & y_{0} & y_{1} \\ & x_{0} & & y_{0} \\ & & x_{0} & x_{1} \\ & & & x_{0}\end{array}\right)\right\} .(A, B, C)$ is of type R_{1}, and there are $q(q-1)^{2}$ such branches.

So, we have no other cases to look at for $a_{1}=c_{1}$.
$a_{1} \neq c_{1}$: In Equation 4.32, choose y_{0} so that $b_{1}^{\prime}=0$. Thus, C is reduced to $\left(\begin{array}{cccc}a_{0} & a_{1} & b_{0} & \\ & a_{0} & & b_{0} \\ & a_{0} & c_{1} \\ & & & a_{0}\end{array}\right)$,
with $Z_{G T_{4}\left(\mathbf{F}_{q}\right)}(A, B, C)=\left\{\left(\begin{array}{cccc}x_{0} & x_{1} & \frac{b_{0}\left(z_{1}-x_{1}\right)}{c_{1}-a_{1}} & \\ & x_{0} & & \frac{b_{0}\left(z_{1}-x_{1}\right)}{c_{1}-a_{1}} \\ & & x_{0} & z_{1} \\ & & & x_{0}\end{array}\right)\right\}$. Here (A, B, C) is of type R_{1}, and there are $q^{2}(q-1)^{2}$ such branches.

With this, we have no other case to look at. So, adding up the branches of type R, we have a total of $q(q-1)^{2}+q^{2}(q-1)^{2}=q\left(q^{2}-1\right)(q-1)$ branches of type R_{1}.

Proposition 4.17. For a commuting pair of type $N R_{1}$, there are $q^{4}(q-1)$ branches of type $N R_{1}$.

Proof. The centralizer of a commuting pair (A, B) of type $N R_{1}$ is

$$
Z_{G T_{4}\left(\mathbf{F}_{q)}\right)}(A, B)=\left\{\left.\left(\begin{array}{cc}
a_{0} I_{2} & D \\
& a_{0} I_{2}
\end{array}\right) \right\rvert\, a_{0} \neq 0, D \in M_{2}\left(\mathbf{F}_{q}\right)\right\} .
$$

The result follows, as this is a commutative subgroup.

5. Branching in $U T_{3}(q)$

For the unitriangular group $U T_{3}\left(\mathbf{F}_{q}\right)$, the conjugacy classes are as follows:

Canonical Form	No. of Classes	Centralizer	Name of Type
$\begin{gathered} \left(\begin{array}{cc} 1 & 0 \end{array}\right) \\ \begin{array}{c} 0 \\ 0 \\ 0 \end{array} \\ 0 \end{gathered} 0$	q	$U T_{3}\left(\mathbf{F}_{q}\right)$	C
$\begin{gathered} \left(\begin{array}{cc} 1 & a \\ 0 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{array}\right), \\ a \in \mathbf{F}_{q}^{*} . \end{gathered}$	$(q-1)$	$\left\{\left.\left(\begin{array}{cc}1 & x_{0} \\ & x_{1} \\ & 1\end{array}\right) \right\rvert\, x_{0}, x_{1} \in \mathbf{F}_{q}\right\}$	R_{1}
$\begin{gathered} \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & a \\ 0 & 0 & 1 \end{array},\right. \\ a \in \mathbf{F}_{\sigma}^{*} . \end{gathered}$	$(q-1)$	$\left\{\left.\left(\begin{array}{cc}1 & x_{1} \\ 1 & x_{0} \\ & 1\end{array}\right) \right\rvert\, x_{1}, x_{0} \in \mathbf{F}_{q}\right\}$	R_{1}
$\begin{aligned} & \left(\begin{array}{lll} 1 & a & 0 \\ 0 & 1 & b \\ 0 & 1 & b \end{array}\right), \\ & a, b \in \mathbf{F}_{q}^{*} . \end{aligned}$	$(q-1)^{2}$	$\left\{\left.\left(\begin{array}{ccc}1 x_{0} & x_{1} \\ 1 & \frac{b}{a} x_{0} \\ & 1\end{array}\right) \right\rvert\, x_{0}, x_{1} \in \mathbf{F}_{q}\right\}$	R_{2}

We see that there are two types here: central C and regular R. Note that the centralizers of both regulars R_{1} and R_{2} are isomorphic (not conjugate). For the type C, the centralizer is full group $U T_{3}\left(\mathbf{F}_{q}\right)$, thus all types appear in the first column. For the regular type, it has q^{2} branches of the same R type, as the centralizer is commutative, of size q^{2}, hence the number of branches is q^{2}.

Theorem 5.1. The branching matrix (with the order of type $C, R 1$):

$$
B_{U T_{3}\left(\mathbf{F}_{q}\right)}=\left(\begin{array}{cc}
q & 0 \\
q^{2}-1 & q^{2}
\end{array}\right) .
$$

We prove the branching rules below.

Proposition 5.2. An upper unitriangular matrix of type C has q branches of type C, and $q^{2}-1$ branches of the type R.

Proof. The result follows as matrices of this type are central.
Proposition 5.3. A matrix of of any of the R types has q^{2} branches of the same R type.

Proof. A matrix of any of the R types is a Regular type, hence its centralizer in $U T_{3}\left(\mathbf{F}_{q}\right)$ is commutative, of size q^{2}, hence the number of branches is q^{2}.

6. Branching in $U T_{4}(q)$

We shift our focus to commuting tuples of matrices in $U T_{4}\left(\mathbf{F}_{q}\right)$. The conjugacy classes according to the types of this group are listed in Appendix B.

Theorem 6.1. The branching rules for the upper unitriangular group is given by the following matrix (with order $C, A_{1}, A_{2}, A_{3}, R_{1}, R_{2}$):

$$
B_{U T_{4}\left(\mathbf{F}_{q}\right)}=\left(\begin{array}{cccccc}
q & 0 & 0 & 0 & 0 & 0 \\
2(q-1) & q^{2} & 0 & 0 & 0 & 0 \\
(q-1)^{2} & 0 & q^{2} & 0 & 0 & 0 \\
q\left(q^{2}-1\right) & 0 & 0 & q^{2} & 0 & 0 \\
q(q-1) & q\left(q^{2}-1\right) & q^{2}(q-1) & q\left(q^{2}-1\right) & q^{4} & 0 \\
\left(q^{2}-1\right)(q-1) & q^{2}(q-1) & q\left(q^{2}-1\right) & 0 & 0 & q^{3}
\end{array}\right) .
$$

The first column corresponds to type C, thus all types of $U T_{4}\left(\mathbf{F}_{q}\right)$ appears. The last two columns are the regular types. There are no new types here. The proof for other columns is listed below in propositions.

Proposition 6.2. An upper unitriangular matrix of type A_{1} has q^{2} branches of type A_{1}, and $q\left(q^{2}-1\right)$ branches of type R_{1}, and $q^{2}(q-1)$ branches of type R_{2}.

Proof. Let $A=\left(\begin{array}{cccc}1 & & & \\ & 1 & & a \\ & & 1 & \\ & & & 1\end{array}\right)$, a matrix of type A_{1}. The centralizer $Z_{U T_{4}}(A)$ of A
is: $\left\{\left.\left(\begin{array}{cccc}1 & & x_{1} & x_{2} \\ & 1 & y_{0} & y_{1} \\ & & 1 & z_{0} \\ & & & 1\end{array}\right) \right\rvert\, x_{i}, y_{i}, z_{0} \in \mathbf{F}_{q}\right\}$. Let $X=\left(\begin{array}{cccc}1 & & x_{1} & x_{2} \\ & 1 & y_{0} & y_{1} \\ & & 1 & z_{0} \\ & & & 1\end{array}\right)$, be an element of $Z_{U T_{4}}(A)$. Let $B=\left(\begin{array}{cccc}1 & & b_{1} & b_{2} \\ & 1 & c_{0} & c_{1} \\ & & 1 & d_{0} \\ & & & 1\end{array}\right)$, and $B^{\prime}=\left(\begin{array}{cccc}1 & & b_{1}^{\prime} & b_{2}^{\prime} \\ & 1 & c_{0}^{\prime} & c_{1}^{\prime} \\ & & 1 & d_{0}^{\prime} \\ & & & 1\end{array}\right)$ be the conjugate of
B by X, i.e., $B^{\prime}=X B X^{-1}$. Thus equating $X B=B^{\prime} X$ leads us to $b_{0}^{\prime}=b_{0}, c_{0}^{\prime}=c_{0}$, $c_{1}^{\prime}=c_{1}$, and the following equations:

$$
\begin{aligned}
& x_{0} c_{0}+b_{1}=y_{0} b_{0}^{\prime}+b_{1}^{\prime} \\
& x_{0} c_{1}+b_{2}=y_{1} b_{0}^{\prime}+b_{2}^{\prime}
\end{aligned}
$$

We use these to simplify B to the branches mentioned in the statement of the proposition.

Proposition 6.3. An upper unitriangular matrix of type A_{2} has q^{2} branches of type A_{2}, and $q^{2}(q-1)$ branches of type R_{1}, and $q\left(q^{2}-1\right)$ branches of R_{2}.

Proof. Given $A=\left(\begin{array}{cccc}1 & & a & \\ & 1 & & b \\ & & 1 & \\ & & & 1\end{array}\right)$, where $a, b \in \mathbf{F}_{q}^{*}$. the canonical form of a matrix of type A_{2}. The centralizer of $A, Z_{U T_{4}}(A)$ is $\left\{\left.\left(\begin{array}{cccc}1 & x_{0} & x_{1} & x_{2} \\ & 1 & y_{0} & y_{1} \\ & & 1 & \lambda x_{0} \\ & & & 1\end{array}\right) \right\rvert\, \lambda=\frac{b}{a}, x_{i}, y_{i}, z_{0} \in \mathbf{F}_{q}\right\}$. Let $X=\left(\begin{array}{cccc}1 & x_{0} & x_{1} & x_{2} \\ & 1 & y_{0} & y_{1} \\ & & 1 & \lambda x_{0} \\ & & & 1\end{array}\right)$ be an element of $Z_{U T_{4}}(A)$. Let $B=\left(\begin{array}{cccc}1 & b_{0} & b_{1} & b_{2} \\ & 1 & c_{0} & c_{1} \\ & & 1 & \lambda b_{0} \\ & & & 1\end{array}\right)$, and $B^{\prime}=\left(\begin{array}{cccc}1 & b_{0}^{\prime} & b_{1}^{\prime} & b_{2}^{\prime} \\ & 1 & c_{0}^{\prime} & c_{1}^{\prime} \\ & & 1 & \lambda b_{0}^{\prime} \\ & & & 1\end{array}\right)$ be the conjugate of B by X. Thus equating $X B=B^{\prime} X$ gives us the following equations:

$$
\begin{gathered}
b_{0}=b_{0}^{\prime} \\
c_{0}=c_{0}^{\prime} \\
x_{0} c_{0}+b_{1}=y_{0} b_{0}^{\prime}+b_{1}^{\prime} \\
\lambda b_{0} y_{0}+c_{1}=\lambda x_{0} c_{0}^{\prime}+c_{1}^{\prime} \\
x_{0} c_{1}+\lambda b_{0} x_{1}+b_{2}=y_{1} b_{0}^{\prime}+\lambda b_{1}^{\prime} x_{0} b_{2}^{\prime}
\end{gathered}
$$

Using these we reduce B to the mentioned branches.
Proposition 6.4. An upper triangular matrix of type A_{3} has q^{2} branches of type A_{3}, and $q\left(q^{2}-1\right)$ branches of type R_{1}.

Proof. One of the canonical forms of an upper triangular matrix of type A_{3} is $A=$ $\left(\begin{array}{cccc}1 & a & & \\ & 1 & & \\ & & 1 & \\ & & & 1\end{array}\right)$, where $a \in \mathbf{F}_{q}^{*}$. Here $Z_{U T_{4}\left(\mathbf{F}_{q)}\right)}(A)=\left\{\left.\left(\begin{array}{cccc}1 & x_{0} & x_{1} & x_{2} \\ & 1 & & \\ & & 1 & z_{0} \\ & & & \end{array}\right) \right\rvert\, x_{i}, z_{0} \in \mathbf{F}_{q}\right\}$.
Let $X=\left(\begin{array}{cccc}1 & x_{0} & x_{1} & x_{2} \\ & 1 & & \\ & & 1 & z_{0} \\ & & & 1\end{array}\right)$, be an element of $Z_{U T_{4}}(A)$. Let $B=\left(\begin{array}{cccc}1 & b_{0} & b_{1} & b_{2} \\ & 1 & & \\ & & 1 & d_{0} \\ & & & 1\end{array}\right)$, and
$B^{\prime}=\left(\begin{array}{cccc}1 & b_{0}^{\prime} & b_{1}^{\prime} & b_{2}^{\prime} \\ & 1 & & \\ & & 1 & d_{0}^{\prime} \\ & & & 1\end{array}\right)$ be the conjugate of B by X, i.e., $B^{\prime}=X B X^{-1}$. Thus equating
$X B=B^{\prime} X$ leads us to the $b_{0}^{\prime}=b_{0}, b_{1}^{\prime}=b_{1}, d_{0}^{\prime}=d_{0}$, and the following equation:

$$
x_{1} d_{0}+b_{2}=z_{0} b_{1}^{\prime}+b_{2}^{\prime}
$$

We use these to simplify B to the branches mentioned in the statement of the proposition.

Proposition 6.5. A matrix of the R_{1} type has q^{4} branches of type R_{1} and A matrix of the R_{2} type has q^{3} branches of type R_{2}.

Proof. The type R_{1} and R_{2} are Regular types, hence the centralizer of matrices of such a type is a commutative.

Proof of Theorem 6.1. From the data in Propositions 6.2 to 6.5, we summarize the branching rules for $U T_{4}$, as in the table described in the theorem.

Here are some isomorphisms between centralizers of matrices of the same z-class for some z-classes in $U T_{4}\left(\mathbf{F}_{q}\right)$.

Proposition 6.6. The centralizer of conjugacy classes with representative $\left(\begin{array}{llll}1 & & a & \\ & 1 & & \\ & & 1 & \\ & & & 1\end{array}\right)$
and $\left(\begin{array}{cccc}1 & & & \\ & 1 & & a \\ & & 1 & \\ & & & 1\end{array}\right)$, for $a \in \mathbf{F}_{q}^{*}$ are isomorphic.
Proof. The centralizer of conjugacy class with representative $\left(\begin{array}{cccc}1 & & a & \\ & 1 & & \\ & & 1 & \\ & & & 1\end{array}\right)$ is

$$
\left\{\left.\left(\begin{array}{cccc}
1 & x_{0} & x_{1} & x_{2} \\
& 1 & y_{0} & y_{1} \\
& & 1 & \\
& & & 1
\end{array}\right) \right\rvert\, x_{i}, y_{i} \in \mathbf{F}_{q}\right\} .
$$

The centralizer of conjugacy class with representative $\left(\begin{array}{llll}1 & & & \\ & 1 & & a \\ & & 1 & \\ & & & 1\end{array}\right)$ is

$$
\left\{\left.\left(\begin{array}{cccc}
1 & & x_{1} & x_{2} \\
& 1 & y_{0} & y_{1} \\
& & 1 & z_{0} \\
& & & 1
\end{array}\right) \right\rvert\, x_{i}, y_{i}, z_{0} \in \mathbf{F}_{q}\right\} .
$$

The following map gives isomorphism between these two centralizers.

$$
\left(\begin{array}{ccc}
1 & & x_{1}
\end{array} x_{2}, \quad\left(\begin{array}{cccc}
1 & -z_{0} & y_{1}-z_{0} y_{0} & x_{2}-x_{1} z_{0} \\
& 1 & y_{0} & y_{1} \\
& & 1 & z_{0} \\
& & & y_{0}
\end{array}\right) \mapsto x_{1}\right)
$$

Proposition 6.7. The centralizers of all conjugacy classes of type A_{3} are isomorphic.
Proof. There are six conjugacy classes of type A_{3}. In the following table, we give the centralizer of these conjugacy classes. We also set a notation for these conjugcay classes which will be used later in this proof.

Class Representative	Centralizer in $U T_{4}\left(\mathbf{F}_{q}\right)$	Name of Conjugacy class
$\left(\begin{array}{ccc}1 & a & \\ & 1 & \\ & & 1 \\ & & \\ & & \end{array}\right), a \in \mathbf{F}_{q}^{*}$	$\left\{\left.\left(\begin{array}{ccc}1 x_{0} & x_{1} & x_{2} \\ 1 & 1 & \\ & 1 & z_{0}\end{array}\right) \right\rvert\, x_{i}, z_{0} \in \mathbf{F}_{q}\right\}$	$A_{3_{1}}$
$\left(\begin{array}{llll}1 & & \\ & 1 & \\ & & 1 & a \\ & & 1\end{array}\right), a \in \mathbf{F}_{q}^{*}$	$\left\{\left.\left(\begin{array}{ccc}1 x_{0} & x_{2} \\ 1 & y_{1} \\ & 1 & z_{0} \\ & 1 & 1\end{array}\right) \right\rvert\, x_{i}, y_{1}, z_{0} \in \mathbf{F}_{q}\right\}$	A_{32}
$\left(\begin{array}{ccc}1 & a & \\ & 1 & \\ & 1 & b \\ & 1 & 1\end{array}\right), a, b \in \mathbf{F}_{q}^{*}$	$\left\{\left.\left(\begin{array}{ccc}1 & x_{0} \frac{a}{b} y_{1} & x_{2} \\ & 1 & \\ & & y_{1} \\ & & z_{0} \\ 1\end{array}\right) \right\rvert\, x_{i}, y_{1}, z_{0} \in \mathbf{F}_{q}\right\}$	A_{3}
Class Representative	Centralizer in $U T_{4}\left(\mathbf{F}_{q}\right)$	Name of Conjugacy class
$\left(\begin{array}{cccc}1 & a & \\ & 1 & b \\ & 1 & \\ & & 1\end{array}\right), a, b \in \mathbf{F}_{q}^{*}$	$\left\{\left.\left(\begin{array}{ccc}1 x_{0} & x_{1} & x_{2} \\ 1 & \frac{b}{a} x_{0} \\ & & \frac{b}{a} \\ & & z_{0}\end{array}\right) \right\rvert\, x_{i}, z_{0} \in \mathbf{F}_{q}\right\}$	A_{34}
$\left(\begin{array}{ccc}1 & a \\ & a & \\ & 1 & b \\ & & b\end{array}\right), a, b \in \mathbf{F}_{q}^{*}$	$\left\{\left.\left(\begin{array}{ccc}1 x_{0} & x_{1} & x_{2} \\ 1 & 1 & y_{1} \\ & & 1 \\ \frac{b}{a} & x_{1} \\ & & \\ \hline\end{array}\right) \right\rvert\, x_{i}, y_{1} \in \mathbf{F}_{q}\right\}$	A_{35}
$\left(\begin{array}{ccc}1 & a & \\ 1 & & \\ & 1 & c\end{array}\right), a, b, c \in \mathbf{F}_{q}^{*}$	$\left\{\left.\left(\begin{array}{cccc}1 x_{0} x_{1} & & x_{2} \\ & 1 & \\ & & & \\ & & \frac{c}{b} x_{1}-\frac{a}{b} y_{1}\end{array}\right) \right\rvert\, x_{i}, y_{1} \in \mathbf{F}_{q}\right\}$	A_{36}

(1) The following map gives isomorphism between centralizers of representative of conjugacy classes $A_{3_{1}}$ and $A_{3_{2}}$.

$$
\left(\begin{array}{cccc}
1 & x_{0} & & x_{2} \\
& 1 & & y_{1} \\
& & 1 & z_{0} \\
& & & 1
\end{array}\right) \mapsto\left(\begin{array}{cccc}
1 & z_{0} & y_{1} & x_{2}-y_{1} x_{0} \\
& 1 & & \\
& & 1 & -x_{0} \\
& & & 1
\end{array}\right)
$$

(2) The following map gives isomorphism between centralizers of representative of conjugacy classes $A_{3_{1}}$ and $A_{3_{4}}$.

$$
\left(\begin{array}{cccc}
1 & x_{0} & x_{1} & x_{2} \\
& 1 & & \\
& & 1 & z_{0} \\
& & & 1
\end{array}\right) \mapsto\left(\begin{array}{cccc}
1 & x_{0} & x_{1} & x_{2}-\left(\frac{x_{0}\left(x_{0}-1\right)}{2}\right) \lambda \\
& 1 & & \lambda x_{0} \\
& & 1 & z_{0} \\
& & & 1
\end{array}\right)
$$

(3) The following map gives isomorphism between centralizers of representative of conjugacy classes $A_{3_{2}}$ and $A_{3_{5}}$.

$$
\left(\begin{array}{cccc}
1 & x_{0} & & x_{2} \\
& 1 & & y_{1} \\
& & 1 & z_{0} \\
& & & 1
\end{array}\right) \mapsto\left(\begin{array}{cccc}
1 & x_{0} & \lambda z_{0} & x_{2}+\left(\frac{z_{0}\left(z_{0}-1\right)}{2}\right) \lambda \\
& 1 & & \\
& & 1 & y_{1} \\
z_{0} \\
& & & 1
\end{array}\right)
$$

(4) The following map gives isomorphism between centralizers of representative of conjugacy classes $A_{3_{2}}$ and $A_{3_{3}}$.

$$
\left(\begin{array}{cccc}
1 & x_{0} & & x_{2} \\
& 1 & & y_{1} \\
& & 1 & z_{0} \\
& & & 1
\end{array}\right) \mapsto\left(\begin{array}{cccc}
1 & x_{0}+\lambda z_{0} & \lambda y_{1} & x_{2}+\lambda y_{1} z_{0} \\
& 1 & & y_{1} \\
& & & 1 \\
z_{0} \\
& & & \\
& & & 1
\end{array}\right)
$$

(5) The following map gives isomorphism between centralizers of representative of conjugacy classes $A_{3_{2}}$ and A_{36}.

$$
\left(\begin{array}{cccc}
1 & x_{0} & & x_{2} \\
& 1 & & y_{1} \\
& & 1 & z_{0} \\
& & & 1
\end{array}\right) \mapsto\left(\begin{array}{cccc}
1 & x_{0}+\lambda_{2} z_{0} & \lambda_{1} z_{0}+\lambda_{2} y_{1} & x_{2}+\lambda_{2} y_{1} z_{0}+\left(\frac{z_{0}\left(z_{0}-1\right)}{2}\right) \lambda_{1} \\
& 1 & & y_{1} \\
& & 1 & z_{0} \\
& & & 1
\end{array}\right)
$$

7. Branching Rules for $U T_{5}\left(\mathbf{F}_{q}\right)$

In this section, we will discuss the simultaneous conjugacy classes of tuples of commuting matrices of $U T_{5}\left(\mathbf{F}_{q}\right)$. The types are listed in Section B. The branching matrix is as follows:

Theorem 7.1. The branching rule of $U T_{5}\left(\mathbf{F}_{q}\right)$ has 3 new types. The branching matrix $B_{U T_{5}\left(\mathbf{F}_{q}\right)}$ is in table 4 which is a 20×20 matrix.

Once again it's easy to see the branches for central and regular types.

TABLE 4. Branching matrix of $U T_{5}\left(\mathbf{F}_{q}\right)$

7.1. Branching of type A.

Proposition 7.2. An upper unitriangular matrix of type A_{1} has the following branches:

Branch	No. of Branches	Branch	No. of Branches
A_{1}	q^{2}	B_{4}	$q(q-1)\left(q^{3}+q^{2}-1\right)$
A_{2}	$q\left(q^{2}-1\right)$	R_{1}	$2 q^{2}(q-1)$
A_{4}	$2 q^{2}(q-1)$	R_{2}	$q(q-1)^{2}(q+1)$
B_{3}	$q^{2}(q-1)$	R_{3}	$q^{2}(q-1)^{2}$

Proof. For a matrix of type A_{1}, there are two canonical forms: $I_{5}+a E_{14}$, and $I_{5}+a E_{25}$, where $a \neq 0$. We will take our matrix A of type A_{1}, to be the canonical form $I_{5}+a E_{14}$, $a \neq 0$. So the centralizer of A is $Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A)=\left\{\left(\begin{array}{ccccc}1 & a_{1} & b_{1} & b_{2} & a_{2} \\ & 1 & c_{1} & c_{2} & d_{1} \\ & & 1 & c_{3} & d_{2} \\ & & & 1 & \\ & & & & 1\end{array}\right)\right\}$. Let $B=$ $\left(\begin{array}{ccccc}1 & a_{1} & b_{1} & b_{2} & a_{2} \\ & 1 & c_{1} & c_{2} & d_{1} \\ & & 1 & c_{3} & d_{2} \\ & & & 1 & \\ & & & & 1\end{array}\right), B^{\prime}=\left(\begin{array}{ccccc}1 & a_{1}^{\prime} & b_{1} & b_{2}^{\prime} & a_{2}^{\prime} \\ & 1 & c_{1}^{\prime} & c_{2}^{\prime} & d_{1}^{\prime} \\ & & 1 & c_{3}^{\prime} & d_{2}^{\prime} \\ & & & & 1 \\ & & & & \\ & & \end{array}\right)$, and $X=\left(\begin{array}{ccccc}1 & x_{1} & y_{1} & y_{2} & x_{2} \\ & 1 & z_{1} & z_{2} & w_{1} \\ & & 1 & z_{3} & w_{2} \\ & & & 1 & \\ & & & & 1\end{array}\right)$, be such that $X B=B^{\prime} X$. From $X B=B^{\prime} X$, we get that $a_{1}^{\prime}=a_{1}$. Let C denote the middle 3×3 unitriangular block $\left(\begin{array}{ccc}1 & c_{1} & c_{2} \\ & 1 & c_{3} \\ & & 1\end{array}\right)$ in the matrix B, and let Z denote the middle block, $\left(\begin{array}{ccc}1 & z_{1} & z_{2} \\ & 1 & z_{3} \\ & & 1\end{array}\right)$, from X. Likewise, we have C^{\prime}. We see that from $X B=B^{\prime} X$, we have $Z C=C^{\prime} Z$. Thus we take C to be a conjugacy class representative from $U T_{3}\left(\mathbf{F}_{q}\right)$, and Z to be its centralizer element in $U T_{3}\left(\mathbf{F}_{q}\right)$. Now, with this, we have the following set of equations:

$$
\begin{align*}
\left(\begin{array}{lll}
x_{1} & y_{1} & y_{2}
\end{array}\right) C+\left(\begin{array}{lll}
a_{1} & b_{1} & b_{2}
\end{array}\right) & =\left(\begin{array}{lll}
a_{1} & b_{1}^{\prime} & b_{2}^{\prime}
\end{array}\right) Z+\left(\begin{array}{lll}
x_{1} & y_{1} & y_{2}
\end{array}\right) \tag{7.1}\\
Z\left(\begin{array}{c}
d_{1} \\
d_{2} \\
0
\end{array}\right)+\left(\begin{array}{c}
w_{1} \\
w_{2} \\
0
\end{array}\right) & =C\left(\begin{array}{c}
w_{1} \\
w_{2} \\
0
\end{array}\right)+\left(\begin{array}{c}
d_{1}^{\prime} \\
d_{2}^{\prime} \\
0
\end{array}\right) \tag{7.2}\\
x_{1} d_{1}+y_{1} d_{2}+a_{2} & =a_{1} w_{1}+b_{1}^{\prime} w_{2}+a_{2}^{\prime} \tag{7.3}
\end{align*}
$$

We look at two main cases, $a_{1}=0$, and $a_{1} \neq 0$.

Case $a_{1}=0$: Here Equation 7.3 is reduced to $x_{1} d_{1}+y_{1} d_{2}+a_{2}=b_{1}^{\prime} w_{2}+a_{2}^{\prime}$. Here we look at subcases:
When $\left(b_{1}, b_{2}\right)=\left(d_{1}, d_{2}\right)=(0,0)$: Thus Equations 7.1 and 7.2 become:

$$
\begin{aligned}
\left(\begin{array}{lll}
x_{1} & y_{1} & y_{2}
\end{array}\right) C & =\left(\begin{array}{lll}
x_{1} & y_{1} & y_{2}
\end{array}\right) \\
\left(\begin{array}{c}
w_{1} \\
w_{2} \\
0
\end{array}\right) & =C\left(\begin{array}{c}
w_{1} \\
w_{2} \\
0
\end{array}\right)
\end{aligned}
$$

and $a_{2}^{\prime}=a_{2}$.
When $C=I_{3}$: Equations 7.1 and 7.2 are void, and B is reduced to $\left(\begin{array}{ccccc}1 & & & & a_{2} \\ & 1 & & & \\ & & 1 & & \\ & & & 1 & \\ & & & & 1\end{array}\right)$.
Thus $Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A, B)=Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A)$. So (A, B) is a branch of type A_{1}, and there are q branches.

When $C=\left(\begin{array}{ll}1 & \\ & \\ & \\ & 1\end{array}\right), c \neq 0$: Equation 7.2 remains void, but from Equation 7.1, we get $c x_{1}+y_{2}=y_{2}$, which leaves us with $x_{1}=0$, as $c \neq 0$. Thus the branch is $B=\left(\begin{array}{lllll}1 & & & & a_{2} \\ & 1 & & c & \\ & & 1 & & \\ & & & 1 & \\ & & & & 1\end{array}\right)$, and $Z_{U T_{5}\left(\mathbf{F}_{q)}\right)}(A, B)=\left\{\left(\begin{array}{l}1 \\ \\ \end{array}\right.\right.$
$\left.\begin{array}{cccc} & y_{1} & y_{2} & x_{2} \\ 1 & z_{1} & z_{2} & w_{1} \\ & 1 & z_{3} & w_{2} \\ & & 1 & \\ & & & 1\end{array}\right\}$, which is the
centralizer of one of the canonical forms of type A_{2}. So (A, B) is a branch of type A_{2}, and there are $q(q-1)$ such branches.

When $C=\left(\begin{array}{cc}1 & c \\ & 1 \\ & 1\end{array}\right), \quad c \neq 0$: Here we have $Z=\left(\begin{array}{cc}1 z z_{1} \\ 1 & z_{2} \\ & \\ & 1\end{array}\right)$. From Equations 7.1 and 7.2, we have $c x_{1}+y_{1}=y_{1}$ and $w_{1}+c w_{2}=w_{1}$, thus we have $x_{1}=w_{2}=0$. So we have $B=\left(\begin{array}{ccccc}1 & & & & a_{2} \\ & 1 & c & & \\ & & 1 & & \\ & & & 1 & \\ & & & & 1\end{array}\right)$, and $Z_{U T_{5}\left(\mathbf{F}_{q)}\right)}(A, B)=\left\{\left(\begin{array}{ccccc}1 & & y_{1} & y_{2} & x_{2} \\ & 1 & z_{1} & z_{2} & w_{1} \\ & & 1 & & \\ & & & 1 & \\ & & & & 1\end{array}\right)\right\}$, and by
a routine check, we see that $Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A, B)$ is commutative, of size $q^{6} .(A, B)$ is of the regular type R_{1}, and there are $(q-1) q$ branches of this type.
When $C=\left(\begin{array}{ll}1 & \\ & 1 \\ & 1\end{array}\right), c \neq 0$: We have $Z=\left(\begin{array}{cc}1 & z_{2} \\ & z_{3} \\ & z_{3} \\ 1\end{array}\right)$. In this case Equation 7.2 becomes void, and from Equation 7.1, we have $c y_{1}+y_{2}=y_{2}$, thus leading to $y_{1}=0$.

Hence, $B=\left(\begin{array}{cccccc}1 & & & & & a_{2} \\ & 1 & & & & \\ & & 1 & c & \\ & & & 1 & \\ & & & & 1\end{array}\right)$. We have $Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A, B)=\left\{\left(\begin{array}{ccccc}1 & x_{1} & & y_{2} & x_{2} \\ & 1 & & z_{2} & w_{1} \\ & & 1 & z_{3} & w_{2} \\ & & & 1 & \\ & & & & 1\end{array}\right)\right\}$,
which is the centralizer of a unitriangular matrix of type A_{4}. So (A, B) is a branch of type A_{4}, and there are $q(q-1)$ branches.

When $C=\left(\begin{array}{ccc}1 & c_{1} & \\ & 1 & c_{2}\end{array}\right), c_{1}, c_{2} \neq 0$: We have $Z=\left(\begin{array}{ccc}1 & z_{1} & z_{2} \\ 1 & & 1 \\ 1 & & 1\end{array}\right)$, where $\lambda=c_{2} / c_{1}$. From Equation 7.1, we have $c_{1} x_{1}+y_{1}=y_{1}$, which leaves us with $x_{1}=0$, and then we have $c_{2} y_{1}+y_{2}=y_{2}$, which leaves us with $y_{1}=0$. Then, from Equation 7.2, we have $w_{1}+c_{1} w_{2}=w_{1}$, leaving us with with $w_{2}=0$. So, we have $B=\left(\begin{array}{cccccc}1 & & & & a_{2} \\ & 1 & c_{1} & & \\ & & 1 & c_{2} & \\ & & & 1 & \\ & & & & 1\end{array}\right)$, and $Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A, B)=\left\{\left(\begin{array}{ccccc}1 & & & y_{2} & x_{2} \\ & 1 & z_{1} & z_{2} & w_{1} \\ & & 1 & \lambda z_{1} & \\ & & & 1 & \\ & & & & 1\end{array}\right)\right\}$. This is of size q^{5}, and by a routine check, it can be seen that $Z_{U T_{5}\left(\mathbf{F}_{q)}\right)}(A, B)$ is commutative. Thus (A, B) is of the regular type R_{2}, and there are $q(q-1)^{2}$ branches. When $\left(\left(b_{1}, b_{2}\right),\left(d_{1}, d_{2}\right)\right) \neq((0,0),(0,0))$: We shall start with $C=I_{3}$.

When $C=I_{3}$: Here Z is any aribtrary matrix in $U T_{3}\left(\mathbf{F}_{q}\right)$, and Equations 7.1 and 7.2 become:

$$
\begin{aligned}
\left(\begin{array}{lll}
0 & b_{1} & b_{2}
\end{array}\right) & =\left(\begin{array}{lll}
0 & b_{1}^{\prime} & b_{2}^{\prime}
\end{array}\right)\left(\begin{array}{ccc}
1 & z_{1} & z_{2} \\
0 & 1 & z_{3} \\
0 & 0 & 1
\end{array}\right) \\
\left(\begin{array}{ccc}
1 & z_{1} & z_{2} \\
0 & 1 & z_{3} \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
d_{1} \\
d_{2} \\
0
\end{array}\right) & =\left(\begin{array}{c}
d_{1}^{\prime} \\
d_{2}^{\prime} \\
0
\end{array}\right)
\end{aligned}
$$

From the above equation, we have $b_{1}^{\prime}=b_{1}$, and $b_{2}=b_{2}^{\prime}+b_{1} z_{3}$, and we have $d_{1}+z_{1} d_{2}=$ d_{1}^{\prime}, and $d_{2}^{\prime}=d_{2}$.

Firstly, if both $b_{1} \neq 0$ and $d_{2} \neq 0$. Then we can choose a z_{3} such that $b_{2}^{\prime}=0$, and similarly we can choose z_{1} such that $d_{1}^{\prime}=0$. Hence, with this Equation 7.3 is reduced to $y_{1} d_{2}+a_{2}=b_{1} w_{2}+a_{2}^{\prime}$. We may choose a w_{2} such that $d_{2}^{\prime}=0$. Thus, we have reduced B
to $\left(\begin{array}{ccccc}1 & & b_{1} & & \\ & 1 & & & \\ & & 1 & & d_{2} \\ & & & 1 & \\ & & & & 1\end{array}\right)$, and $Z_{U T_{5}\left(\mathbf{F}_{q)}\right)}(A, B)=\left\{\left.\left(\begin{array}{ccccc}1 & x_{1} & y_{1} & y_{2} & x_{2} \\ & 1 & & z_{2} & w_{1} \\ & & 1 & & \lambda y_{1} \\ & & & 1 & \\ & & & & 1\end{array}\right) \right\rvert\, \lambda=d_{2} / b_{1}\right\}$.
This is the centralizer of a matrix of type A_{4}. Thus, we have $(q-1)^{2}$ branches of this type.

When $b_{1} \neq 0$ and $d_{2}=0$, we again pick a z_{3} such that $b_{2}^{\prime}=0$, and Equation 7.3 is reduced to $x_{1} d_{1}+a_{2}=b_{1} w_{2}+a_{2}^{\prime}$. Again, choose w_{2} so that $a_{2}^{\prime}=0$. Thus B is reduced to $\left(\begin{array}{ccccc}1 & & b_{1} & & \\ & 1 & & & d_{1} \\ & & 1 & & \\ & & & 1 & \\ & & & & 1\end{array}\right)$, and $Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A, B)=\left\{\left.\left(\begin{array}{ccccc}1 & x_{1} & y_{1} & y_{2} & x_{2} \\ & 1 & z_{1} & z_{2} & w_{1} \\ & & 1 & & \lambda x_{1} \\ & & & 1 & \\ & & & & 1\end{array}\right) \right\rvert\, \lambda=d_{1} / b_{1}\right\}$,
which is isomorphic (conjugation by the matrix that swaps the 4th and 5th rows and columns) to centralizer of a matrix of type B_{3}. Thus there are $q(q-1)$ branches of this type.

When $b_{1}=0$, we have $b^{\prime} 2_{2}=b_{2}$. We consider $d_{2} \neq 0$, and choose a suitable z_{1} so that $d_{1}^{\prime}=0$. Equation 7.3 is reduced to $y_{1} d_{2}+a_{2}=a_{2}^{\prime}$. Thus, we choose an apporpriate y_{1} so that $a_{2}^{\prime}=0 . B$ is thus reduced to $\left(\begin{array}{ccccc}1 & & b_{2} & & \\ & 1 & & & \\ & & 1 & & d_{2} \\ & & & 1 & \\ & & & & 1\end{array}\right)$, and $Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A, B)=$ $\left\{\left.\left(\begin{array}{ccccc}1 & x_{1} & & y_{2} & x_{2} \\ & 1 & & z_{2} & w_{1} \\ & & 1 & z_{3} & w_{2} \\ & & & 1 & \\ & & & & 1\end{array}\right) \right\rvert\, \lambda=d_{1} / b_{1}\right\}$, which is the centralizer of one of the canonical forms of type A_{4}. There are $q(q-1)$ such branches.

When $b_{2} \neq 0, d_{2}=0$, we have $d_{1}^{\prime}=d_{1}$. We first take $d_{1}=0$. Then Equation 7.3 is reduced to $a_{2}^{\prime}=a_{2}$. We thus have B reduced to $\left(\begin{array}{ccccc}1 & & & b_{2} & a_{2} \\ & 1 & & & \\ & & 1 & & \\ & & & 1 & \\ & & & & 1\end{array}\right)$, and thus $Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A, B)=Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A)$. Hence, (A, B) is a branch of type A_{1}, and there are $q(q-1)$ branches.

When $b_{1}=0$, with $d_{2}=0$, and $d_{1} \neq 0$. Equation 7.3 is reduced to $x_{1} d_{1}+a_{2}=a_{2}^{\prime}$.

With a suitable x_{1}, we can get rid of d_{1}. Hence B is reduced to

$$
\left(\begin{array}{ccccc}
1 & & & b_{2} & \\
& 1 & & & d_{1} \\
& & 1 & & \\
& & & 1 & \\
& & & & 1
\end{array}\right)
$$

and $Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A, B)=\left\{\left(\begin{array}{ccccc}1 & & y_{1} & y_{2} & x_{2} \\ & 1 & z_{1} & z_{2} & w_{1} \\ & & 1 & z_{3} & w_{2} \\ & & & 1 & \\ & & & & 1\end{array}\right)\right\}$. Thus (A, B) is of type A_{2}, and there
are $q(q-1)$ such branches.
When $C=\left(\begin{array}{ll}1 & \\ & \\ & 1 \\ & 1\end{array}\right)$: Equation 7.1 is reduced to $\left(\begin{array}{lll}0 & b_{1} & b_{2}+c x_{1}\end{array}\right)=\left(\begin{array}{lll}0 & b_{1}^{\prime} & b_{1}^{\prime} z_{3}+b_{2}^{\prime}\end{array}\right)$. Thus, we have $b_{1}^{\prime}=b_{1}$, and we can choose x_{1} such that $b_{2}^{\prime}=0$. Now, here, on replacing b_{2}^{\prime} and b_{2} by 0 in the above equation, we get that $x_{1}=\frac{b_{1}}{c} z_{3}$. From Equation 7.2, we have $d_{2}^{\prime}=d_{2}$, and $d_{1}^{\prime}=d_{1}+z_{1} d_{2}$. Equation 7.3 becomes $\frac{b_{1}}{c} z_{3} d_{1}+y_{1} d_{2}+a_{2}=w_{2} b_{1}+a_{2}^{\prime}$.

We now look at the case when $b_{1} \neq 0$, and $d_{2}^{\prime} \neq 0$. We choose z_{1} so that $d_{1}^{\prime}=0$, and w_{2} such that $a_{2}^{\prime}=0$. Hence, we reduce B to $\left(\begin{array}{ccccc}1 & & b_{1} & & \\ & 1 & & c & \\ & & 1 & & d_{2} \\ & & & 1 & \\ & & & & 1\end{array}\right)$, and we have $Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A, B)=\left\{\left.\left(\begin{array}{ccccc}1 & \lambda z_{3} & y_{1} & y_{2} & x_{2} \\ & 1 & & z_{2} & w_{1} \\ & & 1 & z_{3} & \mu y_{1} \\ & & & 1 & \\ & & & & 1\end{array}\right) \right\rvert\, \lambda=\frac{b_{1}}{c}, \mu=\frac{d_{2}}{b_{1}}\right\}$, which is isomorphic to
the centralizer of some canonical matrix of type B_{4}. There are $(q-1)^{3}$ such branches.
When $b_{1} \neq 0$, and $d_{2}=0$, then $d_{1}^{\prime}=d_{1}$. Equation 7.3 becomes $\frac{b_{1}}{c} z_{3} d_{1}+a_{2}=w_{2} b_{1}+a_{2}^{\prime}$.

Choose a suitable w_{2}, to make $a_{2}^{\prime}=0$. Then B is reduced to

$$
\left(\begin{array}{lllll}
1 & & b_{1} & & \\
& 1 & & c & d_{1} \\
& & 1 & & \\
& & & 1 & \\
& & & & 1
\end{array}\right)
$$

and $Z_{U T_{5}\left(\mathbf{F}_{q}\right)}=\left\{\left.\left(\begin{array}{ccccc}1 & \lambda z_{3} & y_{1} & y_{2} & x_{2} \\ & 1 & z_{1} & z_{2} & w_{1} \\ & & 1 & z_{3} & \mu z_{3} \\ & & & 1 & \\ & & & & 1\end{array}\right) \right\rvert\, \lambda=\frac{b_{1}}{c}, \mu=\frac{d_{1}}{c}\right\}$. If we write z_{3} in terms
of z_{1}, then $Z_{U T_{5}\left(\mathbf{F}_{q}\right)}$ will be this: $\left\{\left.\left(\begin{array}{ccccc}1 & x_{1} & y_{1} & y_{2} & x_{2} \\ & 1 & z_{1} & z_{2} & w_{1} \\ & & 1 & \lambda x_{1} & \mu x_{1} \\ & & & 1 & \\ & & & & 1\end{array}\right) \right\rvert\, \lambda=\frac{c}{b_{1}}, \mu=\frac{d_{1}}{b_{1}}\right\}$. If we
conjugate this centralizer by the matrix $I+\frac{\mu}{\lambda} E_{45}$, we get the centralizer of a canonical unitriangular matrix of type B_{3}. Thus (A, B) is a branch of type B_{3}, and there are $q(q-1)^{2}$ such branches.

Now, when $b_{1}=0$, and $\left(d_{1}, d_{2}\right) \neq(0,0)$. We have $x_{1}=\frac{b_{1}}{c} z_{3}=0$,a nd Equation 7.3 becomes $y_{1} d_{2}+a_{2}=a_{2}^{\prime}$. First, when $d_{2} \neq 0$, then we choose z_{1} so that $d_{1}^{\prime}=0$, and choose y_{1} so that $a_{2}^{\prime}=0$. So, B is reduced to $\left(\begin{array}{ccccc}1 & & & & \\ & 1 & & c & \\ & & 1 & & d_{2} \\ & & & 1 & \\ & & & & 1\end{array}\right)$, and $Z_{U T_{5}\left(\mathbf{F}_{q}\right)}=$ $\left\{\left(\begin{array}{ccccc}1 & & & y_{2} & x_{2} \\ & 1 & & z_{2} & w_{1} \\ & & 1 & z_{3} & w_{2} \\ & & & 1 & \\ & & & & 1\end{array}\right)\right\}$, which is commutative of size $q^{6},(A, B)$ is of regular type R_{1}, and there are $q(q-1)$ such branches.

When $b_{1}=d_{2}=0, d_{1} \neq 0$. We have $d_{1}^{\prime}=d_{1}$, and Equation 7.3 reduces to $a_{2}^{\prime}=a_{2}$.
Thus, B is reduced to $\left(\begin{array}{lllll}1 & & & & a_{2} \\ & 1 & & c & d_{1} \\ & & 1 & & \\ & & & 1 & \\ & & & & 1\end{array}\right)$, and $Z_{U T_{5}\left(\mathbf{F}_{q}\right)}=\left(\begin{array}{lllll}1 & & & & a_{2} \\ & 1 & & c & \\ & & 1 & & \\ & & & 1 & \\ & & & & 1\end{array}\right)$, and
$Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A, B)=\left\{\left(\begin{array}{ccccc}1 & & y_{1} & y_{2} & x_{2} \\ & 1 & z_{1} & z_{2} & w_{1} \\ & & 1 & z_{3} & w_{2} \\ & & & 1 & \\ & & & & 1\end{array}\right)\right\}$, which is the centralizer of a matrix of type
A_{2}. Thus (A, B) is of type A_{2}, and there are $q(q-1)^{2}$ such branches.

$$
\begin{gathered}
\text { When } C=\left(\begin{array}{cc}
1 & c \\
& 1 \\
& 1
\end{array}\right), c \neq 0 \text { : Here } Z=\left(\begin{array}{ccc}
1 & z_{1} & z_{2} \\
& 1 & \\
& & 1
\end{array}\right) \text {, and Equation } 7.1 \text { becomes: } \\
\left(\begin{array}{lll}
c x_{1}+b_{1} & b_{2}
\end{array}\right)=\left(\begin{array}{ll}
b_{1}^{\prime} & b_{2}^{\prime}
\end{array}\right) .
\end{gathered}
$$

Using a nice x_{1}, we can make $b_{1}^{\prime}=0$, and $b_{2}^{\prime}=b_{2}$. So, if we replace b_{1} by $b_{1}^{\prime}=0$ in the above equation, we have $x_{1}=0$. Next, Equation 7.2 becomes:

$$
\left(\begin{array}{c}
d_{1}+z_{1} d_{2} \\
d_{2} \\
0
\end{array}\right)=\left(\begin{array}{c}
c w_{2}+d_{1}^{\prime} \\
d_{2}^{\prime} \\
0
\end{array}\right)
$$

As $c \neq 0$, we choose a w_{2} so that $d_{1}^{\prime}=0$. We have $d_{2}^{\prime}=d_{2}$. With these, Equation 7.3 becomes

$$
\begin{equation*}
y_{1} d_{2}+a_{2}=a_{2}^{\prime} \tag{7.4}
\end{equation*}
$$

When $d_{2} \neq 0$, choose y_{1} such that $a_{2}^{\prime}=0 . B$ is reduced to

$$
\left(\begin{array}{ccccc}
1 & & & b_{2} & \\
& 1 & c & & \\
& & 1 & & d_{2} \\
& & & 1 & \\
& & & & 1
\end{array}\right) \text {, and }
$$

$Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A, B)=\left\{\left.\left(\begin{array}{ccccc}1 & & & y_{2} & x_{2} \\ & 1 & z_{1} & z_{2} & w_{1} \\ & & 1 & & \lambda z_{1} \\ & & & 1 & \\ & & & & 1\end{array}\right) \right\rvert\, \lambda=\frac{d_{2}}{c}\right\}$. Thus (A, B) is of regular type R_{2},
and there are $q(q-1)^{2}$ branches of this type.
When $d_{2}=0$, then we are left with $b_{2} \neq 0$. Hence Equation 7.3 is reduced to $a_{2}^{\prime}=a_{2}$.
Hence B is reduced to $\left(\begin{array}{ccccc}1 & & & b_{2} & a_{2} \\ & 1 & c & & \\ & & 1 & & \\ & & & 1 & \\ & & & & 1\end{array}\right)$, and $Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A, B)=\left\{\left(\begin{array}{ccccc}1 & y_{1} & y_{2} & x_{2} \\ & 1 & z_{1} & z_{2} & w_{1} \\ & & 1 & & \\ & & & 1 & \\ & & & & 1\end{array}\right)\right\}$,
which is the centralizer of a matrix of type $R_{1} .(A, B)$ is a branch of type R_{1}, and there are $(q-1)^{2} q$ such branches.

$$
\text { When } C=\left(\begin{array}{cc}
1 & \\
& 1 \\
& \\
& 1
\end{array}\right), c \neq 0 \text { : Here } Z=\left(\begin{array}{ccc}
1 & & z_{2} \\
& 1 & z_{3} \\
& & 1
\end{array}\right) \text {. With these, Equation } 7.1
$$

becomes:

$$
\left(\begin{array}{ll}
b_{1} & b_{2}+c y_{1}
\end{array}\right)=\left(\begin{array}{cc}
b_{1}^{\prime} & b_{2}^{\prime}+b_{1}^{\prime} z_{3}
\end{array}\right)
$$

So, we have $b_{1}^{\prime}=b_{1}$, and we can choose y_{1} so that $b_{2}^{\prime}=0$. Thus, on equating the above equation, with b_{2} replaced by 0 , we get that $y_{1}=\frac{b_{1}}{c} z_{3}$; and from Equation 7.2, we have $d_{1}^{\prime}=d_{1}$, and $d_{2}^{\prime}=d_{2}$, and thus Equation 7.3 boils down to $x_{1} d_{1}+\frac{b_{1}}{c} z_{3} \cdot d_{1}=b_{1} w_{2}+a_{2}^{\prime}$. We first look at the case, when $b_{1} \neq 0$. Then choose w_{2} so that $a_{2}^{\prime}=0$. So B reduces to $\left(\begin{array}{ccccc}1 & & b_{1} & & \\ & 1 & & & d_{1} \\ & & 1 & c & d_{2} \\ & & & 1 & \\ & & & & 1\end{array}\right)$, and $Z_{U T_{5}\left(\mathbf{F}_{q)}\right)}(A, B)=\left\{\left(\begin{array}{ccccc}1 & x_{1} & \lambda_{1} z_{3} & y_{2} & x_{2} \\ & 1 & & z_{2} & w_{1} \\ & & 1 & z_{3} & \lambda_{2} z_{3}+\mu x_{1} \\ & & & 1 & \\ & & & & 1\end{array}\right), \begin{array}{c}\lambda_{1}=\frac{b_{1}}{c}, \lambda_{2}=\frac{d_{2}}{c}, \\ \mu=\frac{d_{1}}{b_{1}}\end{array}\right\}$.
This is isomorphic to a centralizer of canonical form of type A_{4}. So (A, B) is a branch of type A_{4}, and there are $q^{2}(q-1)^{2}$ such branches.

When $b_{1}=0$. Then we have $y_{1}=0$. Hence Equation 7.3 becomes $x_{1} d_{1}+a_{2}=a_{2}^{\prime}$. When $d_{1} \neq 0$, choose x_{1} so that $a_{2}^{\prime}=0 . \quad B$ is reduced to $\left(\begin{array}{ccccc}1 & & & & \\ & 1 & & & d_{1} \\ & & 1 & c & d_{2} \\ & & & 1 & \\ & & & & 1\end{array}\right)$, and $Z_{U T_{5}\left(\mathbf{F}_{q)}\right)}(A, B)=\left\{\left(\begin{array}{ccccc}1 & & & y_{2} & x_{2} \\ & 1 & & z_{2} & w_{1} \\ & & 1 & z_{3} & w_{2} \\ & & & 1 & \\ & & & & 1\end{array}\right)\right\}$, which is the centralizer of a matrix of type
R_{1}. Thus (A, B) is of type R_{1}, and thus there are $q(q-1)^{2}$ branches of this type.
When $d_{1}=0$, and $d_{2} \neq 0$. Equation 7.3 ends up becoming $a_{2}^{\prime}=a_{2}$, and B is reduced to $\left(\begin{array}{ccccc}1 & & & & a_{2} \\ & 1 & & & \\ & & 1 & c & d_{2} \\ & & & 1 & \\ & & & & 1\end{array}\right)$, hence $Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A, B)=\left\{\left(\begin{array}{ccccc}1 & x_{1} & & y_{2} & x_{2} \\ & 1 & & z_{2} & w_{1} \\ & & 1 & z_{3} & w_{2} \\ & & & 1 & \\ & & & & 1\end{array}\right)\right\}$. Thus (A, B) is a branch of type A_{4}, and there are $q(q-1)^{2}$ such branches.

When $C=\left(\begin{array}{ccc}1 & c_{1} & \\ & 1 & c_{2} \\ 1 & 1\end{array}\right), c \neq 0$: Here $Z=\left(\begin{array}{ccc}1 & z_{1} & z_{2} \\ & 1 & \lambda_{0} z_{1} \\ & & 1\end{array}\right)$, where $\lambda_{0}=\frac{c_{2}}{c_{1}}$. Thus, from Equation 7.1, we have: $\left(\begin{array}{ll}c_{1} x_{1}+b_{1} & c_{2} y_{1}+b_{2}\end{array}\right)=\left(\begin{array}{cc}b_{1}^{\prime} & \lambda_{0} z_{1} b_{1}^{\prime}+b_{2}^{\prime}\end{array}\right)$. So, we choose x_{1} so that $b_{1}^{\prime}=0$. Similarly, we choose y_{1} such that $b_{2}^{\prime}=0$. Thus, on replacing b_{1}, and b_{2} by 0 in the above equation, we get that $x_{1}=0$, and $y_{1}=0$.

Equation 7.2 becomes $\left(\begin{array}{c}d_{1}+z_{1} d_{2} \\ d_{2} \\ 0\end{array}\right)=\left(\begin{array}{c}d_{1}^{\prime}+c_{1} w_{2} \\ d_{2}^{\prime} \\ 0\end{array}\right)$. Thus $d_{2}^{\prime}=d_{2}$, and we can choose w_{2} so that $d_{1}^{\prime}=0$. So we are left with $d_{2} \neq 0$. With $x_{1}=y_{1}=b_{1}=0$,

Equation 7.3 becomes $a_{2}^{\prime}=a_{2}$. Hence B is reduced to

$Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A, B)=\left\{\left.\left(\begin{array}{ccccc}1 & & & y_{2} & x_{2} \\ & 1 & z_{1} & z_{2} & w_{1} \\ & & 1 & \lambda_{0} z_{1} & \lambda_{1} z_{1} \\ & & & 1 & \\ & & & & 1\end{array}\right) \right\rvert\, \lambda_{0}=\frac{c_{2}}{c_{1}}, \lambda_{1}=\frac{d_{2}}{c_{1}}\right\}$, which is a central-
izer of type R_{2}. (A, B) is a branch of type R_{2}, and there are $q(q-1)^{3}$ branches of this type.
Case $a_{1} \neq 0$: We look at the various types of C as our subcases.
When $C=I_{3}$: Here Equation 7.1 becomes:

$$
\left(\begin{array}{lll}
a_{1} & b_{1} & b_{2}
\end{array}\right)=\left(\begin{array}{lll}
a_{1} & b_{1}^{\prime}+a_{1} z_{1} & b_{2}^{\prime}+b_{1}^{\prime} z_{3}+z_{2} a_{1}
\end{array}\right) .
$$

Using a suitable z_{1}, we can make $b_{1}^{\prime}=0$, and using a suitable z_{2}, we can make $b_{2}^{\prime}=0$. Thus, on replacing b_{1} and b_{2}^{\prime} by 0 in the above equation, we have $z_{1}=z_{2}=0$. Hence with this, Equation 7.2 becomes $\left(\begin{array}{c}d_{1} \\ d_{2} \\ 0\end{array}\right)=\left(\begin{array}{c}d_{1}^{\prime} \\ d_{2}^{\prime} \\ 0\end{array}\right)$. Equation 7.3 is reduced to $a_{2}+x_{1} d_{1}+y_{1} d_{2}=$ $a_{2}^{\prime}+a_{1} w_{1}$. So we choose w_{1} such that $a_{2}^{\prime}=0$. Thus B is reduced to $\left(\begin{array}{ccccc}1 & a_{1} & & & \\ & 1 & & & d_{1} \\ & & 1 & & d_{2} \\ & & & 1 & \\ & & & & 1\end{array}\right)$, and $Z_{U T_{5}\left(\mathbf{F}_{q}\right)}=\left\{\left.\left(\begin{array}{ccccc}1 & x_{1} & y_{1} & y_{2} & x_{2} \\ & 1 & & & \lambda x_{1}+\mu y_{1} \\ & & 1 & z_{3} & w_{2} \\ & & & 1 & \\ & & & & 1\end{array}\right) \right\rvert\, \lambda=\frac{d_{1}}{a_{1}}, \mu=\frac{d_{2}}{a_{1}}\right\}$, which is the centralizer of type $B_{4} .(A, B)$ is thus a branch of type B_{4}, and there are $q^{2}(q-1)$ such branches.

When $C=\left(\begin{array}{ll}1 & \\ & \\ & 1 \\ & 1\end{array}\right), c \neq 0$: Equation 7.1 becomes:

$$
\left(\begin{array}{lll}
a_{1} & b_{1} & b_{2}+c x_{1}
\end{array}\right)=\left(\begin{array}{lll}
a_{1} & a_{1} z_{1}+b_{1}^{\prime} & a_{1} z_{2}+b_{1}^{\prime} z_{3}+b_{2}^{\prime}
\end{array}\right) .
$$

Choose z_{1} and z_{2} such that $b_{1}^{\prime}=b_{2}^{\prime}=0$. Again, like in the previous case on replacing b_{1} and b_{2} by 0 in the above equation, we have $z_{1}=04$ and $z_{2}=\frac{c}{a_{1}} x_{1}$. From Equation 7.2, we get $d_{1}^{\prime}=d_{1}$ amd $d_{2}^{\prime}=d_{2}$. Equation 7.3 is reduced to $x_{1} d_{1}+y_{1} d_{2}+a_{2}=w_{1} a_{1}+$
a_{2}^{\prime}. We choose w_{1} such that $a_{2}^{\prime}=0$. Thus B is reduced to $\left(\begin{array}{cccc}1 & a_{1} & & \\ & 1 & & c \\ \\ & & 1 & \\ \\ & & & \\ & & d_{1} \\ \\ Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A, B) & \\ & & & \\ \hline\end{array}\right)$, and
is of type B_{4}. Hence (A, B) is a branch of type B_{4}, and there are $(q-1)^{2} q^{2}$ such branches.

$$
\begin{gathered}
\text { When } C=\left(\begin{array}{cc}
1 & c \\
& 1
\end{array}\right), c \neq 0: Z=\left(\begin{array}{ccc}
1 & z_{1} & z_{2} \\
& 1 & \\
& & 1
\end{array}\right) . \text { Equation } 7.1 \text { becomes } \\
\left(\begin{array}{lll}
a_{1} & c y_{1}+b_{1} & b_{2}
\end{array}\right)=\left(\begin{array}{lll}
a_{1} & a_{1} z_{1}+b_{1}^{\prime} & a_{1} z_{2}+b_{2}^{\prime}
\end{array}\right)
\end{gathered}
$$

Choose z_{1} such that $b_{1}^{\prime}-0$, and choose z_{2} such that $b_{2}^{\prime}=0$. So, on substituting b_{1} and b_{2} with 0 in the above, we have $z_{1}=\frac{c}{a_{1}} y_{1}$, and $z_{2}=0$. Thus Equation 7.2 is reduced to $\left(\begin{array}{c}d_{1}+\frac{c}{a_{1}} y_{1} d_{2} \\ d_{2} \\ 0\end{array}\right)=\left(\begin{array}{c}c w_{2}+d_{1}^{\prime} \\ d_{2}^{\prime} \\ 0\end{array}\right)$. We have $d_{2}^{\prime}=d_{2}$. Choose w_{2} so that $d_{1}^{\prime}=0$. Equation 7.3 is reduced to $y_{1} d_{2}+a_{2}=a_{1} w_{1}+a_{2}^{\prime}$. Choose w_{1} such that $a_{2}^{\prime}=0$. Thus B is reduced to $\left(\begin{array}{ccccc}1 & a_{1} & & & \\ & 1 & c & & \\ & & 1 & & \\ & & & 1 & \\ & & & & 1\end{array}\right)$, with $Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A, B)=\left\{\left(\begin{array}{ccccc}1 & x_{1} & y_{1} & y_{2} & x_{2} \\ & 1 & \frac{c}{a_{1}} y_{1} & & \frac{d_{2}}{a_{1}} y_{1} \\ & & 1 & & \frac{d_{2}}{a_{1}} y_{1} \\ & & & 1 & \\ & & & & 1\end{array}\right)\right\}$,
which is a centralizer of a matrix of type R_{3}. So (A, B) is a branch of type R_{3}, and there are $(q-1)^{2} q$ branches of this type.

$$
\text { When } C=\left(\begin{array}{rl}
1 & \\
& 1 \\
& c
\end{array}\right), c \neq 0 \text { : Here } Z=\left(\begin{array}{ccc}
1 & & z_{2} \\
& 1 & z_{3} \\
& & 1
\end{array}\right) . \text { Equation } 7.1 \text { becomes } .
$$

We have $b_{1}^{\prime}=b_{1}$. we can choose y_{2} such that $b_{2}^{\prime}=0$. Thus, on replacing b_{2} by 0 in the above equation, we have $y_{2}=\frac{a_{1}}{c} z_{2}+\frac{b_{1}}{c} z_{3}$. And Equation 7.2 ends up giving us $d_{1}^{\prime}=d_{1}$, and $d_{2}^{\prime}=d_{2}$. Thus Equation 7.3 stays as it is. Since $a_{1} \neq 0$, we choose
 is of type B_{4}, and the number of branches is $q^{3}(q-1)^{2}$.

$$
\begin{gathered}
\text { When } C=\left(\begin{array}{ccc}
1 & c_{1} & \\
1 & c_{2} \\
& 1
\end{array}\right), c_{1}, c_{2} \neq 0 \text { : Here } Z=\left(\begin{array}{ccc}
1 & z_{1} & z_{2} \\
& 1 & \frac{c_{2}}{c_{1}} z_{1} \\
& & 1
\end{array}\right) . \text { Equation } 7.1 \text { becomes: } \\
\left(\begin{array}{lll}
a_{1} & b_{1}+c_{1} x_{1} & b_{2}+c_{2} y_{1}
\end{array}\right)=\left(\begin{array}{lll}
a_{1} & a_{1} z_{1}+b_{1}^{\prime} & a_{1} z_{2}+b_{1}^{\prime} \frac{c_{2}}{c_{1}} z_{1}+b_{2}^{\prime}
\end{array}\right) .
\end{gathered}
$$

Choose z_{1} such that $b_{1}^{\prime}=0$, and choose z_{2} such that $b_{2}=0$. On replacing b_{1} and b_{2} by 0 in the above equation, we see that $z_{1}=\frac{c_{1}}{a_{1}} x_{1}$, and $z_{2}=\frac{c_{2}}{a_{1}} y_{1}$. From Equation 7.2, we have $d_{1}+\frac{c_{1}}{a_{1}} x_{1} d_{2}=c_{1} w_{2}+d_{1}^{\prime}$, and $d_{2}^{\prime}=d_{2}$. So we choose w_{2} such that $d_{1}^{\prime}=0$. Equation 7.3 becomes: $y_{1} d_{2}+a_{2}=w_{1} a_{1}+a_{2}^{\prime}$. Choose w_{1} such that $a_{2}^{\prime}=0$. Thus B is reduced to $\left(\begin{array}{ccccc}1 & a_{1} & & & \\ & 1 & c_{1} & & \\ & & 1 & c_{2} & d_{2} \\ & & & 1 & \\ & & & & 1\end{array}\right)$, and $Z_{U T_{5}\left(\mathbf{F}_{q}\right)}=\left\{\left(\begin{array}{ccccc}1 & x_{1} & y_{1} & y_{2} & x_{2} \\ & 1 & \frac{c_{1}}{a_{1} x_{1}} & \frac{c_{2}}{a_{1}} y_{1} & \frac{d_{2}}{a_{1}} y_{1} \\ & & 1 & \frac{c_{2}}{a_{1}} x_{1} & \frac{d_{2}}{a_{1}} x_{1} \\ & & & 1 & \\ & & & & \\ & & & & \end{array}\right)\right\}$, which is the centralizer of a matrix of type R_{3}. Thus (A, B) is branch of type R_{3}, and there are $q(q-1)^{3}$ such branches. Hence, adding up the branches of each type, we get the numbers as mentioned in the statement of this proposition.

Proposition 7.3. An upper unitriangular matrix of type A_{2} has q^{4} branches of type A_{2}, $2 q^{2}\left(q^{2}-1\right)$ branches of regular type R_{1}, and $q\left(q^{2}-1\right)^{2}$ branches of regular type R_{2}.

Proof. Let $A=\left(\begin{array}{ccccc}1 & & & & \\ & 1 & & a & \\ & & 1 & & \\ & & & 1 & \\ & & & & 1\end{array}\right), a \neq 0$ a matrix of type A_{2}. The centralizer $Z_{U T_{5}}(A)$
of A is $\left\{\left.\left(\begin{array}{ccccc}1 & & x_{1} & x_{2} & x_{3} \\ & 1 & y_{0} & y_{1} & y_{2} \\ & & 1 & z_{0} & z_{1} \\ & & & 1 & \\ & & & & 1\end{array}\right) \right\rvert\,, x_{i}, y_{i}, z_{i} \in \mathbf{F}_{q}\right\}$. Let $X=\left(\begin{array}{ccccc}1 & & x_{1} & x_{2} & x_{3} \\ & 1 & y_{0} & y_{1} & y_{2} \\ & & 1 & z_{0} & z_{1} \\ & & & 1 & \\ & & & & 1\end{array}\right)$ be an
element of $Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A)$. Let $B=\left(\begin{array}{ccccc}1 & & a_{1} & a_{2} & a_{3} \\ & 1 & b_{0} & b_{1} & b_{2} \\ & & 1 & c_{0} & c_{1} \\ & & & 1 & \\ & & & & 1\end{array}\right)$, and $B^{\prime}=\left(\begin{array}{ccccc}1 & & a_{1}^{\prime} & a_{2}^{\prime} & a_{3}^{\prime} \\ & 1 & b_{0}^{\prime} & b_{1}^{\prime} & b_{2}^{\prime} \\ & & 1 & c_{0}^{\prime} & c_{1}^{\prime} \\ & & & 1 & \\ & & & & 1\end{array}\right)$
be a conjugate of B by X. Thus equating $X B=B^{\prime} X$ gives us $a_{1}^{\prime}=a_{1}, b_{0}^{\prime}=b_{0}, c_{0}^{\prime}=c_{0}$, $c_{1}^{\prime}=c_{1}$, and the following equations:

$$
\begin{aligned}
x_{1} c_{0}+a_{2} & =a_{1} z_{0}+a_{2}^{\prime} \\
x_{1} c_{1}+a_{3} & =a_{1} z_{1}+a_{3}^{\prime} \\
y_{0} c_{0}+b_{1} & =b_{1}^{\prime}+b_{0}^{\prime} z_{0} \\
y_{0} c_{1}+b_{2} & =b_{2}^{\prime}+b_{0}^{\prime} z_{1}
\end{aligned}
$$

We consider two cases when $\left(a_{1}, b_{0}, c_{0}, c_{1}\right)=\mathbf{0}$ and when $\left(a_{1}, b_{0}, c_{0}, c_{1}\right) \neq \mathbf{0}$.
Case: $\left(a_{1}, b_{0}, c_{0}, c_{1}\right)=\mathbf{0}$. In this case, we get $a_{2}=a_{2}^{\prime}, a_{3}=a_{3}^{\prime}, b_{1}=b_{1}^{\prime}$ and $b_{2}=b_{2}^{\prime}$. Therefore $Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A, B)=Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A)$. So (A, B) is a branch of type A_{2}, and there are q^{4} branches.

Case: $\left(a_{1}, b_{0}, c_{0}, c_{1}\right) \neq \mathbf{0}$. First we consider that $c_{1} \neq 0$. We choose x_{1} and y_{0} in such a way that we get $a_{3}=b_{2}=0$. Now if $\left(a_{1}, b_{0}\right)=(0,0)$, then by simple calculations, we get $Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A, B)$ is a commutative group of size q^{6}. Thus (A, B) is of regular type R_{1}, and there are $q^{3}(q-1)$ branches of this type. If we consider that case when at least one of a_{1} and b_{0} is non-zero, then we can choose z_{0} suitably so that we get one of a_{2} or b_{1} equal to zero. By routine check, we get that $Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A, B)$ is a commutative group of size q^{5}. Thus (A, B) is of regular type R_{2}, and there are $\left(q^{3}-q^{2}\right)\left(q^{2}-1\right)$ branches of this type.

Now we consider that $c_{1}=0$ and $c_{0} \neq 0$. We choose x_{1} and y_{0} in such a way that we get $a_{2}=b_{1}=0$. Now if $\left(a_{1}, b_{0}\right)=0$, then by simple calculations, we get $Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A, B)$ is a commutative group of size q^{6}. Thus (A, B) is of regular type R_{1}, and there are $q^{2}(q-1)$ branches of this type. If we consider that case when at least one of a_{1} and b_{0} is non-zero,
then we can choose z_{1} suitably so that we get one of a_{3} or b_{2} equal to zero. By routine check, we get that $Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A, B)$ is a commutative group of size q^{5}. Thus (A, B) is of regular type R_{2}, and there are $\left(q^{2}-q\right)\left(q^{2}-1\right)$ branches of this type.

Next we consider when $c_{1}=c_{0}=0$ and $b_{0} \neq 0$. We choose z_{0} and z_{1} in such a way that we get $b_{1}=b_{2}=0$. Now by simple calculations, we get $Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A, B)$ is a commutative group of size q^{6}. Thus (A, B) is of regular type R_{1}, and there are $q^{3}(q-1)$ branches of this type.

Finaly we consider when $c_{1}=c_{0}=b_{0} 0$ and $a_{1} \neq 0$. We choose z_{0} and z_{1} in such a way that we get $a_{2}=a_{3}=0$. Now by simple calculations, we get $Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A, B)$ is a commutative group of size q^{6}. Thus (A, B) is of regular type R_{1}, and there are $q^{2}(q-1)$ branches of this type.

Therefore a matrix of type A_{2} has q^{4} branches of type $A_{2}, 2 q^{2}\left(q^{2}-1\right)$ branches of regular type R_{1}, and $q\left(q^{2}-1\right)^{2}$ braches of regular type R_{2}.

Proposition 7.4. An upper unitriangular matrix of type A_{3} has

Branch	No. of Branches	Branch	No. of Branches
A_{3}	q^{2}	R_{1}	$q\left(q^{2}+q-1\right)(q-1)$
A_{4}	$q\left(q^{2}-1\right)$	R_{2}	$q\left(q^{2}-1\right)(q-1)$
B_{3}	$q^{2}(q-1)$	R_{3}	$q^{2}(q-1)^{2}$
B_{5}	$q^{3}(q-1)$	$U N T_{1}$	$q^{2}(q-1)$.

It has a new type branch, named $U N T_{1}$, with common centralizer $\left\{\left(\begin{array}{cccc}1 & x_{0} & x_{1} & \\ & & z_{0} & x_{3} \\ & 1 & y_{0} & \\ & y_{2} \\ & & 1 & 1 \\ & & & z_{0} \\ & & & 1\end{array}\right)\right\}$.
Proof. Let $A=\left(\begin{array}{ccccc}1 & & a & & \\ & 1 & & & \\ & & 1 & & \\ & & & 1 & \\ & & & & 1\end{array}\right), a \neq 0$ a matrix of type A_{3}. The centralizer $Z_{U T_{5}}(A)$
of A is $\left\{\left.\left(\begin{array}{ccccc}1 & x_{0} & x_{1} & x_{2} & x_{3} \\ & 1 & y_{0} & y_{1} & y_{2} \\ & & 1 & & \\ & & & 1 & z_{0} \\ & & & & 1\end{array}\right) \right\rvert\,, x_{i}, y_{i}, w_{0} \in \mathbf{F}_{q}\right\}$. Let $X=\left(\begin{array}{ccccc}1 & x_{0} & x_{1} & x_{2} & x_{3} \\ & 1 & y_{0} & y_{1} & y_{2} \\ & & 1 & & \\ & & & 1 & w_{0} \\ & & & & 1\end{array}\right)$ be
an element of $Z_{U T_{5}\left(\mathbf{F}_{q)}\right)}(A)$. Let $B=\left(\begin{array}{ccccc}1 & a_{0} & a_{1} & a_{2} & a_{3} \\ & 1 & b_{0} & b_{1} & b_{2} \\ & & 1 & & \\ & & & 1 & d_{0} \\ & & & & 1\end{array}\right)$, and $B^{\prime}=\left(\begin{array}{ccccc}1 & a_{0}^{\prime} & a_{1}^{\prime} & a_{2}^{\prime} & a_{3}^{\prime} \\ & 1 & b_{0}^{\prime} & b_{1}^{\prime} & b_{2}^{\prime} \\ & & 1 & & \\ & & & 1 & d_{0}^{\prime} \\ & & & & 1\end{array}\right)$
be a conjugate of B by X. Thus equating $X B=B^{\prime} X$ gives us $a_{0}^{\prime}=a_{0}, b_{0}^{\prime}=b_{0}, b_{1}^{\prime}=b_{1}$, $d_{0}^{\prime}=d_{0}$, and the following equations:

$$
\begin{aligned}
a_{1}+x_{0} b_{0} & =a_{0} y_{0}+a_{1}^{\prime} \\
a_{2}+x_{0} b_{1} & =a_{0} y_{1}+a_{2}^{\prime} \\
a_{3}+x_{0} b_{2}+x_{2} d_{0} & =a_{0} y_{2}+a_{2}^{\prime} z_{0}+a_{3}^{\prime} \\
b_{2}+y_{1} d_{0} & =z_{0} b_{1}+b_{2}^{\prime}
\end{aligned}
$$

We consider two cases when $\left(a_{0}, b_{0}, b_{1}, d_{0}\right)=\mathbf{0}$ and when $\left(a_{0}, b_{0}, b_{1}, d_{0}\right) \neq \mathbf{0}$.
Case: $\left(a_{0}, b_{0}, b_{1}, d_{0}\right)=\mathbf{0}$. In this case, we get $a_{1}^{\prime}=a_{1}, a_{2}^{\prime}=a_{2}, b_{2}^{\prime}=b_{2}$, and $a_{3}+x_{0} b_{2}=a_{2} z_{0}+a_{3}^{\prime}$.

If $\left(a_{2}, b_{2}\right)=\mathbf{0}$, then we get $b_{3}=b_{3}^{\prime}$. Therefore $Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A, B)=Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A)$. So (A, B) is a branch of type A_{3}, and there are q^{2} branches. Now we consider that $a_{2} \neq 0$. In this case, we can choose w_{0} in such a way that we get $a_{3}=0$. By routine check, we get $Z_{U T_{5}\left(\mathbf{F}_{q)}\right)}(A, B)$ is a group of order q^{7} and (A, B) is the type B_{3}, and there are $q^{2}(q-1)$ branches.

If we consider $a_{2}=0$ and $b_{2} \neq 0$, choose x_{0} in such a way that we get $a_{3}=0$. By routine check, we get $Z_{U T_{5}\left(\mathbf{F}_{q)}\right)}(A, B)$ is a group of order q^{7} and (A, B) is a branch of type A_{4}, and there are $q(q-1)$ branches.

Case: $\left(a_{0}, b_{0}, b_{1}, d_{0}\right) \neq \mathbf{0}$. First we consider that $a_{0} \neq 0$. In this case, we can choose y_{0}, y_{1} and y_{2} in such a way that we get $a_{1}=a_{2}=a_{3}=0$ and $b_{2}+\frac{d_{0} b_{1}}{b_{0}} x_{0}=z_{0} b_{1}+b_{2}^{\prime}$. Now if $b_{1}=0$, then we get $b_{2}=b_{2}^{\prime}$. By routine check, we get $Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A, B)$ is a group of order q^{5} and (A, B) is a branch of type B_{5}, and there are $q^{3}(q-1)$ branches. On the other hand if $b_{1} \neq 0$, then we choose z_{0} in such a way that we get $b_{2}=0$ By routine check, we get $Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A, B)$ is a commutative group of order q^{4} and (A, B) is a branch of regular type R_{3}, and there are $q^{2}(q-1)^{2}$ branches.

Now we consider that $a_{0}=0$ and $b_{0} \neq 0$. In this case, we can choose x_{0} in such a way that we get $a_{1}=0$ and this implies $x_{0}=0$. Thus we get $b_{2}=b_{2}^{\prime}$ and the following equalities: $\begin{gathered}a_{3}+x_{2} d_{0}=a_{2} z_{0}+a_{3}^{\prime} \\ b_{2}+d_{0} y_{1}=z_{0} b_{1}+b_{2}^{\prime}\end{gathered} \quad$ Now if $\left(d_{0}, a_{2}, b_{1}\right)=\mathbf{0}$, then we get $a_{3}=a_{3}^{\prime}$ and $b_{2}=b_{2}^{\prime}$. By routine check, we get $Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A, B)$ is a group of order q^{7} and (A, B) is a branch of type A_{4}, and there are $q^{2}(q-1)$ branches. If $d_{0} \neq 0$, then we choose x_{2} and y_{1} in such a way that we get $a_{3}=b_{2}=0$. By routine check, we get $Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A, B)$ is a commutative group of order q^{5} and (A, B) is a branch of regular type R_{2}, and there are $q^{2}(q-1)^{2}$ branches.

If $d_{0}=0$ and $a_{2} \neq 0$, then we choose w_{0} in such a way that we get $a_{3}=0$ and this implies $w_{0}=0$. Thus we get $b_{2}=b_{2}^{\prime}$. By routine check, we get $Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A, B)$ is a commutative group of order q^{6} and (A, B) is a branch of regular type R_{1}, and there are $q^{2}(q-1)^{2}$ branches.

If $d_{0}=a_{2}=0$ and $b_{1} \neq 0$, then we get $a_{3}=a_{3}^{\prime}$ and we choose w_{0} in such a way that we get $b_{2}=0$. By routine check, we get $Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A, B)$ is a commutative group of order q^{6} and (A, B) is a branch of regular type R_{1}, and there are $q(q-1)^{2}$ branches.

Now we consider that $a_{0}=b_{0}=0$ and $b_{1} \neq 0$. In this case, we can choose x_{0} and z_{0} in such a way that we get $a_{2}=b_{2}=0$. In addition to this, if $d_{0}=0$, then we get $a_{3}=a_{3}^{\prime}$. By routine check, we get $Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A, B)$ is a commutative group of order q^{6} and (A, B) is a branch of regular type R_{3}, and there are $q^{2}(q-1)$ branches. Now if we consider $d_{0} \neq 0$, then we can choose x_{2} in such a way that we get $a_{3}=0$. By routine check, we get $Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A, B)$ is a commutative group of order q^{5} and (A, B) is a branch of regular type R_{2}, and there are $q(q-1)^{2}$ branches.

Finally we consider the case when $a_{0}=b_{0}=b_{1}=0$ and $d_{0} \neq 0$, then we get $a_{2}=$ $a_{2}^{\prime}, a_{1}=a_{1}^{\prime}$ and we can choose y_{1} and x_{2} in such a way that we get $a_{3}=b_{2}=0$. By routine check, we get $Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A, B)$ is a group of order q^{6}, and $Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A, B)=$
 branch of new type, which we call $U N T_{1}$ and there are $q^{2}(q-1)$ branches.

Proposition 7.5. An upper unitriangular matrix of type A_{4} has q^{4} branches of type A_{4}, $q^{3}\left(q^{2}-1\right)$ branches of regular type R_{1}, and $q^{4}(q-1)$ breaches of regular type R_{2}.
Proof. Let $A=\left(\begin{array}{ccccc}1 & & & & \\ & 1 & a & & \\ & & 1 & & \\ & & & 1 & \\ & & & & 1\end{array}\right), a \neq 0$ a matrix of type A_{4}. The centralizer $Z_{U T_{5}}(A)$
of A is $\left\{\left.\left(\begin{array}{ccccc}1 & & x_{1} & x_{2} & x_{3} \\ & 1 & y_{0} & y_{1} & y_{2} \\ & & 1 & & \\ & & & 1 & w_{0} \\ & & & & 1\end{array}\right) \right\rvert\,, x_{i}, y_{i}, w_{0} \in \mathbf{F}_{q}\right\}$. Let $X=\left(\begin{array}{ccccc}1 & & x_{1} & x_{2} & x_{3} \\ & 1 & y_{0} & y_{1} & y_{2} \\ & & 1 & & \\ & & & 1 & w_{0} \\ & & & & 1\end{array}\right)$ be an element of $Z_{U T_{5}\left(\mathbf{F}_{q)}\right)}(A)$. Let $B=\left(\begin{array}{ccccc}1 & & a_{1} & a_{2} & a_{3} \\ & 1 & b_{0} & b_{1} & b_{2} \\ & & 1 & & \\ & & & 1 & d_{0} \\ & & & & 1\end{array}\right)$, and $B^{\prime}=\left(\begin{array}{ccccc}1 & & a_{1}^{\prime} & a_{2}^{\prime} & a_{3}^{\prime} \\ & 1 & b_{0}^{\prime} & b_{1}^{\prime} & b_{2}^{\prime} \\ & & 1 & & \\ & & & 1 & d_{0}^{\prime} \\ & & & & 1\end{array}\right)$
be a conjugate of B by X. Thus equating $X B=B^{\prime} X$ gives us $a_{1}=a_{1}^{\prime} a,_{2}=a_{2}^{\prime}, b_{0}=b_{0}^{\prime}$, $b_{1}=b_{1}^{\prime}, d_{0}=d_{0}^{\prime}$ and the following equations:

$$
\begin{aligned}
a_{3}+x_{2} d_{0} & =a_{2}^{\prime} w_{0}+a_{3}^{\prime} \\
b_{2}+d_{0} y_{1} & =w_{0} b_{1}^{\prime}+b_{2}^{\prime} \\
& 71
\end{aligned}
$$

We consider two cases when $\left(a_{2}, b_{1}, d_{0}\right)=\mathbf{0}$ and when $\left(a_{2}, b_{1}, d_{0}\right) \neq \mathbf{0}$.
Case: $\left(a_{2}, b_{1}, d_{0}\right)=\mathbf{0}$. In this case, we get $a_{3}=a_{3}^{\prime}$ and $b_{2}=b_{2}^{\prime}$. Therefore $Z_{U T_{5}\left(\mathbf{F}_{q)}\right)}(A, B)=Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A)$. So (A, B) is a branch of type A_{4}, and there are q^{4} branches.

Case: $\left(a_{2}, b_{1}, d_{0}\right) \neq \mathbf{0}$. First we consider that $d_{0} \neq 0$. Now we can choose x_{2} and y_{1} in such a way that we get $a_{3}=b_{2}=0$. By routine check, we get $Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A, B)$ is a commutative group of size q^{5}. Thus (A, B) is of regular type R_{2}, and there are $q^{4}(q-1)$ branches of this type.

Now we consider that $d_{0}=0$ and $a_{2} \neq 0$. In this case, we can choose w_{0} in such a way that we get $a_{3}=0$. By routine check, we get $Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A, B)$ is a commutative group of size q^{6}. Thus (A, B) is of regular type R_{1}, and there are $q^{4}(q-1)$ branches of this type.

Finaly we consider when $d_{0}=a_{2}=0$ and $b_{1} \neq 0$., now we can choose w_{0} in such a way that we get $b_{2}=0$. Again, we get $Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A, B)$ is commutative group of size q^{6}. Thus (A, B) is of regular type R_{1}, and there are $q^{3}(q-1)$ branches of this type.

Therefore we get that a matrix of type A_{4} has q^{4} branches of type $A_{4}, q^{3}\left(q^{2}-1\right)$ braches of regular type R_{1}, and $q^{4}(q-1)$ braches of regular type R_{2}.

Proposition 7.6. An upper unitriangular matrix of type A_{5} has:

Branch Type	No. of Branches	Branch Type	No. of Branches
A_{5}	q^{2}	R_{2}	$q^{2}(q-1)$
B_{4}	$2 q(q-1)$	R_{3}	$q(q-1)\left(q^{2}-1\right)$
B_{6}	$q^{2}\left(q^{2}-1\right)$	$U N T_{1}$	$q(q-1)^{2}$.

It has the new branch $U N T_{1}$ already seen in previous case.
Proof. There are several canonical forms for a matrix in $U T_{5}\left(\mathbf{F}_{q}\right)$, of type A_{5}. We prove this proposition for the canonical form $A=\left(\begin{array}{ccccc}1 & a & & & \\ & 1 & & & \\ & & 1 & & \\ & & & 1 & \\ & & & & 1\end{array}\right)$, where $a \neq 0$. We have: $Z_{U_{5}\left(\mathbf{F}_{q)}\right)}(A)=\left\{\left(\begin{array}{ccccc}1 & a_{0} & a_{1} & a_{2} & a_{3} \\ & 1 & & & \\ & & 1 & b_{0} & b_{1} \\ & & & 1 & c_{0} \\ & & & & 1\end{array}\right)\right\}$. $\left\{\left.\left(\begin{array}{ccc}1 & a_{0} & { }^{t} \vec{b} \\ & 1 & \\ & & C\end{array}\right) \right\rvert\, \begin{array}{l}{ }_{t} \vec{b} \in U T_{3}\left(\mathbf{F}_{q}\right) \\ \\ \end{array}\right.$
be a conjugate in $U T_{5}$ of $B . B^{\prime}=X B X^{-1}$, where $X=\left(\begin{array}{ccc}1 & x_{0} & t \vec{y} \\ & 1 & \\ & & Z\end{array}\right)$. So, equating $X B=B^{\prime} X$ gives us $a_{0}^{\prime}=a_{0}, Z C=C^{\prime} Z$. So, we may take C to be the representative of a conjugacy class in $U T_{3}\left(\mathbf{F}_{q}\right)$, and we have the equation:

$$
{ }^{t} \vec{y} \cdot C+{ }^{t} \vec{b}={ }^{t} \overrightarrow{b^{\prime}} Z+{ }^{t} \vec{y}
$$

We rewrite this equation slightly to get:

$$
\left(\begin{array}{lll}
y_{1} & y_{2} & y_{3}
\end{array}\right)\left(C-I_{3}\right)+\left(\begin{array}{lll}
b_{1} & b_{2} & b_{3}
\end{array}\right)=\left(\begin{array}{lll}
b_{1}^{\prime} & b_{2}^{\prime} & b_{3}^{\prime} \tag{7.5}
\end{array}\right) Z
$$

The cases:
When $C=I_{3}$. Here Equation 7.5 becomes: $\left(\begin{array}{lll}b_{1} & b_{2} & b_{3}\end{array}\right)=\left(\begin{array}{lll}b_{1}^{\prime} & b_{2} & b_{3}^{\prime}\end{array}\right)\left(\begin{array}{ccc}1 & z_{0} & z_{1} \\ & 1 & z_{2} \\ & & 1\end{array}\right)$, which gives us $b_{1}^{\prime}=b_{1}$, and the following equation:

$$
\begin{align*}
& b_{2}=b_{2}^{\prime}+z_{0} b_{1} \tag{7.6}\\
& b_{3}=b_{3}^{\prime}+z_{1} b_{1}+z_{2} b_{2}^{\prime} \tag{7.7}
\end{align*}
$$

We have two subcases here: When $b_{1}=0$ and when $b_{1} \neq 0$.
When $b_{1}=0$ Equation 7.6 becomes $b_{2}^{\prime}=b_{2}$, and Equation 7.7 becomes $b_{3}=b_{3}^{\prime}+z_{2} b_{2}$.

When $b_{2}=0$, we have $b_{3}^{\prime}=b_{3}$. So B is reduced to

$$
\left(\begin{array}{ccccc}
1 & a_{0} & & & b_{3} \\
& 1 & & & \\
& & 1 & & \\
& & & 1 & \\
& & & & 1
\end{array}\right), \text { and }
$$

$Z_{U_{5}\left(\mathbf{F}_{q}\right)}(A, B)=Z_{U_{5}\left(\mathbf{F}_{q}\right)}(A)$. Thus (A, B) is of type A_{5}, and there are q^{2} such branches.
When $b_{2} \neq 0$, in Equation 7.6, choose z_{2} so that $b_{3}^{\prime}=0$. So, We have B reduced to $\left(\begin{array}{ccccc}1 & a_{0} & & b_{2} & \\ & 1 & & & \\ & & 1 & & \\ & & & 1 & \\ & & & & 1\end{array}\right)$, and $Z_{U_{5}\left(\mathbf{F}_{q}\right)}(A, B)=\left\{\left(\begin{array}{ccccc}1 & x_{0} & y_{1} & y_{2} & y_{3} \\ & 1 & & & \\ & & 1 & z_{0} & z_{1} \\ & & & 1 & \\ & & & & 1\end{array}\right)\right\} .(A, B)$ is of type
B_{4} and there are $q(q-1)$ such branches.
When $b_{1} \neq 0$: In Equation 7.6, choose z_{0} such that $b_{2}^{\prime}=0$, and in Equation 7.6, choose z_{1} such that $b_{3}^{\prime}=0$. So B is reduced to $\left(\begin{array}{ccccc}1 & a_{0} & b_{1} & & \\ & 1 & & & \\ & & 1 & & \\ & & & 1 & \\ & & & & 1\end{array}\right)$, and $Z_{U_{5}\left(\mathbf{F}_{q}\right)}(A, B)=$
$\left\{\left(\begin{array}{ccccc}1 & x_{0} & y_{1} & y_{2} & y_{3} \\ & 1 & & & \\ & & 1 & & \\ & & & 1 & z_{2} \\ & & & & 1\end{array}\right)\right\} .(A, B)$ is a branch of type B_{6}, and there are $q(q-1)$ such
branches.
When $C=\left(\begin{array}{ll}1 & \\ & \\ & 1 \\ & 1\end{array}\right), c \neq 0$: From Equation 7.5, we have $b_{1}^{\prime}=b_{1}$, and the following following equations:

$$
\begin{align*}
b_{2} & =b_{2}^{\prime}+z_{0} b_{1} \tag{7.8}\\
b_{3}^{\prime}+c y_{1} & =b_{3}^{\prime}+z_{1} b_{1}^{\prime}+z_{2} b_{2}^{\prime} . \tag{7.9}
\end{align*}
$$

As $c \neq 0$, choose y_{1} so that $b_{3}^{\prime}=0$.
Case: $b_{1}=0$

We have $b_{2}^{\prime}=b_{2}$. When $b_{2}=0, B$ is reduced to
$\left(\begin{array}{ccccc}1 & a_{0} & & & \\ & 1 & & & \\ & & 1 & & c \\ & & & 1 & \\ & & & & 1\end{array}\right)$, and $Z_{U_{5}\left(\mathbf{F}_{q)}\right)}(A, B)=$ $\left\{\left(\begin{array}{ccccc}1 & x_{0} & & y_{2} & y_{3} \\ & 1 & & & \\ & & 1 & z_{0} & z_{1} \\ & & & 1 & z_{2} \\ & & & & 1\end{array}\right)\right\} .(A, B)$ is of type B_{4}, and there are $q(q-1)$ such branches.

When $b_{2} \neq 0$, we have B reduced to $\left(\begin{array}{ccccc}1 & a_{0} & & a_{2} & \\ & 1 & & & \\ & & 1 & & c \\ & & & 1 & \\ & & & & 1\end{array}\right)$, and $Z_{U_{5}\left(\mathbf{F}_{q}\right)}(A, B)=$
$\left\{\left(\begin{array}{ccccc}1 & x_{0} & \frac{b_{2}}{c} z_{2} & y_{2} & y_{3} \\ & 1 & & & \\ & & 1 & z_{0} & z_{1} \\ & & & 1 & z_{2} \\ & & & & 1\end{array}\right)\right\}$. This centralizer is isomorphic to that of a new type, $U N T_{1}$,
which we had come across earlier. There are $q(q-1)^{2}$ such branches.

When $b_{1} \neq 0$. We can choose z_{0} so that $b_{2}^{\prime}=0$. Here B is reduced to $\left(\begin{array}{ccccc}1 & a_{0} & a_{1} & & \\ & 1 & & & \\ & & 1 & & c \\ & & & 1 & \\ & & & & 1\end{array}\right)$,
and $Z_{U_{5}\left(\mathbf{F}_{q}\right)}(A, B)=\left\{\left(\begin{array}{ccccc}1 & x_{0} & \frac{b_{1}}{c_{1}} z_{1} & y_{2} & y_{3} \\ & 1 & & & \\ & & 1 & & z_{1} \\ & & & 1 & z_{2} \\ & & & & 1\end{array}\right)\right\}$. Hence (A, B) is of type B_{6}, and there
are $q(q-1)^{2}$ such branches.
When $C=\left(\begin{array}{ccc}1 & c \\ & 1 & \\ & & 1\end{array}\right), c \neq 0$: Here $Z=\left(\begin{array}{ccc}1 & z_{0} & z_{1} \\ & 1 & \\ & & \\ & & \\ & & \end{array}\right)$. With this, Equation 7.5 becomes: $\left(\begin{array}{lll}b_{1} & b_{2}+c y_{1} & b_{3}\end{array}\right)=\left(\begin{array}{lll}b_{1}^{\prime} & z_{0} b_{1}^{\prime}+b_{2}^{\prime} & z_{1} b_{1}^{\prime}+b_{3}^{\prime}\end{array}\right)$. Now, as $c \neq 0$, choose y_{1} so that $b_{2}^{\prime}=0$.

When $b_{1}=0$, we have $b_{3}^{\prime}=b_{3}$. Thus, B is reduced to $\left(\begin{array}{ccccc}1 & a_{0} & & & b_{3} \\ & 1 & & & \\ & & 1 & c & \\ & & & 1 & \\ & & & & 1\end{array}\right)$, and $Z_{U_{5}\left(\mathbf{F}_{q}\right)}(A, B)=\left\{\left(\begin{array}{ccccc}1 & x_{0} & & y_{2} & y_{3} \\ & 1 & & & \\ & & 1 & z_{0} & z_{1} \\ & & & 1 & \\ & & & & 1\end{array}\right)\right\}$. By a routine check, we can see that this centralizer is commutative, and of size $q^{5} .(A, B)$ is of type R_{2}, and there are $q^{2}(q-1)$ such branches.

When $b_{1} \neq 0$, choose z_{1} such that $b_{3}^{\prime}=0$. Thus, B is reduced to $\left(\begin{array}{ccccc}1 & a_{0} & a_{1} & & \\ & 1 & & & \\ & & 1 & c & \\ & & & 1 & \\ & & & & 1\end{array}\right)$,
and $Z_{U_{5}\left(\mathbf{F}_{q}\right)}(A, B)=\left\{\left(\begin{array}{cccccc}1 & x_{0} & \frac{b_{1}}{c} z_{0} & y_{2} & y_{3} \\ & 1 & & & \\ & & 1 & z_{0} & \\ & & & & 1 & \\ & & & & 1\end{array}\right)\right\}$. This centralizer is of size q^{4}, and is
commutative. Thus (A, B) is of type R_{3}, and there are $(q-1)^{2} q$ such branches.
When $C=\left(\begin{array}{ccc}1 & & \\ & 1 & c \\ & & 1\end{array}\right), c \neq 0$: Here $Z=\left(\begin{array}{ccc}1 & & z_{1} \\ & 1 & z_{2} \\ & & 1\end{array}\right)$. Here Equation 7.5 becomes: $\left(\begin{array}{lll}b_{1} & b_{2} & b_{3}+c y_{2}\end{array}\right)=\left(\begin{array}{lll}b_{1}^{\prime} & b_{2}^{\prime} & b_{3}^{\prime}+z_{1} b_{1}^{\prime}+z_{2} b_{2}^{\prime}\end{array}\right)$.
We have $b_{1}^{\prime}=b_{1}$ and $b_{2}^{\prime}=b_{2}$, and choose y_{2} so that $b_{3}^{\prime}=0$. Thus B is reduced to $\left(\begin{array}{ccccc}1 & a_{0} & b_{1} & b_{2} & \\ & 1 & & & \\ & & 1 & & \\ & & & 1 & c \\ & & & & 1\end{array}\right)$, and $Z_{U_{5}\left(\mathbf{F}_{q)}\right)}(A, B)=\left\{\left(\begin{array}{ccccc}1 & x_{0} & y_{1} & \frac{b_{1}}{c} z_{1}+\frac{b_{2}}{c} z_{2} & y_{3} \\ & 1 & & & \\ & & 1 & & z_{1} \\ & & & & 1\end{array}\right)\right\}$ z. This too is of type B_{6}, and there are $q^{3}(q-1)$ such branches.

And now we have the last case: When $C=\left(\begin{array}{ccc}1 & c \\ & 1 & d \\ & 1\end{array}\right), c, d \neq 0$: Here $Z=\left(\begin{array}{ccc}1 & z_{0} & z_{1} \\ & 1 & \lambda z_{0} \\ & & 1\end{array}\right)$,
where $\lambda=\frac{d}{c}$. Equation 7.5 becomes: $\left(\begin{array}{lll}b_{1} & b_{2}+c y_{1} & b_{3}+d y_{2}\end{array}\right)=\left(\begin{array}{lll}b_{1}^{\prime} & b_{2}^{\prime}+z_{0} b_{1}^{\prime} & b_{3}^{\prime}+z_{1} b_{1}^{\prime}+\lambda z_{0} b_{2}^{\prime}\end{array}\right)$. We have $b_{1}^{\prime}=b_{1}$, and choose y_{1} so that $b_{2}^{\prime}=0$, and y_{2} so that $b_{3}^{\prime}=0$. Hence B is reduce to $\left(\begin{array}{ccccc}1 & a_{0} & b_{1} & & \\ & 1 & & & \\ & & 1 & c & \\ & & & 1 & d \\ & & & & 1\end{array}\right)$, and $Z_{U_{5}\left(\mathbf{F}_{q)}\right.}(A, B)=\left\{\left(\begin{array}{ccccc}1 & x_{0} & \frac{b_{1}}{c} z_{0} & \frac{b_{1}}{d} z_{1} & y_{3} \\ & 1 & & & \\ & & 1 & z_{0} & z_{1} \\ & & & & 1 \\ & & & & \lambda z_{0} \\ & & & & 1\end{array}\right)\right\}$. This cen-
tralizer is 4 dimensional, and commutative. Thus (A, B) is of type R_{3}, and there are $(q-1)^{2} q^{2}$ such branches.

With this, we have no other cases to analyse. So from the calculations, we have:

- q^{2} branches of type A_{5}.
- $q(q-1)+q(q-1)=2 q(q-1)$ branches of type B_{4}.
- $q(q-1)+q(q-1)^{2}+q^{3}(q-1)=q^{4}-q^{2}$ branches of type B_{6}.
- $q^{2}(q-1)$ branches of type R_{2}.
- $q(q-1)^{2}+q^{2}(q-1)^{2}=q(q-1)\left(q^{2}-1\right)$ branches of type R_{3}, and
- $q(q-1)^{2}$ branches of the new type $U N T_{1}$.
7.2. Branching of type B. Now we look at the B types and decide its branching.

Proposition 7.7. An upper unitriangular matrix of type B_{1} has the following branches:

Branch	No. of Branches	Branch	No. of Branches
B_{1}	q^{2}	R_{3}	$(q-1)^{2}\left(q^{2}+q+1\right)$
A_{2}	$3 q^{2}-3 q$	$U N T_{1}$	$(q-1)^{2}$
R_{1}	$2 q^{3}-4 q+2$	$U N T_{2}$	$2 q^{2}-2 q$
R_{2}	$q(q-1)^{2}(q+2)$	$U N T_{3}$	$(q-1)^{3}$.
B_{6}	$q^{2}(q-1)$		

We have seen $U N T_{1}$ earlier. There are two more new types here $U N T_{2}$ with centralizer

Proof. A matrix of type B_{1} has the canonical form:

$$
\left(\begin{array}{cccc}
1 & & & a \\
\\
& 1 & & \\
& & 1 & \\
& & & 1 \\
& & & \\
& & & \\
&
\end{array}\right) \text {. We may take }
$$

$$
a=b=1 \text {. Then } Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A)=\left\{\left.\left(\begin{array}{ccc}
1 & { }^{t} \vec{b} & a_{2} \\
& C & \vec{d} \\
& & 1
\end{array}\right) \right\rvert\, C \in U T_{3}\left(\mathbf{F}_{q}\right), \quad \begin{array}{cc}
t \vec{b}=\left(\begin{array}{ll}
a_{1} & b_{1} \\
a_{2}
\end{array}\right. \\
& \vec{d}=\left(\begin{array}{l}
d_{1} \\
d_{2} \\
a_{1}
\end{array}\right)
\end{array}\right\} \text {. Let }
$$

$$
B=\left(\begin{array}{ccc}
1 & { }^{t} \vec{b} & a_{2} \\
& C & \vec{d} \\
& & 1
\end{array}\right), X=\left(\begin{array}{ccc}
1 & { }^{t} \vec{y} & x_{2} \\
& Z & \vec{w} \\
& & 1
\end{array}\right) \text {, and } B^{\prime}=\left(\begin{array}{ccc}
1 & { }^{t} \overrightarrow{b^{\prime}} & \\
& a_{2}^{\prime} \\
& C^{\prime} & \overrightarrow{d^{\prime}} \\
& & 1
\end{array}\right)=X B X^{-1} . \text { Then }
$$

$X B=B^{\prime} X$ leads to firstly $Z C=C^{\prime} Z$, so we might as well take C to be a conjugacy class representative in $U T_{3}\left(\mathbf{F}_{q}\right)$, and Z, a centralizer matrix of C. We also get in $t \vec{b}$, and $\vec{d}, a_{1}^{\prime}=a_{1}$, and the following equations:

$$
\begin{align*}
\left(\begin{array}{lll}
a_{1} & b_{1} & b_{2}
\end{array}\right)+\left(\begin{array}{lll}
x_{1} & y_{1} & y_{2}
\end{array}\right) C & =\left(\begin{array}{lll}
a_{1}^{\prime} & b_{1}^{\prime} & b_{2}^{\prime}
\end{array}\right) Z+\left(\begin{array}{lll}
x_{1} & y_{1} & y_{2}
\end{array}\right) \tag{7.10}\\
Z\left(\begin{array}{l}
d_{1} \\
d_{2} \\
a_{1}
\end{array}\right)+\left(\begin{array}{l}
w_{1} \\
w_{2} \\
x_{1}
\end{array}\right) & =\left(\begin{array}{l}
d_{1}^{\prime} \\
d_{2}^{\prime} \\
a_{1}
\end{array}\right)+C\left(\begin{array}{c}
w_{1} \\
w_{2} \\
x_{1}
\end{array}\right) \tag{7.11}\\
a_{2}+x_{1} d_{1}+y_{1} d_{2}+y_{2} d_{1} & =a_{2}^{\prime}+a_{1} w_{1}+b_{1}^{\prime} w_{2}+b_{2}^{\prime} x_{1} \tag{7.12}
\end{align*}
$$

We look at two main cases: $a_{1}=0$, and $a_{1} \neq 0$.
Case $a_{1}=0$: First we look at $b_{1}=b_{2}=d_{1}=d_{2}=0$. Here Equation 7.10 reduces to $\left(\begin{array}{lll}x_{1} & y_{1} & y_{2}\end{array}\right) C=\left(\begin{array}{lll}x_{1} & y_{1} & y_{2}\end{array}\right)$, Equation 7.11 reduces to $C\left(\begin{array}{lll}w_{1} & w_{2} & x_{1}\end{array}\right)=$ $\left(\begin{array}{lll}w_{1} & w_{2} & x_{1}\end{array}\right)$, and from Equation 7.12, we have $a_{2}^{\prime}=a_{2}$.

When $C=I_{3}$, Equations 7.10 and 7.11 are void, and we have $B=\left(\begin{array}{ccccc}1 & & & & a_{2} \\ & 1 & & & \\ & & 1 & & \\ & & & 1 & \\ & & & & 1\end{array}\right)$,
with $Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A, B)=Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A)$. Thus (A, B) is of type B_{1}, and there are q such branches.

When $C=\left(\begin{array}{cc}1 & \\ & 1 \\ & 1\end{array}\right), c \neq 0$, we have from Equation 7.10: $c x_{1}=0$. Hence $x_{1}=$
0. With this Equation 7.11 becomes void. So, we have $B=\left(\begin{array}{ccccc}1 & & & & a_{2} \\ & 1 & & c & \\ & & 1 & & \\ & & & 1 & \\ & & & & 1\end{array}\right)$, and $Z_{U T_{5}\left(\mathbf{F}_{q)}\right)}(A, B)=\left\{\left(\begin{array}{ccccc}1 & & y_{1} & y_{2} & x_{2} \\ & 1 & z_{1} & z_{2} & w_{1} \\ & & 1 & z_{3} & w_{2} \\ & & & 1 & \\ & & & & 1\end{array}\right)\right\}$, which is the centralizer of a canonical form of type $A_{2} .(A, B)$ is a branch of type A_{2}, and there are $q(q-1)$ such branches.

When $C=\left(\begin{array}{ccc}1 & c \\ & 1 & \\ & 1 & 1\end{array}\right), c \neq 0$, we have $Z=\left(\begin{array}{ccc}1 & z_{1} & z_{2} \\ & 1 & \\ & & \\ & & 1\end{array}\right)$. From equation 7.10 , with this C, we get: $\left(\begin{array}{lll}x_{1} & y_{1}+c x_{1} & y_{2}\end{array}\right)=\left(\begin{array}{lll}x_{1} & y_{1} & y_{2}\end{array}\right)$, which leaves us with $x_{1}=0$. Equation 7.11 becomes: $\binom{w_{1}}{w_{2}}=\binom{w_{1}+c w_{2}}{w_{2}}$, thus we have $w_{2}=0$. So we have $B=I_{5}+c E_{24}+a_{2} E_{15}$, with $Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A, B)=\left\{\left(\begin{array}{ccccc}1 & & y_{1} & y_{2} & x_{2} \\ & 1 & z_{1} & z_{2} & w_{1} \\ & & 1 & & \\ & & & 1 & \\ & & & & 1\end{array}\right)\right\}$, which is the
centralizer of a matrix of type R_{1}. Thus (A, B) is of type R_{1}, and there are $q(q-1)$ such branches.

When $C=\left(\begin{array}{cc}1 & \\ & 1 \\ & c \\ & 1\end{array}\right), c \neq 0, Z=\left(\begin{array}{ccc}1 & & z_{2} \\ & 1 & z_{3} \\ & & 1\end{array}\right)$. Equation 7.10 becomes: $\left(\begin{array}{lll}x_{1} & y_{1} & c y_{1}+y_{2}\end{array}\right)=$ $\left(\begin{array}{lll}x_{1} & y_{1} & y_{2}\end{array}\right)$, which leaves us with $y_{1}=0$. Equation 7.11 becomes $\left(\begin{array}{c}w_{1} \\ w_{2}+c x_{1} \\ x_{1}\end{array}\right)=$ $\left(\begin{array}{l}w_{1} \\ w_{2} \\ x_{1}\end{array}\right)$, which leads to $x_{1}=0$. So $B=I_{5}+a_{2} E_{15}+c E_{34}$, with $Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A, B)=$ $\left\{\left(\begin{array}{ccccc}1 & & & y_{2} & x_{2} \\ & 1 & & z_{2} & w_{1} \\ & & 1 & z_{3} & w_{2} \\ & & & 1 & \\ & & & & 1\end{array}\right)\right\}$, which is the centralizer of a matrix of type $R_{1} .(A, B)$ is a
branch of type R_{1}, and there are $q(q-1)$ such branches.
When $C=\left(\begin{array}{ccc}1 & c & \\ & 1 & d \\ & & 1\end{array}\right), c_{1}, c_{2} \neq 0, Z=\left(\begin{array}{ccc}1 & z_{1} & z_{2} \\ & 1 & \frac{d}{c} z_{1} \\ & & 1\end{array}\right)$. Equation 7.10 becomes $\left(\begin{array}{lll}x_{1} & c x_{1}+y_{1} & d y_{1}+y_{2}\end{array}\right)=\left(\begin{array}{lll}x_{1} & y_{2} & y_{2}\end{array}\right)$, which leaves us with $x_{1}=y_{1}=0$. Equation 7.11 becomes $\binom{w_{1}+c w_{2}}{w_{2}}=\binom{w_{1}}{w_{2}}$, which leaves us with $w_{2}=0$. Hence $B=$ $I_{5}+a_{2} E_{15}+c E_{23}+d E_{34}$, and $Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A, B)=\left\{\left(\begin{array}{ccccc}1 & & & y_{2} & x_{2} \\ & 1 & z_{1} & z_{2} & w_{1} \\ & & 1 & \frac{d}{c} z_{1} & \\ & & & 1 & \\ & & & & 1\end{array}\right)\right\}$, which is the
centralizer of a matrix of type R_{2}. (A, B) is a branch of type R_{2}, and there are $q(q-1)^{2}$ branches.

When $\left(\left(b_{1}, b_{2}\right),\left(d_{1}, d_{2}\right)\right) \neq(\overrightarrow{0}, \overrightarrow{0})$:
We start with $C=I_{3}$: Thus Equation 7.10 becomes $\left(\begin{array}{lll}0 & b_{1} & b_{2}\end{array}\right)=\left(\begin{array}{lll}0 & b_{1}^{\prime} & b_{1}^{\prime} z_{3}+b_{2}^{\prime}\end{array}\right)$. We have $b_{1}^{\prime}=b_{1}$, and thus $b_{2}=b_{2}^{\prime}+b_{1} z_{3}$. First, when $b_{1} \neq 0$, we choose z_{3} so that $b_{2}^{\prime}=0$. Thus, on replacing b_{2} by $b_{2}^{\prime}=0$ in the equation above, we have $z_{3}=0$. So Equation 7.11 boils down to $\left(\begin{array}{c}d_{1}+z_{1} d_{2} \\ d_{2} \\ 0\end{array}\right)=\left(\begin{array}{c}d_{1}^{\prime} \\ d_{2}^{\prime} \\ 0\end{array}\right)$. So we have $d_{2}^{\prime}=d_{2}$. So, again, over here, when $d_{2} \neq 0$, choose z_{1} such that $d_{1}^{\prime}=0$. With these, Equation 7.12 becomes $y_{1} d_{2}+a_{2}=a_{2}^{\prime}+w_{2} b_{1}$. So, choose w_{2} such that $a_{2}^{\prime}=0$. So, B is reduced to
$I_{5}+b_{1} E_{13}+d_{2} E_{35}$, and $Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A, B)=\left\{\left(\begin{array}{ccccc}1 & x_{1} & y_{1} & y_{2} & x_{2} \\ & 1 & & z_{2} & w_{1} \\ & & 1 & & \frac{d_{2}}{b_{1}} y_{1} \\ & & & 1 & x_{1} \\ & & & & 1\end{array}\right)\right\}$. This centralizer is isomorphic to that of the new type $U N T_{1}$ (as seen in Proposition 7.4), via the isomorphism that maps generators to generators, and extended product-wise.

When $b_{1} \neq 0$, and $d_{2}=0$, we have $d_{1}^{\prime}=d_{1}$, and Equation 7.12 becomes $x_{1} d_{1}+=$ $a_{2}^{\prime}+b_{1} w_{2}$. So, we choose w_{2} such that $a_{2}^{\prime}=0$. So B is reduced to $\left(\begin{array}{ccccc}1 & & b_{1} & & \\ & 1 & & & d_{1} \\ & & 1 & & \\ & & & 1 & \\ & & & & 1\end{array}\right)$, and $Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A, B)=\left\{\left(\begin{array}{ccccc}1 & x_{1} & y_{1} & y_{2} & x_{2} \\ & 1 & z_{1} & z_{2} & w_{1} \\ & & 1 & & \frac{d_{1}}{b_{1}} x_{1} \\ & & & 1 & x_{1} \\ & & & & 1\end{array}\right)\right\}$. Thus (A, B) is of a new type, which we call $U N T_{2}$, and there are $q(q-1)$ such branches.

When $b_{1}=0, b_{2}^{\prime}=b_{2}$. First, when $d_{2} \neq 0$, we choose z_{1} so that $d_{1}^{\prime}=0$, and hence Equation 7.12 becomes $a_{2}+y_{1} d_{2}=a_{2}^{\prime} z+b_{2} x_{1}$. As $d_{2} \neq 0$, choose y_{1} so that $a_{2}^{\prime}=0$. Hence B is reduced to $\left(\begin{array}{ccccc}1 & & & b_{2} & \\ & 1 & & & \\ & & 1 & & d_{2} \\ & & & 1 & \\ & & & & 1\end{array}\right)$, and $Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A, B)=\left\{\left(\begin{array}{ccccc}1 & x_{1} & \frac{b_{2}}{d_{2}} x_{1} & y_{2} & x_{2} \\ & 1 & & z_{2} & w_{1} \\ & & 1 & z_{3} & w_{2} \\ & & & 1 & x_{1} \\ & & & & 1\end{array}\right)\right\}$.
This too is of type $U N T_{2}$, and there are $q(q-1)$ such branches.
When $d_{2}=0$, we have $d_{1}^{\prime}=d_{1}$. So Equation 7.12 looks like: $a_{2}+x_{1} d_{1}=a_{2}^{\prime}+x_{1} b_{2}$.
When $b_{2}=d_{1} \neq 0$, we have $a_{2}^{\prime}=a_{2}$, and B is reduced to $\left(\begin{array}{ccccc}1 & & & b_{2} & a_{2} \\ & 1 & & & b_{2} \\ & & 1 & & \\ & & & 1 & \\ & & & & 1\end{array}\right)$, and $Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A, B)=Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A)$. Thus (A, B) is of type B_{1}, and there are $q(q-1)$ such branches.

and $Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A, B)=\left\{\left(\begin{array}{ccccc}1 & & y_{1} & y_{2} & x_{2} \\ & 1 & z_{1} & z_{2} & w_{1} \\ & & 1 & z_{3} & w_{2} \\ & & & 1 & \\ & & & & 1\end{array}\right)\right\}$, which is the centralizer of a matrix of
type A_{2}, and there are $q(q-1)$ such branches.
When $C=\left(\begin{array}{cc}1 & \\ & \\ & 1 \\ & 1\end{array}\right), c \neq 0$: Equation 7.10 becomes: $\left(\begin{array}{lll}0 & b_{1} & b_{2}+c x_{1}\end{array}\right)=\left(\begin{array}{lll}0 & b_{1}^{\prime} & b_{1}^{\prime} z_{3}+b_{2}^{\prime}\end{array}\right)$. We have $b_{1}^{\prime}=b_{1}$, and as $c \neq 0$, we can choose x_{1} so that $b_{2}^{\prime}=0$. So, on replacing b_{2} by 0 in the above equation, we have $x_{1}=\frac{b_{1}}{c} z_{3}$.

Then from Equation 7.11, we have $\left(\begin{array}{c}d_{1}+d_{2} z_{1} \\ d_{2} \\ 0\end{array}\right)=\left(\begin{array}{c}d_{1}^{\prime}+b_{1} z_{3} \\ d_{2}^{\prime} \\ 0\end{array}\right)$. First, when $b_{1} \neq 0$, we choose a z_{3} so that $d_{1}^{\prime}=0$. With these, Equation 7.12 becomes: $a_{2}+y_{1} d_{2}=a_{2}^{\prime}+b_{1} w_{2}$.

As $b_{1} \neq 0$, choose w_{2} so that $a_{2}^{\prime}=0$. So B is reduced to
$\left(\begin{array}{ccccc}1 & & b_{1} & & \\ & 1 & & c & \\ & & 1 & & d_{2} \\ & & & 1 & \\ & & & & 1\end{array}\right)$. When $d_{2} \neq 0 Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A, B)=\left\{\left(\begin{array}{ccccc}1 & \frac{d_{2}}{c} z_{1} & y_{1} & y_{2} & x_{2} \\ & 1 & z_{1} & z_{2} & w_{1} \\ & & 1 & \frac{d_{2}}{b_{1}} z_{1} & \frac{d_{2}}{b_{1}} y_{1} \\ & & & 1 & \frac{d_{2}}{c} z_{1} \\ & & & & 1\end{array}\right)\right\}$. This isn't isomorphic to the
centralizer of any matrix in $U T_{5}\left(\mathbf{F}_{q}\right)$, hence (A, B) is of a new type $U N T_{3}$, and there are $(q-1)^{3}$ such branches. When $d_{2}=0, Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A, B)=\left\{\left(\begin{array}{ccccc}1 & & y_{1} & y_{2} & x_{2} \\ & 1 & z_{1} & z_{2} & w_{1} \\ & & 1 & & \\ & & & 1 & \\ & & & & \end{array}\right)\right\}$.
Hence (A, B) is of type R_{1}, and there are $(q-1)^{2}$ such branches.
When $b_{1}=0$, we have $x_{1}=\frac{b_{1}}{c} z_{3}=0$, we have $d_{1}^{\prime}=d_{1}+z_{1} d_{2}$. When $d_{2} \neq 0$, choose z_{1} such that $d_{1}^{\prime}=0$. Equation 7.12 becomes $a_{2}+y_{1} d_{2}=a_{2}^{\prime}$. Choose y_{1} so that $a_{2}^{\prime}=0$.

So, B is reduced to $\left(\begin{array}{ccccc}1 & & & & \\ & 1 & & c & \\ & & 1 & & d_{2} \\ & & & 1 & \\ & & & & 1\end{array}\right)$, and $Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A, B)=\left\{\left(\begin{array}{ccccc}1 & & & y_{2} & x_{2} \\ & 1 & & z_{2} & w_{1} \\ & & 1 & z_{3} & w_{2} \\ & & & 1 & \\ & & & & 1\end{array}\right)\right\}$.
(A, B) is of type R_{1}, and there are $(q-1)^{2}$ such branches.
When $b_{1}=0$, and $d_{2}=0$. Then $d_{1}^{\prime}=d_{1}$, which is $\neq 0$ Then from Equation 7.12, we simply have $a_{2}^{\prime}=a_{2}$, and B is reduced to $\left(\begin{array}{ccccc}1 & & & & a_{2} \\ & 1 & & c & d_{1} \\ & & 1 & & \\ & & & 1 & \\ & & & & 1\end{array}\right) \cdot Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A, B)=$ $\left\{\left(\begin{array}{cccc}1 & & y_{1} & y_{2} \\ x_{2} \\ & 1 & z_{1} & z_{2} \\ w_{1} \\ & & 1 & z_{3} \\ \\ & & & 1 \\ & & & \\ & & & \\ \hline\end{array}\right)\right\} .(A, B)$ is of type A_{2}, and there are $q(q-1)$ such branches.

When $C\left(\begin{array}{ccc}1 & c \\ & 1 & \\ & 1\end{array}\right), c \neq 0: Z=\left(\begin{array}{ccc}1 & z_{1} & z_{2} \\ & 1 & \\ & & \\ & & \end{array}\right)$. Equation 7.10 becomes $\left(\begin{array}{lll}0 & b_{1}+c x_{1} & b-2\end{array}\right)=$ $\left(\begin{array}{lll}0 & b_{1}^{\prime} & b_{2}^{\prime}\end{array}\right)$. We get that $b_{2}^{\prime}=b_{2}$. We choose x_{1} so that $b_{1}^{\prime}=0$. Thus, on replacing b_{1} by 0 , and equating the above equation, we have $x_{1}=0$. Equation 7.11 becomes $\left(\begin{array}{c}d_{1}+z_{1} d_{2} \\ d_{2} \\ 0\end{array}\right)=\left(\begin{array}{c}c w_{2}+d_{1}^{\prime} \\ d_{2}^{\prime} \\ 0\end{array}\right)$. Again, over here, we choose w_{2} such that $d_{1}^{\prime}=0$. Now, on substituting b_{1} with 0 , we have $w_{2}=\frac{d_{1}}{c} z_{1}$. So, Equation 7.12 becomes $a_{2}+y_{1} d_{2}=a_{2}^{\prime}$. When $d_{2} \neq 0$, choose y_{1} such that $a_{2}^{\prime}=$. So B is reduced to $\left(\begin{array}{lllll}1 & & & b_{2} & \\ & 1 & c & & \\ & & 1 & & d_{2} \\ & & & 1 & \\ & & & & 1\end{array}\right)$, and $Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A, B)=\left\{\left(\begin{array}{ccccc}1 & & & y_{2} & x_{2} \\ & 1 & z_{1} & z_{2} & w_{1} \\ & & 1 & & \frac{d_{2}}{c} z_{1} \\ & & & 1 & \\ & & & & 1\end{array}\right)\right\} .(A, B)$ is therefore of type R_{2}, and there are $q(q-1)^{2}$ such branches.

When $d_{2}=0$, and $b_{2} \neq 0$. Then Equation 7.12 becomes $a_{2}^{\prime}=a_{2}$. So, B is reduced to

$$
\left(\begin{array}{ccccc}
1 & & & b_{2} & a_{2} \\
& 1 & c & & \\
& & 1 & & \\
& & & 1 & \\
& & & & 1
\end{array}\right) \cdot Z_{U T_{5}\left(\mathbf{F}_{q)}\right)}(A, B)=\left\{\left(\begin{array}{cccc}
1 & y_{1} & y_{2} & x_{2} \\
& 1 & z_{1} & z_{2}
\end{array} w_{1}\right)\right\} . \text { So }(A, B) \text { is of type }
$$

R_{1}, and there are $q(q-1)^{2}$ branches of this type.
When $C\left(\begin{array}{cc}1 & \\ & 1 \\ & c \\ & 1\end{array}\right), c \neq 0: Z=\left(\begin{array}{ccc}1 & & z_{2} \\ & 1 & z_{3} \\ & & 1\end{array}\right)$. Equation 7.10 becomes $\left(\begin{array}{lll}0 & b_{1} & b_{2}+c y_{1}\end{array}\right)=$ $\left(\begin{array}{lll}0 & b_{1}^{\prime} & b_{1}^{\prime} z_{3}+b_{2}^{\prime}\end{array}\right) \cdot b_{1}^{\prime}=b_{1}$. Choose y_{1} such that $b_{2}^{\prime}=0$. So, on substituting b_{2} with 0, we have $y_{1}=\frac{b_{1}}{c} z_{3}$. Equation 7.11 becomes $\left(\begin{array}{c}d_{1}+d_{2} z_{1} \\ d_{2} \\ 0\end{array}\right)=\left(\begin{array}{c}d_{1}^{\prime} \\ d_{2}^{\prime}+c x_{1} \\ 0\end{array}\right)$. Choose x_{1} such that $d_{2}^{\prime}=0$. So $d_{1}^{\prime}=d_{1}$. Hence, on replacing d_{2} by 0 , we get $x_{1}=0$. Hence, Equation 7.12 becomes $a_{2}=a_{2}^{\prime}+b_{1} w_{2}$. When $b_{1} \neq 0$, choose w_{2} such that $a_{2}^{\prime}=0$. Thus, B is reduced to $\left(\begin{array}{ccccc}1 & & b_{1} & & \\ & 1 & & & \\ & & 1 & c & d_{2} \\ & & & 1 & \\ & & & & 1\end{array}\right)$, and $Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A, B)=\left\{\left(\begin{array}{ccccc}1 & & \frac{b_{1}}{c} z_{3} & y_{2} & x_{2} \\ & 1 & & z_{2} & w_{1} \\ & & 1 & z_{3} & \\ & & & 1 & \\ & & & & \\ & & & & 1\end{array}\right)\right\}$.
So (A, B) is of type R_{2}, and there are $q(q-1)^{2}$ such branches.
When $b_{1}=0$, and $d_{1}^{\prime}=d_{1}$, we get from Equation 7.12, we get $a_{2}^{\prime}=a_{2}$. Hence B is
reduced to $\left(\begin{array}{ccccc}1 & & & & a_{2} \\ & 1 & & & \\ & & 1 & c & d_{2} \\ & & & 1 & \\ & & & & 1\end{array}\right)$, and $Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A, B)=\left\{\left(\begin{array}{ccccc}1 & & & y_{2} & x_{2} \\ & 1 & & z_{2} & w_{1} \\ & & 1 & z_{3} & w_{2} \\ & & & 1 & \\ & & & & 1\end{array}\right)\right\}$.
is of type R_{1}, and there are $q(q-1)^{2}$ such branches.
When $C\left(\begin{array}{ccc}1 & c & \\ 1 & d \\ & 1\end{array}\right), c, d \neq 0$: Here $Z=\left(\begin{array}{ccc}1 & z_{1} & z_{2} \\ & 1 & \frac{d}{c} z_{1} \\ & & 1\end{array}\right)$. Equation 7.10 becomes $\left(\begin{array}{lll}0 & b_{1}+c x_{1} & b_{2}+d y_{1}\end{array}\right)=\left(\begin{array}{lll}0 & b_{1}^{\prime} & b_{2}^{\prime}+\frac{d}{c} z_{1} b_{1}\end{array}\right)$. Choose x_{1} such that $b_{1}^{\prime}=0$, and then choose y_{1} such that $b_{2}^{\prime}=0$. So, on substituting b_{1} with 0 , we get $x_{1}=0$. Then, on substituting b_{2} with 0 , we get $y_{1}=0$. Equation 7.11 becomes $\left(\begin{array}{c}d_{1}+d_{2} z_{1} \\ d_{2} \\ 0\end{array}\right)=$
$\left(\begin{array}{c}d_{1}^{\prime}+c w_{2} \\ d_{2}^{\prime} \\ 0\end{array}\right)$. We have $d_{2}^{\prime}=d_{2} \neq 0$, choose w_{2} such that $d_{1}^{\prime}=0$. Thus, with these Equation 7.12 becomes $a_{2}^{\prime}=a_{2}$. So B becomes $\left(\begin{array}{ccccc}1 & & & & a_{2} \\ & 1 & c & & \\ & & 1 & d & d_{2} \\ & & & 1 & \\ & & & & 1\end{array}\right) \cdot Z_{U T_{5}\left(\mathbf{F}_{q)}\right)}(A, B)=$ $\left\{\left(\begin{array}{ccccc}1 & & & y_{2} & x_{2} \\ & 1 & \frac{d}{c} z_{1} & z_{2} & w_{1} \\ & & 1 & z_{1} & \frac{d_{2}}{c} z_{1} \\ & & & 1 & \\ & & & & 1\end{array}\right)\right\} .(A, B)$ is of type R_{2}. There are $q(q-1)^{3}$ such branches.
When $a_{1} \neq 0$: We now look at the branches, where the entry $a_{1} \neq 0$.
When $C=I_{3}$: Equation 7.10 becomes $\left(\begin{array}{lll}a_{1} & b_{1} & b_{2}\end{array}\right)=\left(\begin{array}{lll}a_{1} & a_{1} z_{1}+b_{1}^{\prime} & a_{1} z_{2}+b_{1}^{\prime} z_{3}+b_{2}^{\prime}\end{array}\right)$. As $a_{1} \neq 0$, choose z_{1} such that $b_{1}^{\prime}=0$. Then choose z_{2} such that $b_{2}^{\prime}=0$. Now, when we replace b_{1} and b_{2} by 0 in the above equation, we get $z_{1}=z_{2}=0$. Then Equation 7.11 becomes $\left(\begin{array}{c}d_{1} \\ d_{2}+a_{1} z_{3} \\ a_{1}\end{array}\right)=\left(\begin{array}{c}d_{1}^{\prime} \\ d_{2}^{\prime} \\ a_{1}\end{array}\right)$. Choose z_{3} such that $d_{2}^{\prime}=0$. Equation 7.12 becomes $a_{2}+x_{1} d_{1}+a_{1} y_{2}=a_{2}^{\prime}+a_{1} w_{1}$. Choose w_{1} such that $a_{2}^{\prime}=0$. So, B is boiled down to $\left(\begin{array}{ccccc}1 & a_{1} & & & \\ & 1 & & & d_{1} \\ & & 1 & & \\ & & & 1 & a_{1} \\ & & & & 1\end{array}\right)$, and $Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A, B)=\left\{\left(\begin{array}{ccccc}1 & x_{1} & y_{1} & y_{2} & \\ & 1 & & & x_{2} \\ & & 1 & & y_{2}+\frac{d_{1}}{a_{1}} x_{1} \\ & & & 1 & x_{2} \\ & & & & \\ & & & & \end{array}\right)\right\}$. Now, we
see that this centralizer is of size q^{5}, hence we expect it to be a commutative one. But it isn't. We also know that no matrix in $U T_{5}\left(\mathbf{F}_{q}\right)$ has a non-commutative centralizer of size q^{5}, and it is isomorphic to that of the type B_{6}. Thus, (A, B) is of type B_{6}, and there are $q(q-1)$ such branches.

When $C=\left(\begin{array}{cc}1 & \\ & \\ & 1 \\ & 1\end{array}\right), c \neq 0$: Equation 7.10 in this case is

$$
\left(\begin{array}{lll}
a_{1} & b_{1} & b_{2}+c x_{1}
\end{array}\right)=\left(\begin{array}{lll}
a_{1} & a_{1} z_{1}+b_{1}^{\prime} & a_{1} z_{2}+b_{1}^{\prime} z_{3}+b_{2}^{\prime}
\end{array}\right) .
$$

Choose z_{1} so that $b_{1}^{\prime}=0$. Then, we choose z_{2} so that $b_{2}^{\prime}=0$. Thus, on substituting b_{1} and b_{2} with 0 , we get $z_{1}=0$, and $z_{2}=\frac{c}{a_{1}} x_{1}$. Then Equation 7.11 becomes $\left(\begin{array}{c}d_{1} \\ d_{2}+z_{3} a_{1} \\ a_{1}\end{array}\right)=$
$\left(\begin{array}{l}d_{1}^{\prime} \\ d_{2}^{\prime} \\ a_{1}\end{array}\right)$. Choose z_{3} such that $d_{2}^{\prime}=0$. Equation 7.12 becomes $a_{2}+x_{1} d_{1}+a_{1} y_{2}=a_{2}^{\prime}+$
$a_{1} w_{1}$. Choose w_{1} such that $a_{2}^{\prime}=0$. So B boils down to

$$
\left(\begin{array}{ccccc}
1 & a_{1} & & & \\
& 1 & & c & d_{1} \\
& & 1 & & \\
& & & 1 & a_{1} \\
& & & & 1
\end{array}\right) \text {, and }
$$

$Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A, B)=\left\{\left(\begin{array}{ccccc}1 & x_{1} & y_{1} & y_{2} & x_{2} \\ & 1 & & \frac{c}{a_{1}} x_{1} & \frac{d_{1}}{a_{1}} x_{1}+y_{2} \\ & & 1 & & w_{2} \\ & & & 1 & x_{1} \\ & & & & 1\end{array}\right)\right\}$. This too is a branch of type B_{6},
and there are $q(q-1)^{2}$ such branches.

$$
\begin{aligned}
\text { When } C=\left(\begin{array}{ccc}
1 & c \\
& 1 & 1
\end{array}\right), c \neq 0 \text { : Here } Z & =\left(\begin{array}{ccc}
1 & z_{1} & z_{2} \\
& 1 & \\
& & 1
\end{array}\right) . \text { Equation } 7.10 \text { in this case is } \\
& \left(\begin{array}{ll}
a_{1} & b_{1}+c x_{1} \\
& b_{2}
\end{array}\right)=\left(\begin{array}{lll}
a_{1} & a_{1} z_{1}+b_{1}^{\prime} & a_{1} z_{2}+b_{2}^{\prime}
\end{array}\right) .
\end{aligned}
$$

Choose z_{1} so that $b_{1}^{\prime}=0$, and choose z_{2} so that $b_{2}^{\prime}=0$. Thus, on substituting b_{1} and b_{2} with 0 , we get $z_{1}=\frac{c}{a_{1}} x_{1}$, and $z_{2}=0$. Then Equation 7.11 becomes $\left(\begin{array}{c}d_{1}+\frac{c}{a_{1}} x_{1} d_{2} \\ d_{2} \\ a_{1}\end{array}\right)=$ $\left(\begin{array}{c}d_{1}^{\prime}+c w_{2} \\ d_{2}^{\prime} \\ a_{1}\end{array}\right)$. So $d_{2}^{\prime}=d_{2}$, and we choose w_{2} such that $d_{1}^{\prime}=0$. Equation 7.12 becomes $a_{2}+y_{1} d_{2}+a_{1} y_{2}=a_{2}^{\prime}+a_{1} w_{1}$. Choose w_{1} such that $a_{2}^{\prime}=0$. So B boils down to $\left(\begin{array}{ccccc}1 & a_{1} & & & \\ & 1 & c & & \\ & & 1 & & d_{2} \\ & & & 1 & a_{1} \\ & & & & 1\end{array}\right)$, and $Z_{U T_{5}\left(\mathbf{F}_{q)}\right)}(A, B)=\left\{\left(\begin{array}{ccccc}1 & x_{1} & y_{1} & y_{2} & x_{2} \\ & 1 & \frac{c}{a_{1}} x_{1} & & \frac{d_{2}}{a_{1}} y_{1}+y_{2} \\ & & 1 & & \frac{d_{2}}{a_{1}} x_{1} \\ & & & 1 & x_{1} \\ & & & & 1\end{array}\right)\right\}$. This
is a branch of type R_{3}, and there are $q(q-1)^{2}$ such branches.

$$
\text { When } C=\left(\begin{array}{ll}
1 & \\
& 1 \\
& c
\end{array}\right), c \neq 0 \text { : Here } Z=\left(\begin{array}{ccc}
1 & & z_{2} \\
& 1 & z_{3} \\
& & 1
\end{array}\right) . \text { Equation } 7.10 \text { in this case is } .
$$

We get $b_{1}^{\prime}=b_{1}$. Choose y_{1} so that $b_{2}^{\prime}=0$. Thus, on substituting b_{2} with 0 , we get $y_{1}=\frac{a_{1}}{c} z_{2}+\frac{b_{1}}{c} z_{3}$. Then Equation 7.11 becomes $\left(\begin{array}{c}d_{1}+a_{1} z_{2} \\ d_{2}+a_{1} z_{3} \\ a_{1}\end{array}\right)=\left(\begin{array}{c}d_{1}^{\prime} \\ d_{2}^{\prime}+c x_{1} \\ a_{1}\end{array}\right)$. Choose z_{2} such that $d_{1}^{\prime}=0$, and z_{3} such that $d_{2}^{\prime}=0$. Equation 7.12 becomes $a_{2}+a_{1} y_{2}=$ $a_{2}^{\prime}+b_{1} w_{2}+a_{1} w_{1}$. Choose w_{1} such that $a_{2}^{\prime}=0$. So B boils down to $\left(\begin{array}{ccccc}1 & a_{1} & b_{1} & & \\ & 1 & & & \\ & & 1 & c & \\ & & & 1 & a_{1} \\ & & & & 1\end{array}\right)$, and $Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A, B)=\left\{\left(\begin{array}{ccccc}1 & x_{1} & \frac{b_{1}}{a_{1}} x_{1} & y_{2} & x_{2} \\ & 1 & & & y_{2}-\frac{b_{1}}{a_{1}} w_{2} \\ & & 1 & \frac{c}{a_{1}} x_{1} & w_{2} \\ & & & 1 & x_{1} \\ & & & & 1\end{array}\right)\right\}$. This is a branch of type R_{3}, and there are $q(q-1)^{2}$ such branches.

And, lastly:
When $C=\left(\begin{array}{ccc}1 & c & \\ & & d \\ & 1\end{array}\right), c, d \neq 0$: Here $Z=\left(\begin{array}{ccc}1 & z_{1} & z_{2} \\ & 1 & \frac{d}{c} z_{1} \\ & & 1\end{array}\right)$. Equation 7.10 in this case is

$$
\left(\begin{array}{lll}
a_{1} & b_{1}+c x_{1} & b_{2}+d y_{1}
\end{array}\right)=\left(\begin{array}{lll}
a_{1} & a_{1} z_{1}+b_{1}^{\prime} & a_{1} z_{2}+\frac{d}{c} b_{1}^{\prime} z_{1}+b_{2}^{\prime}
\end{array}\right) .
$$

Choose x_{1} so that $b_{1}^{\prime}=0$, and choose y_{1} so that $b_{2}^{\prime}=0$. Thus, on substituting b_{1} and b_{2} with 0 , we get $x_{1}=\frac{a_{1}}{c} z_{1}$, and $y_{1}=\frac{a_{1}}{d} z_{2}$. Then Equation 7.11 becomes $\left(\begin{array}{c}d_{1}+z_{1} d_{2}+z_{2} a_{1} \\ d_{2} \\ a_{1}\end{array}\right)=\left(\begin{array}{c}d_{1}^{\prime}+c w_{2} \\ d_{2}^{\prime} \\ a_{1}\end{array}\right)$. So $d_{2}^{\prime}=d_{2}$, and we choose w_{2} such that $d_{1}^{\prime}=0$.
Equation 7.12 becomes $a_{2}+\frac{a_{1}}{d} z_{2} d_{2}+a_{1} y_{2}=a_{2}^{\prime}+a_{1} w_{1}$. Choose w_{1} such that $a_{2}^{\prime}=0$. So B
boils down to $\left(\begin{array}{ccccc}1 & a_{1} & & & \\ & 1 & c & & \\ & & 1 & d & d_{2} \\ & & & 1 & a_{1} \\ & & & & 1\end{array}\right)$, and $Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A, B)=\left\{\left(\begin{array}{ccccc}1 & \frac{a_{1}}{c} z_{1} & \frac{a_{1}}{d} z_{2} & y_{2} & x_{2} \\ & 1 & z_{1} & z_{2} & \frac{d_{2}}{d} z_{2}+y_{2} \\ & & 1 & & \frac{d_{2}}{c} z_{1}+\frac{a_{1}}{c} z_{2} \\ & & & 1 & \frac{a_{1}}{c} x_{1} \\ & & & & 1\end{array}\right)\right\}$.
This is a branch of type R_{3}, and there are $q(q-1)^{3}$ such branches.

Proposition 7.8. An upper unitriangular matrix of type B_{2} has

Branch	No. of Branches	Branch	No. of Branches
B_{2}	q^{2}	R_{3}	$(q-1)^{2} q^{2}$
A_{4}	$q^{3}-q$	$U N T_{1}$	$q(q-1)^{2}$
B_{4}	$q^{2}-q$	$U N T_{2}$	$q^{3}-q^{2}$
R_{1}	$\left(q^{2}-q\right)\left(q^{2}+q-1\right)$	B_{6}	$q^{4}-q^{3}$.
R_{2}	$(q-1)\left(q^{3}-q\right)$		

Proof. We may take $A=\left(\begin{array}{ccccc}1 & & 1 & & \\ & 1 & & & 1 \\ & & 1 & & \\ & & & 1 & \\ & & & & 1\end{array}\right)$. The first of the two canonical forms mentioned for a matrix of type B_{2}. For this A, we have $Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A)=\left\{\left(\begin{array}{ccccc}1 & c_{1} & c_{2} & b_{1} & d_{1} \\ & 1 & c_{3} & b_{2} & d_{2} \\ & & 1 & & c_{1} \\ & & & 1 & a \\ & & & & 1\end{array}\right)\right\}$. We rewrite such a matrix as $\left(\begin{array}{ccc}C & \vec{b} & \vec{d} \\ & 0 & c_{1} \\ & 1 & a \\ & & 1\end{array}\right)$, where $C \in U T_{3}\left(\mathbf{F}_{q}\right)$, and c_{1} is the $(1,2)^{\text {th }}$ entry of C, and $\vec{b}=\binom{b_{1}}{b_{2}}$, and $\vec{d}=\binom{d_{1}}{d_{2}}$

Let $B=\left(\begin{array}{ccc}C & \vec{b} & \vec{d} \\ & 0 & c_{1} \\ & 1 & a \\ & & 1\end{array}\right)$, and $B^{\prime}=\left(\begin{array}{ccc}C^{\prime} & \overrightarrow{b^{\prime}} & \overrightarrow{d^{\prime}} \\ & 0 & c_{1}^{\prime} \\ & 1 & a^{\prime} \\ & & 1\end{array}\right)$ be a conjugate of B by $X=$ $\left(\begin{array}{ccc}Z & \vec{y} & \vec{w} \\ & 0 & z_{1} \\ & 1 & x \\ & & 1\end{array}\right)$ Then from $X B=B^{\prime} X$, we have $Z C=C^{\prime} Z$. Thus, we can C to be a conjugacy class representative in $U T_{3}\left(\mathbf{F}_{q}\right)$, and $Z \in Z_{U T_{3}\left(\mathbf{F}_{q}\right)}(C)$, and we also have $a^{\prime}=a$. With this, we have the following equations

$$
\begin{align*}
Z\binom{\vec{b}}{0} & =\left(C-I_{3}\right)\binom{\vec{y}}{0}+\binom{\overrightarrow{b^{\prime}}}{0} \tag{7.13}\\
Z\binom{\vec{d}}{c_{1}}+\binom{a \vec{y}}{0} & =\left(C-I_{3}\right)\binom{\vec{w}}{z_{1}}+\binom{x \vec{b}}{0}+\binom{\overrightarrow{d^{\prime}}}{c_{1}} \tag{7.14}
\end{align*}
$$

We first look at the case $\vec{b}=\overrightarrow{0}$:
When $a=0$: Here, Equation 7.13 becomes $\left(C-I_{3}\right)\binom{\vec{y}}{0}=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$.
When $C=I_{3}$: Here Equation 7.13 becomes void, and Equation 7.14 becomes $\left(\begin{array}{c}d_{1}+z_{1} d_{2} \\ d_{2} \\ 0\end{array}\right)=\left(\begin{array}{c}d_{1}^{\prime} \\ d_{2}^{\prime} \\ 0\end{array}\right)$.

When $d_{2}=0$, we have $d_{1}^{\prime}=d_{1}$. Thus $B=\left(\begin{array}{ccccc}1 & & & & d_{1} \\ & 1 & & & \\ & & 1 & & \\ & & & 1 & \\ & & & & 1\end{array}\right)$, and $Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A, B)=$ $Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A)$. So (A, B) is a branch of type B_{2}, and there are q such branches.
When $d_{2} \neq 0$, choose z_{1} so that $d_{1}^{\prime}=0$. Then B is reduced to $\left(\begin{array}{lllll}1 & & & & \\ & 1 & & & d_{2} \\ & & 1 & & \\ & & & 1 & \\ & & & & 1\end{array}\right)$.
Hence $Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A, B)=\left\{\left(\begin{array}{ccccc}1 & & z_{2} & y_{1} & w_{1} \\ & 1 & z_{3} & y_{2} & w_{2} \\ & & 1 & & \\ & & & 1 & x \\ & & & & 1\end{array}\right)\right\}$, which is the centralizer of a matrix
of type A_{4}. So (A, B) is of type A_{4}, and there are $(q-1)$ such branches.
When $C=\left(\begin{array}{cc}1 & \\ & \\ & 1 \\ & \\ & 1\end{array}\right), c \neq 0$: Here too, Equation 7.13 stays void. So, we directly look at Equation 7.14, which boils down to: $\left(\begin{array}{c}d_{1}+z_{1} d_{2} \\ d_{2} \\ 0\end{array}\right)=\left(\begin{array}{c}d_{1}^{\prime}+c z_{1} \\ d_{2}^{\prime} \\ 0\end{array}\right)$. We have $d_{2}^{\prime}=d_{2}$. We look at two cases here:

When $d_{2}=c$, we get $d_{1}^{\prime}=d_{1}$, and thus B is reduced to

$$
\left(\begin{array}{ccccc}
1 & & c & & d_{1} \\
& 1 & & & \\
& & 1 & & \\
& & & 1 & \\
& & & & 1
\end{array}\right) \text {, and }
$$

$Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A, B)=Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A) .(A, B)$ is of type B_{2}, and there are $q(q-1)$ such branches.

When $d_{2} \neq c$, choose z_{1} such that $d_{1}^{\prime}=0$. Thus B boils down to $\left(\begin{array}{ccccc}1 & & c & & \\ & 1 & & & d_{2} \\ & & 1 & & \\ & & & 1 & \\ & & & & 1\end{array}\right)$,
and $Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A, B)=\left\{\left(\begin{array}{ccccc}1 & & z_{2} & y_{1} & w_{1} \\ & 1 & z_{3} & y_{2} & w_{2} \\ & & 1 & & \\ & & & 1 & x \\ & & & & 1\end{array}\right)\right\} .(A, B)$ is of type A_{4}, and there are $(q-1)^{2}$ such branches.
When $C=\left(\begin{array}{ccc}1 & c \\ & 1 & \\ & & 1\end{array}\right), c \neq 0$: Here $Z=\left(\begin{array}{ccc}1 & z_{1} & z_{2} \\ & 1 & \\ & & \\ & & \\ & & \end{array}\right)$. From Equation 7.13 we have

$$
\begin{aligned}
& \left(\begin{array}{ccc}
0 & c & 0 \\
& &
\end{array}\right)\binom{y_{1}}{y_{2}}=\overrightarrow{0} \text {. We have } c y_{2}=0 \text {, thus } y_{2}=0 \text {. Equation } 7.14 \text { becomes: } \\
& \left(\begin{array}{c}
d_{1}+z_{1} d_{2}+z_{2} c \\
d_{2} \\
c
\end{array}\right)=\left(\begin{array}{c}
d_{1}^{\prime}+c w_{2} \\
d_{2}^{\prime} \\
c
\end{array}\right) \text {. Choose } w_{2} \text { such that } d_{1}^{\prime}=0 \text {. Thus } B \text { is reduced to } \\
& \left(\begin{array}{ccccc}
1 & c & & & \\
& 1 & & & d_{2} \\
& & 1 & & c \\
& & & 1 & \\
& & & & 1
\end{array}\right) \text {, and } Z_{U T_{5}\left(\mathbf{F}_{q)}\right)}(A, B)=\left\{\left(\begin{array}{ccccc}
1 & z_{1} & z_{2} & y_{1} & w_{1} \\
& 1 & & & z_{2}+\frac{d_{2}}{c} z_{1} \\
& & 1 & & z_{1} \\
& & & 1 & x \\
& & & & 1
\end{array}\right)\right\} .(A, B) \text { is }
\end{aligned}
$$

of type B_{6}, and there are $(q-1) q$ such branches.
When $C=\left(\begin{array}{cc}1 & \\ & \\ & c \\ & 1\end{array}\right), c \neq 0$: Here $Z=\left(\begin{array}{ccc}1 & & z_{2} \\ & 1 & z_{3} \\ & & \\ & & 1\end{array}\right)$. In this case, Equation 7.13 stays void. So we directly jump to Equation 7.14. We have $\binom{d_{1}}{d_{2}}=\binom{d_{1}^{\prime}}{d_{2}^{\prime}}$. So we have
$B=\left(\begin{array}{lllll}1 & & & & d_{1} \\ & 1 & c & & d_{2} \\ & & 1 & & \\ & & & 1 & \\ & & & & 1\end{array}\right)$, and $Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A, B)=\left\{\left(\begin{array}{ccccc}1 & z_{2} & y_{1} & w_{1} \\ & 1 & z_{3} & y_{2} & w_{2} \\ & & 1 & & \\ & & & 1 & x \\ & & & & 1\end{array}\right)\right\}$. Hence (A, B)
is of type A_{4}, and there are $q^{2}(q-1)$ such branches.

$$
\begin{aligned}
& \text { When } C=\left(\begin{array}{ccc}
1 & & \\
& 1 & c \\
& 1
\end{array}\right), c, d \neq 0 \text { : Here } Z=\left(\begin{array}{ccc}
1 & z_{1} & z_{2} \\
& 1 & \frac{d}{c} z_{1} \\
& & 1
\end{array}\right) \text {. Equation } 7.13 \text { becomes } \\
& \left(\begin{array}{c}
c y_{2} \\
0 \\
0
\end{array}\right)=\overrightarrow{0} \text {. Thus } y_{2}=0 \text {. From Equation } 7.14 \text { we have }\left(\begin{array}{c}
d_{1}+z_{1} d_{2}+c z_{2} \\
d_{2}+z_{1} d \\
c
\end{array}\right)= \\
& \binom{d_{1}^{\prime}+c w_{2}}{d_{2}^{\prime}+d z_{1}} \text {. Hence } d_{2}^{\prime}=d_{2} \text {, and choose } w_{2} \text { such that } d_{1}^{\prime}=0 \text {. So } B \text { boils down to } \\
& \left(\begin{array}{ccccc}
1 & c & & \\
& 1 & d & & d_{2} \\
& & 1 & & c \\
& & & 1 & \\
& & & & 1
\end{array}\right) \text {, and } Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A, B)=\left\{\left(\begin{array}{ccccc}
1 & z_{1} & z_{2} & y_{1} & w_{1} \\
& 1 & \frac{d}{c} z_{1} & & z_{2}+\frac{d_{2}}{c} z_{1} \\
& & 1 & & z_{1} \\
& & & 1 & x \\
& & & & 1
\end{array}\right)\right\} .(A, B) \text { is }
\end{aligned}
$$

of type B_{6} and there are $(q-1)^{2} q$ such branches.
bfseries $a \neq 0$: We are still dealing with $\vec{b}=\overrightarrow{0}$ here. So Equation 7.13 becomes $\left(C-I_{3}\right)\left(\begin{array}{c}y_{1} \\ y_{2} \\ 0\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$. And Equation 7.14 becomes: $Z\left(\begin{array}{l}d_{1} \\ d_{2} \\ c_{1}\end{array}\right)+a\left(\begin{array}{c}y_{1} \\ y_{2} \\ 0\end{array}\right)=\left(\begin{array}{c}d_{1}^{\prime} \\ d_{2}^{\prime} \\ c_{1}\end{array}\right)+$ $\left(C-I_{3}\right)\left(\begin{array}{c}w_{1} \\ w_{2} \\ z_{1}\end{array}\right)$
When $C=I_{3}$: Equation 7.13 becomes void, and from Equation 7.14, we have $\left(\begin{array}{c}d_{1}+z_{1} d_{2}+a y_{1} \\ d_{2}+a y_{2} \\ 0\end{array}\right)=\left(\begin{array}{c}d_{1}^{\prime} \\ d_{2}^{\prime} \\ 0\end{array}\right)$. Choose y_{2} and y_{1} such that, d_{2}^{\prime} and d_{1}^{\prime} become 0 . Hence, $B=\left(\begin{array}{cccccc}1 & & & & \\ & 1 & & & \\ & & 1 & & \\ & & & 1 & a \\ & & & & 1\end{array}\right)$, and $Z_{U T_{5}\left(\mathbf{F}_{q)}\right)}(a, b)=\left\{\left(\begin{array}{ccccc}1 & z_{1} & z_{2} & & w_{1} \\ & 1 & z_{3} & & w_{2} \\ & & 1 & & z_{1} \\ & & & 1 & x \\ & & & & 1\end{array}\right)\right\} .(A, B)$ is of type B_{4}, and there are $q-1$ such branches.

When $C=\left(\begin{array}{cc}1 & \\ & \\ & 1 \\ & 1\end{array}\right), c \neq 0$: Here also, Equation 7.13 remains void. Equation 7.14 becomes: $\left(\begin{array}{c}d_{1}+z_{2} d_{2}+a y_{1} \\ d_{2}+a y_{2} \\ 0\end{array}\right)=\left(\begin{array}{c}d_{1}^{\prime}+c z_{1} \\ d_{2}^{\prime} \\ 0\end{array}\right)$. Choose y_{2} and y_{1} so that $d_{2}^{\prime}=d_{1}^{\prime}=0$. Thus,
B is reduced to $\left(\begin{array}{ccccc}1 & & c & & \\ & 1 & & & \\ & & 1 & & \\ & & & 1 & a \\ & & & & 1\end{array}\right)$, and $Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A, B)=\left\{\left(\begin{array}{ccccc}1 & z_{1} & z_{2} & \frac{c}{a} z_{1} & w_{1} \\ & 1 & z_{3} & & w_{2} \\ & & 1 & & z_{1} \\ & & & 1 & x \\ & & & & 1\end{array}\right)\right\}$. (A, B) is of type B_{4}, and there are $(q-1)^{2}$ such branches.

When $C=\left(\begin{array}{ccc}1 & c \\ & 1 & \\ & & 1\end{array}\right), c \neq 0$: From Equation 7.13, like we saw before, $y_{2}=0$. Thus Equation 7.14 boils down to $\left(\begin{array}{c}d_{1}+z_{1} d_{2}+z_{1} c+a y_{1} \\ d_{2} \\ c\end{array}\right)=\left(\begin{array}{c}d_{1}^{\prime}+c w_{2} \\ d_{2} \\ c\end{array}\right)$. We see that
$d_{2}^{\prime}=d_{2}$. Choose w_{2} such that $d_{1}^{\prime}=0$. So B is reduced to $\left(\begin{array}{ccccc}1 & c & & & \\ & 1 & & & d_{2} \\ & & 1 & & c \\ & & & 1 & a_{1} \\ & & & & 1\end{array}\right)$, and
$Z_{U T_{5}\left(\mathbf{F}_{q)}\right)}(A, B)=\left\{\left(\begin{array}{ccccc}1 & z_{1} & z_{2} & y_{1} & w_{1} \\ & 1 & & & z_{2}+\frac{d_{2}}{c} z_{1}+\frac{a}{c} y_{1} \\ & & 1 & & z_{1} \\ & & & 1 & x \\ & & & & 1\end{array}\right)\right\} .(A, B)$ is of type B_{6}, and
there are $(q-1)^{2} q$ such branches.
When $C=\left(\begin{array}{cc}1 & \\ & 1 \\ & c\end{array}\right), c \neq 0$: Here, Equation 7.13 stays void, and Equation 7.14 becomes $\left(\begin{array}{c}d_{1}+a y_{1} \\ d_{2}+a y_{2} \\ 0\end{array}\right)=\left(\begin{array}{c}d_{1}^{\prime} \\ d_{2}^{\prime} \\ 0\end{array}\right)$. Choose y_{1}, y_{2} such that $d_{1}^{\prime}=d_{2}^{\prime}=0$. SO B is reduced to $\left(\begin{array}{ccccc}1 & & & & \\ & 1 & c & & \\ & & 1 & & \\ & & & 1 & a \\ & & & & 1\end{array}\right)$, and $Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A, B)=\left\{\left(\begin{array}{ccccc}1 & & z_{2} & & w_{1} \\ & 1 & z_{3} & & w_{2} \\ & & 1 & & \\ & & & 1 & x \\ & & & & 1\end{array}\right)\right\} .(A, B)$ is therefore
of type R_{2}, and there are $(q-1)^{2}$ such branches.
When $C=\left(\begin{array}{ccc}1 & c & \\ 1 & d \\ & 1\end{array}\right), c, d \neq 0$: Here, like earlier, from Equation 7.13, we get $y_{2}=0$.
Hence Equation 7.14 boils down to $\left(\begin{array}{c}d_{1}+z_{1} d_{2}+z_{2} c+a y_{1} \\ d_{2}+z_{1} d \\ c\end{array}\right)=\left(\begin{array}{c}d_{1}^{\prime}+c w_{2} \\ d_{2}^{\prime}+d z_{1} \\ c\end{array}\right)$. This leaves us with $d_{2}^{\prime}=d_{2}$, and choose y_{1} such that $d_{1}^{\prime}=0$. So we have B boiling down to

$$
\left(\begin{array}{ccccc}
1 & c & & & \\
& 1 & d & & d_{2} \\
& & 1 & & c \\
& & & 1 & a \\
& & & & 1
\end{array}\right) \text { and } Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A, B)=\left\{\left(\begin{array}{ccccc}
1 & z_{1} & z_{2} & \frac{c}{a} w_{2}-\frac{c}{a} z_{2}-\frac{d_{2}}{a} z_{1} & w_{1} \\
& 1 & \frac{d}{c} z_{1} & & w_{2} \\
& & 1 & & z_{1} \\
& & & 1 & x \\
& & & & 1
\end{array}\right)\right\} .
$$

(A, B) is thus, of type B_{6}, and there are $q(q-1)^{3}$ such branches.
Now we look at what happens, when $\vec{b} \neq \overrightarrow{0}$.
When $C=I_{3}$: Subcase $a=0$: From Equation 7.13 we have $\left(\begin{array}{c}b_{1}+z_{1} b_{2} \\ b_{2} \\ 0\end{array}\right)=\left(\begin{array}{c}b_{1}^{\prime} \\ b_{2}^{\prime} \\ 0\end{array}\right)$. When $b_{2} \neq 0$, we choose z_{1} such that $b_{1}^{\prime}=0$. Thus replacing b_{1} by 0 in the above equation, we obtain $z_{1}=0$. Hence, Equation 7.14 boils down to $\left(\begin{array}{c}d_{1} \\ d_{2} \\ 0\end{array}\right)=\left(\begin{array}{c}d_{1}^{\prime} \\ d_{2}^{\prime}+x b_{2} \\ 0\end{array}\right)$. We have $d_{1}^{\prime}=d_{1}$. Choose x such that $d_{2}^{\prime}=0$. So B boils down to $\left(\begin{array}{cccc}1 & & & d_{1} \\ & & b_{2} & \\ & 1 & & \\ & & 1 & \\ & & & 1\end{array}\right)$, and $Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A, B)=\left\{\left(\begin{array}{ccccc}1 & & z_{2} & y_{1} & w_{1} \\ & 1 & z_{3} & y_{2} & w_{2} \\ & & 1 & & \\ & & & 1 & \\ & & & & 1\end{array}\right)\right\} .(A, B)$ is of type R_{1}, and there are $q(q-1)$ such branches.

When $b_{2}=0$, we have to look at $b_{1} \neq 0$, and we have $b_{1}^{\prime}=b_{1}$. Equation 7.14 becomes $\left(\begin{array}{c}d_{1}+z_{1} d_{2} \\ d_{2} \\ 0\end{array}\right)=\left(\begin{array}{c}d_{1}^{\prime}+x b_{1} \\ d_{2}^{\prime} \\ 0\end{array}\right)$. So $d_{2}^{\prime}=d_{2}$, and choose x such that $d_{1}^{\prime}=0$. Hence
$B=\left(\begin{array}{lllll}1 & & & b_{1} & \\ & 1 & & & d_{2} \\ & & 1 & & \\ & & & 1 & \\ & & & & 1\end{array}\right)$, and $Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A, B)=\left\{\left(\begin{array}{ccccc}1 & z_{1} & z_{2} & y_{1} & w_{1} \\ & 1 & z_{3} & y_{2} & w_{2} \\ & & 1 & & z_{1} \\ & & & 1 & \frac{d_{2}}{b_{1}} z_{1} \\ & & & & 1\end{array}\right)\right\}$. Thus
(A, B) is of the new type $U N T_{2}$, and there are $(q-1) q$ such branches.

Subcase $a \neq 0$, and $b_{2} \neq 0$: In Equation 7.13, we choose z_{1} to get rid of b_{1}^{\prime}, and like before $z_{1}=0$. Equation 7.14 becomes: $\left(\begin{array}{c}d_{1}+a y_{1} \\ d_{2}+a y_{2} \\ 0\end{array}\right)=\left(\begin{array}{c}d_{1}^{\prime} \\ d_{2}^{\prime}+x b_{2} \\ 0\end{array}\right)$. Choose y_{1} such that $d_{1}^{\prime}=0$, and x such that $d_{2}^{\prime}=0$. So $B=\left(\begin{array}{ccccc}1 & & & & \\ & 1 & & b_{2} & \\ & & 1 & & \\ & & & 1 & a \\ & & & & 1\end{array}\right)$, and $Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A, B)=$ $\left\{\left(\begin{array}{ccccc}1 & & z_{2} & & w_{1} \\ & 1 & z_{3} & y_{2} & w_{2} \\ & & 1 & & \\ & & & 1 & \frac{a}{b_{2}} y_{2} \\ & & & & 1\end{array}\right)\right\}$. Thus (A, B) is of type R_{2}, and there are $(q-1)^{2}$ such branches.

Subcase $a \neq 0$ and $b_{2}=0$. Here we have $b_{1}^{\prime}=b_{1} \neq 0$. From Equation 7.14 we have $\left(\begin{array}{c}d_{1}+z_{1} d_{2}+a y_{1} \\ d_{2}+a y_{2} \\ 0\end{array}\right)=\left(\begin{array}{c}d_{1}^{\prime}+b_{1} x \\ d_{2}^{\prime} \\ 0\end{array}\right)$. Choose y_{2} such that $d_{2}^{\prime}=0$, and x such that $d_{1}^{\prime}=0$. Thus B is reduced to $\left(\begin{array}{ccccc}1 & & & b_{1} & \\ & 1 & & & \\ & & 1 & & \\ & & & 1 & a \\ & & & & 1\end{array}\right)$, and $Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A, B)=$ $\left\{\left(\begin{array}{ccccc}1 & z_{1} & z_{2} & y_{1} & w_{1} \\ & 1 & z_{3} & & w_{2} \\ & & 1 & & z_{1} \\ & & & 1 & \frac{a}{b_{1}} y_{1} \\ & & & & 1\end{array}\right)\right\} .(A, B)$ is of new type $U N T_{1}$, and there are $(q-1)^{2}$ such branches.

When $C=\left(\begin{array}{cc}1 & \\ & \\ & \\ & 1\end{array}\right), c \neq 0$: Here Equation 7.13 stays as it was in the previous case, i.e., $\left(\begin{array}{c}b_{1}+z_{1} b_{2} \\ b_{2} \\ 0\end{array}\right)=\left(\begin{array}{c}b_{1}^{\prime} \\ b_{2}^{\prime} \\ 0\end{array}\right)$.

When $b_{2} \neq 0$, choose z_{1} so that $b_{1}^{\prime}=0$, and on replacing b_{1} with $b_{1}^{\prime}=0$ in the above equation, we get $z_{1}=0$. Hence, Equation 7.14 becomes: $\left(\begin{array}{c}d_{1}+a y_{1} \\ d_{2}+a y_{2} \\ 0\end{array}\right)=\left(\begin{array}{c}d_{1}^{\prime} \\ d_{2}^{\prime}+x b_{2} \\ 0\end{array}\right)$. We can choose x such that $d_{2}^{\prime}=0$.

Subcase $a=0$. We have in this $d_{1}^{\prime}=d_{1}$. B reduces to $\left(\begin{array}{ccccc}1 & & c & & d_{1} \\ & 1 & & b_{2} & \\ & & 1 & & \\ & & & 1 & \\ & & & & 1\end{array}\right)$, with
$Z_{U T_{5}\left(\mathbf{F}_{q)}\right)}(A, B)=\left\{\left(\begin{array}{ccccc}1 & & z_{2} & y_{1} & w_{1} \\ & 1 & z_{3} & y_{2} & w_{2} \\ & & 1 & & \\ & & & 1 & \\ & & & & 1\end{array}\right)\right\}$. So, (A, B) is of type R_{1}, and there are
$q(q-1)^{2}$ such branches.
Subcase $a \neq 0$. Here, in addition to getting rid of d_{2}^{\prime}, we choose y_{1} such that $d_{1}^{\prime}=0$.
So, B reduces to $\left(\begin{array}{ccccc}1 & & c & & \\ & 1 & & b_{2} & \\ & & 1 & & \\ & & & 1 & a \\ & & & & 1\end{array}\right)$, with $Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A, B)=\left\{\left(\begin{array}{ccccc}1 & & z_{2} & & w_{1} \\ & 1 & z_{3} & y_{2} & w_{2} \\ & & 1 & & \\ & & & 1 & \frac{a}{b_{2}} y_{2} \\ & & & & 1\end{array}\right)\right\}$.
So (A, B) is of type R_{2}, and there are $(q-1)^{3}$ such branches.
When $b_{2}=0$, here $b_{1}^{\prime}=b_{1} \neq 0$. Equation 7.14 becomes $\left(\begin{array}{c}d_{1}+z_{1} d_{2}+a y_{1} \\ d_{2} \\ 0\end{array}\right)=$ $\left(\begin{array}{c}d_{1}^{\prime}+b_{1} x+c z_{1} \\ d_{2}^{\prime} \\ 0\end{array}\right)$. Choose x so that $d_{1}^{\prime}=0$.

Subcase $a=0$. Here $d_{2}^{\prime}=d_{2}$, and B thus reduces to $\left(\begin{array}{lllll}1 & & c & b_{1} & \\ & 1 & & & d_{2} \\ & & 1 & & \\ & & & 1 & \\ & & & & 1\end{array}\right)$, with $Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A, B)=\left\{\left(\begin{array}{ccccc}1 & z_{1} & z_{2} & y_{1} & w_{1} \\ & 1 & z_{3} & y_{2} & w_{2} \\ & & 1 & & z_{1} \\ & & & 1 & \frac{d_{2}-c}{b_{1}} z_{1} \\ & & & & 1\end{array}\right)\right\}$. Hence (A, B) is of the new type $U N T_{2}$, and there are $(q-1)^{2} q$ such branches.

Subcase $a \neq 0$. Here, choose y_{2} such that $d_{2}^{\prime}=0$. Hence B is reduced to

$$
\left(\begin{array}{ccccc}
1 & & c & b_{1} & \\
& 1 & & & \\
& & 1 & & \\
& & & 1 & a \\
& & & & 1
\end{array}\right)
$$

with $Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A, B)=\left\{\left(\begin{array}{ccccc}1 & z_{1} & z_{2} & y_{1} & w_{1} \\ & 1 & z_{3} & & w_{2} \\ & & 1 & & z_{1} \\ & & & 1 & \frac{a}{b_{1}} y_{1}-\frac{c}{b_{1}} z_{1} \\ & & & & 1\end{array}\right)\right\}$. Hence (A, B) is of type
$U N T_{1}$, and there are $(q-1)^{3}$ such branches.
When $C=\left(\begin{array}{ccc}1 & c \\ & 1 & 1\end{array}\right), c \neq 0$: Here Equation 7.13 becomes $\left(\begin{array}{c}b_{1}+z_{1} b_{2} \\ b_{2} \\ 0\end{array}\right)=\left(\begin{array}{c}b_{1}^{\prime}+c y_{2} \\ b_{2}^{\prime} \\ 0\end{array}\right)$.
Choose y_{2} such that $b_{1}^{\prime}=0$. We have $b_{2}^{\prime}=b_{2} \neq 0$. On replacing b_{1} with 0 in the above equation, we get $y_{2}=\frac{b_{2}}{c} z_{1}$. Equation 7.14 thus becomes $\left(\begin{array}{c}d_{1}+z_{1} d_{2}+c z_{2}+a y_{1} \\ d_{2}+\frac{a b_{2}}{c} z_{1} \\ c\end{array}\right)=$ $\left(\begin{array}{c}d_{1}^{\prime}+c w_{2} \\ d_{2}^{\prime}+x b_{2} \\ c\end{array}\right)$. Choose w_{2} such that $d_{1}^{\prime}=0$, and x such that $d_{2}^{\prime}=0$. Hence B is reduced to $\left(\begin{array}{ccccc}1 & c & & & \\ & 1 & & b_{2} & \\ & & 1 & & c \\ & & & 1 & a \\ & & & & 1\end{array}\right)$, with $Z_{U T_{5}\left(\mathbf{F}_{q)}\right)}(A, B)=\left\{\left(\begin{array}{ccccc}1 & z_{1} & z_{2} & y_{1} & w_{1} \\ & 1 & & \frac{b_{2}}{c} z_{1} & \frac{a}{c} y_{1}+z_{2} \\ & & 1 & & z_{1} \\ & & & 1 & \frac{a}{c} z_{1} \\ & & & & 1\end{array}\right)\right\} .(A, B)$ is of type R_{3}, and there are $(q-1)^{2} q$ such branches.

When $C=\left(\begin{array}{ccc}1 & & \\ & 1 & c \\ & & 1\end{array}\right), c \neq 0$: Here Equation 7.13 becomes $\left(\begin{array}{l}b_{1} \\ b_{2} \\ 0\end{array}\right)=\left(\begin{array}{c}b_{1}^{\prime} \\ b_{2}^{\prime} \\ 0\end{array}\right)$. We have $b_{1}^{\prime}=b_{1}$, and $b_{2}^{\prime}=b_{2}$ Equation 7.14 thus becomes $\left(\begin{array}{c}d_{1}+a y_{1} \\ d_{2}+a y_{2} \\ 0\end{array}\right)=\left(\begin{array}{c}d_{1}^{\prime}+x b_{1} \\ d_{2}^{\prime}+x b_{2} \\ 0\end{array}\right)$.

Subcase $a=0$: When $b_{1} \neq 0$, choose x such that $d_{1}^{\prime}=0$. Thus, on replacing d_{1} with $d_{1}^{\prime}=0$, we get $x=0$, and thus $d_{2}^{\prime}=d_{2}$. Hence B is reduced to $\left(\begin{array}{ccccc}1 & & & b_{1} & \\ & 1 & c & b_{2} & d_{2} \\ & & 1 & & \\ & & & 1 & \\ & & & & 1\end{array}\right)$, with $Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A, B)=\left\{\left(\begin{array}{ccccc}1 & & z_{2} & y_{1} & w_{1} \\ & 1 & z_{3} & y_{2} & w_{2} \\ & & 1 & & \\ & & & 1 & \\ & & & & 1\end{array}\right)\right\} .(A, B)$ is of type R_{1}, and there are $(q-1)^{2} q^{2}$ such branches.

When $b_{1}=0$, we work with $b_{2} \neq 0$. Choose x such that $d_{2}^{\prime}=0$, and with this on replacing d_{2} with $d_{2}^{\prime}=0$, we have $x=0$, which leaves us with $d_{1}^{\prime}=d_{1}$. B is reduced to $\left(\begin{array}{ccccc}1 & & & & d_{1} \\ & 1 & c & b_{2} & \\ & & 1 & & \\ & & & 1 & \\ & & & & 1\end{array}\right)$, and $Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A, B)=\left\{\left(\begin{array}{cccc}1 & z_{2} & y_{1} & w_{1} \\ & 1 & z_{3} & y_{2}\end{array} w_{2}\right)\right.$. Hence we have another branch of type R_{1}, and these are $(q-1)^{2} q$ in number.

Subcase $a \neq 0$. We just choose y_{1}, y_{2} such that $d_{1}^{\prime}=d_{2}^{\prime}=0$. Here $\left(b_{1}, b_{2}\right) \neq(0,0)$.

(A, B) is of type R_{2}, and there are $(q-1)^{2}\left(q^{2}-1\right)$ such branches (as $\left.\left(b_{1}, b_{2}\right) \neq(0,0)\right)$.

$$
\text { When } C=\left(\begin{array}{ccc}
1 & c & \\
1 & d \\
& 1
\end{array}\right), c, d \neq 0 \text { : Here Equation } 7.13 \text { becomes }\left(\begin{array}{c}
b_{1}+z_{1} b_{2} \\
b_{2} \\
0
\end{array}\right)=\left(\begin{array}{c}
b_{1}^{\prime}+c y_{2} \\
b_{2}^{\prime} \\
0
\end{array}\right) \text {. }
$$

Choose y_{2} such that $b_{1}^{\prime}=0$. We have $b_{2}^{\prime}=b_{2} \neq 0$. On replacing b_{1} with 0 in the above
equation, we get $y_{2}=\frac{b_{2}}{c} z_{1}$. Equation 7.14 thus becomes $\left(\begin{array}{c}d_{1}+z_{1} d_{2}+c z_{2}+a y_{1} \\ d_{2}+\frac{a b_{2}}{c} z_{1}+d z_{1} \\ c\end{array}\right)=$ $\left(\begin{array}{c}d_{1}^{\prime}+c w_{2} \\ d_{2}^{\prime}+x b_{2}+d z_{1} \\ c\end{array}\right)$. Choose w_{2} such that $d_{1}^{\prime}=0$, and x such that $d_{2}^{\prime}=0$. Hence B is re-
duced to $\left(\begin{array}{ccccc}1 & c & & & \\ & 1 & d & b_{2} & \\ & & 1 & & c \\ & & & 1 & a \\ & & & & 1\end{array}\right)$, with $Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A, B)=\left\{\left(\begin{array}{ccccc}1 & z_{1} & z_{2} & y_{1} & w_{1} \\ & 1 & \frac{d}{c} z_{1} & \frac{b_{2}}{c} z_{1} & \frac{a}{c} y_{1}+z_{2} \\ & & 1 & & z_{1} \\ & & & 1 & \frac{a}{c} z_{1} \\ & & & & 1\end{array}\right)\right\}$.
(A, B) is of type R_{3}, and there are $(q-1)^{3} q$ such branches.
Proposition 7.9. An upper unitriangular matrix of type B_{3} has q^{3} branches of type B_{3}, $q^{2}\left(q^{2}+q+1\right)(q-1)$ branches of regular type R_{1}, and $q^{3}(q-1)$ branches of regular type R_{3}.

Proof. Let $A=\left(\begin{array}{ccccc}1 & & a & & \\ & 1 & & b & \\ & & 1 & & \\ & & & 1 & \\ & & & & 1\end{array}\right), a, b \neq 0$ a matrix of type B_{3}. The centralizer $Z_{U T_{5}}(A)$ of A is $\left\{\left.\left(\begin{array}{ccccc}1 & x_{0} & x_{1} & x_{2} & x_{3} \\ & 1 & y_{0} & y_{1} & y_{2} \\ & & 1 & \lambda x_{0} & \\ & & & 1 & \\ & & & & 1\end{array}\right) \right\rvert\, \lambda=\frac{b}{a}, x_{i}, y_{i} \in \mathbf{F}_{q}\right\}$. Let $X=\left(\begin{array}{ccccc}1 & x_{0} & x_{1} & x_{2} & x_{3} \\ & 1 & y_{0} & y_{1} & y_{2} \\ & & 1 & \lambda x_{0} & \\ & & & 1 & \\ & & & & 1\end{array}\right)$
be an element of $Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A)$. Let $B=\left(\begin{array}{ccccc}1 & a_{0} & a_{1} & a_{2} & a_{3} \\ & 1 & b_{0} & b_{1} & b_{2} \\ & & 1 & \lambda a_{0} & \\ & & & 1 & \\ & & & & 1\end{array}\right)$, and $B^{\prime}=\left(\begin{array}{ccccc}1 & a_{0}^{\prime} & a_{1}^{\prime} & a_{2}^{\prime} & a_{3}^{\prime} \\ & 1 & b_{0}^{\prime} & b_{1}^{\prime} & b_{2}^{\prime} \\ & & 1 & \lambda a_{0}^{\prime} & \\ & & & 1 & \\ & & & & 1\end{array}\right)$
be a conjugate of B by X. Thus equating $X B=B^{\prime} X$ gives us $a_{0}=a_{0}^{\prime}, b_{0}=b_{0}^{\prime}, b_{2}=b_{2}^{\prime}$, and the following equations:

$$
\begin{aligned}
& a_{1}+b_{0} x_{0}=a_{0}^{\prime} y_{0}+a_{1}^{\prime} \\
& a_{2}+x_{0} b_{1}+\lambda x_{1} a_{0}=a_{0}^{\prime} y_{1}+\lambda x_{0} a_{1}^{\prime}+a_{2}^{\prime} \\
& a_{3}+x_{0} b_{2}=a_{3}^{\prime}+a_{0}^{\prime} y_{2} \\
& b_{1}+\lambda a_{0} y_{0}=\lambda x_{0} b_{0}^{\prime}+b_{1}^{\prime} \\
& 97
\end{aligned}
$$

We look at three cases, the first case is when $\lambda a_{1}=b_{1}$ and $\left(a_{0}, b_{0}, b_{2}\right)=\mathbf{0}$. The second case is when $\lambda a_{1} \neq b_{1}$ and $\left(a_{0}, b_{0}, b_{2}\right)=\mathbf{0}$. The third case is when $\left(a_{0}, b_{0}, b_{2}\right) \neq \mathbf{0}$.

Case: $\lambda a_{1}=b_{1}$ and $\left(a_{0}, b_{0}, b_{2}\right)=\mathbf{0}$. In this case, we get $a_{2}=a_{2}^{\prime}$. Therefore $Z_{U T_{5}\left(\mathbf{F}_{q)}\right)}(A, B)=Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A)$. So (A, B) is a branch of type B_{3}, and there are q^{3} branches.

Case: $\lambda a_{1} \neq b_{1}$ and $\left(a_{0}, b_{0}, b_{2}\right)=\mathbf{0}$. In this case, we can choose x_{0} in such a way that we get $a_{2}=0$. By routine check, we get $Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A, B)$ is a commutative group of size q^{6}. Thus (A, B) is of regular type R_{1}, and there are $q^{2}(q-1)$ branches of this type.

Case: $\left(a_{0}, b_{0}, b_{2}\right) \neq \mathbf{0}$. We first consider that $a_{0} \neq 0$, then we can choose y_{0}, y_{1} and y_{2} in such a way that we get $a_{1}=a_{2}=a_{3}=0$ and $b_{1}=b_{1}^{\prime}$. By simple calculations, we get that $Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A, B)$ is a commutative group of size q^{4}. Thus (A, B) is of regular type R_{3}, and there are $q^{3}(q-1)$ branches of this type.

Next we consider the case when $a_{0}=0$ and $b_{0} \neq 0$. Here we can choose x_{0} in such a way that we get $a_{1}=0$. By routine check, we get $Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A, B)$ is commutative group of size q^{6}. Thus (A, B) is of regular type R_{1}, and there are $q^{4}(q-1)$ branches of this type.

Finaly we consider the case when $a_{0}=b_{0}=0$ and $b_{2} \neq 0$., now we can choose x_{0} in such a way that we get $a_{3}=0$. Again, we get $Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A, B)$ is commutative group of size q^{6}. Thus (A, B) is of regular type R_{1}, and there are $q^{3}(q-1)$ branches of this type.

Therefore we get that a matrix of type B_{3} has q^{3} branches of type $B_{3}, q^{2}\left(q^{2}+q+1\right)(q-1)$ braches of regular type R_{1}, and $q^{3}(q-1)$ braches of regular type R_{3}.

Proposition 7.10. An upper unitriangular matrix of type B_{4} has q^{3} branches of type $B_{4}, q^{2}\left(q^{2}-1\right)$ branches of regular type R_{2}, and $q^{3}(q-1)$ branches of regular type R_{3}.

Proof. Let $A=\left(\begin{array}{ccccc}1 & a & & & \\ & 1 & & b & \\ & & 1 & & \\ & & & 1 & \\ & & & 1\end{array}\right), a, b \neq 0$ a matrix of type B_{4}. The centralizer
$Z_{U T_{5}}(A)$ of A is $\left\{\left.\left(\begin{array}{ccccc}1 & x_{0} & x_{1} & x_{2} & x_{3} \\ & 1 & & \lambda x_{0} & \\ & & 1 & z_{0} & z_{1} \\ & & & 1 & \\ & & & & 1\end{array}\right) \right\rvert\, \lambda=\frac{b}{a}, x_{i}, z_{i} \in \mathbf{F}_{q}\right\}$.
$\operatorname{Let} X=\left(\begin{array}{ccccc}1 & x_{0} & x_{1} & x_{2} & x_{3} \\ & 1 & & \lambda x_{0} & \\ & & 1 & z_{0} & z_{1} \\ & & & 1 & \\ & & & & 1\end{array}\right)$ be an element of $Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A)$. Let $B=\left(\begin{array}{ccccc}1 & a_{0} & a_{1} & a_{2} & a_{3} \\ & 1 & & \lambda a_{0} & \\ & & 1 & c_{0} & c_{1} \\ & & & 1 & \\ & & & & 1\end{array}\right)$,
and $B^{\prime}=\left(\begin{array}{ccccc}1 & a_{0}^{\prime} & a_{1}^{\prime} & a_{2}^{\prime} & a_{3}^{\prime} \\ & 1 & & \lambda a_{0}^{\prime} & \\ & & 1 & c_{0}^{\prime} & c_{1}^{\prime} \\ & & & 1 & \\ & & & & 1\end{array}\right)$ be a conjugate of B by X. Thus equating $X B=B^{\prime} X$
gives us $a_{0}=a_{0}^{\prime}, a_{1}=a_{1}^{\prime}, c_{0}=c_{0}^{\prime}, c_{1}=c_{1}^{\prime}$, and the following equations:

$$
\begin{aligned}
& x_{1} c_{1}+a_{3}=z_{1} a_{1}+a_{3}^{\prime} \\
& x_{1} c_{0}+a_{2}=z_{0} a_{1}+a_{2}^{\prime}
\end{aligned}
$$

We look at two cases, when $\left(a_{1}, c_{0}, c_{1}\right)=\mathbf{0}$ and $\left(a_{1}, c_{0}, c_{1}\right) \neq b f 0$.
Case: $\left(a_{1}, c_{0}, c_{1}\right)=\mathbf{0}$: In this case, we get $a_{2}=a_{2}^{\prime}$ and $a_{3}=a_{3}^{\prime}$. Therefore $Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A, B)=$ $Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A)$. So (A, B) is a branch of type B_{4}, and there are q^{3} branches.

Case: $\left(a_{1}, c_{0}, c_{1}\right) \neq \mathbf{0}$: When $a_{1} \neq 0$, then we choose z_{0} and z_{1} in such a way that we get $a_{2}=a_{3}=0$. By routine check, we get that $Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A, B)$ is commutative group of size q^{4}. Thus (A, B) is of the regular type R_{3}, and there are $q^{3}(q-1)$ branches of this type.

When $a_{1}=0$ and one of c_{0} and c_{1} is non-zero. We can choose x_{1} in such a way that we get either $a_{2}=0$ or $a_{3}=0$. Again by simple calculations, we get $Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A, B)$ is commutative group of size q^{5}. Thus (A, B) is of the regular type R_{2}, and there are $q^{2}\left(q^{2}-1\right)$ branches of this type.

Proposition 7.11. An upper unitriangular matrix of type B_{5} has q^{2} branches of type $B_{5},\left(q^{5}-q\right)$ branches of regular type B_{6}.

Proof. Let $A=\left(\begin{array}{ccccc}1 & a & & & \\ & 1 & & & \\ & & 1 & & \\ & & & 1 & b \\ & & & & 1\end{array}\right), a, b \neq 0$ a matrix of type B_{5}. The centralizer $Z_{U T_{5}}(A)$
of A is $\left\{\left.\left(\begin{array}{ccccc}1 & x_{0} & x_{1} & x_{2} & x_{3} \\ & 1 & & & \lambda x_{2} \\ & & 1 & & z_{1} \\ & & & 1 & w_{0} \\ & & & & 1\end{array}\right) \right\rvert\, \lambda=\frac{b}{a}, x_{i}, z_{1}, w_{0} \in \mathbf{F}_{q}\right\}$. Let $X=\left(\begin{array}{ccccc}1 & x_{0} & x_{1} & x_{2} & x_{3} \\ & 1 & & & \lambda x_{2} \\ & & 1 & & z_{1} \\ & & & 1 & w_{0} \\ & & & & 1\end{array}\right)$
be an element of $Z_{U T_{5}\left(\mathbf{F}_{q)}\right)}(A)$. Let $B=\left(\begin{array}{ccccc}1 & a_{0} & a_{1} & a_{2} & a_{3} \\ & 1 & & & \lambda a_{2} \\ & & 1 & & c_{1} \\ & & & 1 & d_{0} \\ & & & & 1\end{array}\right)$, and $B^{\prime}=\left(\begin{array}{ccccc}1 & a_{0}^{\prime} & a_{1}^{\prime} & a_{2}^{\prime} & a_{3}^{\prime} \\ & 1 & & & \lambda a_{2}^{\prime} \\ & & 1 & & c_{1}^{\prime} \\ & & & 1 & d_{0}^{\prime} \\ & & & & 1\end{array}\right)$
be a conjugate of B by X. Thus equating $X B=B^{\prime} X$ gives us $a_{0}=a_{0}^{\prime}$ $a_{1}=a_{1}^{\prime}, a_{2}=a_{2}^{\prime}, c_{1}=c_{1}^{\prime}, d_{0}=d_{0}^{\prime}$, and the following equation:

$$
x_{2} d_{0}+c_{1} x_{1}+\lambda a_{2} x_{0}+a_{3}=\lambda x_{2} a_{0}^{\prime}+z_{1} a_{1}^{\prime}+w_{0} a_{2}^{\prime}+a_{3}^{\prime}
$$

We look at three cases, the first case is when $\lambda a_{0}=d_{0}$ and $\left(a_{1}, a_{2}, c_{1}\right)=\mathbf{0}$. The second case is when $\lambda a_{0} \neq d_{0}$ and the third case is when $\lambda a_{0}=d_{0}$ but $\left(a_{1}, a_{2}, c_{1}\right) \neq \mathbf{0}$.

Case: $\lambda a_{0}=d_{0}$ and $\left(a_{1}, a_{2}, c_{1}\right)=\mathbf{0}$. In this case, we get $a_{3}=a_{3}^{\prime}$. Therefore $Z_{U T_{5}\left(\mathbf{F}_{q)}\right)}(A, B)=Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A)$. So (A, B) is a branch of type B_{5}, and there are q^{2} branches.

Case: $\lambda a_{0} \neq d_{0}$ In this case, we can choose x_{2} in such a way that we get $a_{3}=0$. By routine check, we get $Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A, B)$ is group of size q^{5} isomorphic to centralizer of one of the type B_{6}. Thus (A, B) is of type B_{6}, and there are $q^{4}(q-1)$ branches of this type.

Case: $\lambda a_{0}=d_{0}$ and $\left(a_{1}, a_{2}, c_{1}\right) \neq \mathbf{0}$. In this case, one of a_{1}, a_{2} and c_{1} is non-zero and depending on this, we can choose one of z_{1}, w_{0} or x_{1} suitably in such a way that we get $a_{3}=0$. By routine check, we get $Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A, B)$ is group of size q^{5} isomorphic to centralizer of one of the type B_{6}. Thus (A, B) is of type B_{6}, and there are $q(q-1)\left(q^{2}+q+1\right)$ branches of this type.

Therefore a matrix of type B_{5} has q^{2} branches of type B_{5} and total $q\left(q^{4}-1\right)$ braches of type B_{6}.

Proposition 7.12. An upper unitriangular matrix of type B_{6} has q^{3} branches of type B_{6}, and $q^{2}\left(q^{2}-1\right)$ branches of regular type R_{3}.

Proof. Let $A=\left(\begin{array}{ccccc}1 & a & & & \\ & 1 & b & & \\ & & 1 & & \\ & & & 1 & \\ & & & & 1\end{array}\right), a, b \neq 0$ a matrix of type B_{6}. The centralizer
$Z_{U T_{5}}(A)$ of A is $\left\{\left.\left(\begin{array}{ccccc}1 & x_{0} & x_{1} & x_{2} & x_{3} \\ & 1 & \lambda x_{0} & & \\ & & 1 & & \\ & & & 1 & w_{0} \\ & & & & 1\end{array}\right) \quad \right\rvert\, \lambda=\frac{b}{a}, x_{i}, w_{0} \in \mathbf{F}_{q}\right\}$. Let $X=\left(\begin{array}{ccccc}1 & x_{0} & x_{1} & x_{2} & x_{3} \\ & 1 & \lambda x_{0} & & \\ & & 1 & & \\ & & & 1 & w_{0} \\ & & & & \end{array}\right)$
be an element of $Z_{U T_{5}\left(\mathbf{F}_{q)}\right)}(A)$. Let $B=\left(\begin{array}{ccccc}1 & a_{0} & a_{1} & a_{2} & a_{3} \\ & 1 & \lambda a_{0} & & \\ & & 1 & & \\ & & & 1 & d_{0} \\ & & & & 1\end{array}\right)$, and $B^{\prime}=\left(\begin{array}{ccccc}1 & a_{0}^{\prime} & a_{1}^{\prime} & a_{2}^{\prime} & a_{3}^{\prime} \\ & 1 & \lambda a_{0}^{\prime} & & \\ & & 1 & & \\ & & & 1 & d_{0}^{\prime} \\ & & & & 1\end{array}\right)$
be a conjugate of B by X. Thus equating $X B=B^{\prime} X$ gives us $a_{0}=a_{0}^{\prime}, a_{1}=a_{1}^{\prime}, a_{2}=a_{2}^{\prime}$, $d_{0}=d_{0}^{\prime}$, and the following equation:

$$
x_{2} d_{0}+a_{3}=w_{0} a_{2}^{\prime}+a_{3}^{\prime}
$$

We look at two cases, when $\left(a_{2}, d_{0}\right)=(0,0)$ and $\left(a_{2}, d_{0}\right) \neq(0,0)$.
Case: $\left(a_{2}, d_{0}\right)=(0,0)$ In this case, we get $a_{3}=a_{3}^{\prime}$. Therefore $Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A, B)=$ $Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A)$. So (A, B) is a branch of type B_{6}, and there are q branches.

Case: $\left(a_{2}, d_{0}\right) \neq(0,0)$ In this case, one of d_{0} and a_{2} is non-zero. We can choose x_{2} or w_{0} in such a way that we get $a_{3}=0$. By routine check, we get $Z_{U T_{5}\left(\mathbf{F}_{q)}\right)}(A, B)$ is commutative group of size q^{4}. Thus (A, B) is of the regular type R_{3}, and there are $q^{2}\left(q^{2}-1\right)$ branches of this type.
7.3. Branching of type D. Now we look at the branching for type D.

Proposition 7.13. An upper unitriangular matrix of type D_{1} has the following branches:

Branch	No. of Branches	Branch	No. of Branches
D_{1}	q^{2}	R_{2}	$q^{2}(q-1)$
B_{4}	$2 q(q-1)$	R_{3}	$q^{2}\left(q^{2}-1\right)$.
$U N T_{3}$	$q(q-1)^{2}$		

Proof. An upper unitriangular matrix of type D_{1} has the canonical form $A=\left(\begin{array}{ccccc}1 & & c_{1} & & \\ & 1 & & c_{2} & \\ & & 1 & & c_{3} \\ & & & 1 & \\ & & & & 1\end{array}\right)$, where $a, b, c \neq 0 . Z_{U T_{5}\left(\mathbf{F}_{q)}\right)}(A)=\left\{\left(\begin{array}{ccccc}1 & a_{1} & a_{2} & b_{1} & d_{1} \\ & 1 & a_{3} & b_{2} & d_{2} \\ & & 1 & \frac{c_{2}}{c_{1}} a_{1} & \frac{c_{3}}{c_{1}} a_{2} \\ & & & 1 & \frac{c_{3}}{c_{2}} a_{3} \\ & & & & 1\end{array}\right)\right\}$, which we rewrite as:

$$
Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A)=\left\{\left.\left(\begin{array}{ccc}
C & \vec{b} & \vec{d} \\
& 1 & \frac{c_{3}}{c_{2}} C_{23} \\
& & 1
\end{array}\right) \right\rvert\, C \in U T_{3}\left(\mathbf{F}_{q}\right), \vec{b}=\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\frac{c_{2}}{c_{1}} C_{12}
\end{array}\right), \vec{d}=\left(\begin{array}{c}
d_{1} \\
d_{2} \\
\frac{c_{3}}{c_{1} C_{13}}
\end{array}\right)\right\} .
$$

Let $B=\left(\begin{array}{ccc}C & \vec{b} & \vec{d} \\ & 1 & \frac{c_{3}}{c_{2}} C_{23} \\ & & 1\end{array}\right)$, and $B^{\prime}=\left(\begin{array}{ccc}C^{\prime} & \overrightarrow{b^{\prime}} & \overrightarrow{d^{\prime}} \\ & 1 & \frac{c_{3}}{c_{2}} C_{23}^{\prime} \\ & & \\ & & \end{array}\right)$ be a conjugate of B by a member $X=\left(\begin{array}{ccc}Z & \vec{y} & \vec{w} \\ & 1 & \frac{c_{3}}{c_{2}} Z_{23} \\ & & 1\end{array}\right) \in Z_{U T_{5}\left(\mathbf{F}_{q)}\right)}(A)$, with $\vec{y}=\left(\begin{array}{c}y_{1} \\ y_{2} \\ \frac{c_{2}}{c_{1}} Z_{12}\end{array}\right)$, and $\vec{w}=\left(\begin{array}{c}w_{1} \\ c_{2} \\ c_{3} Z_{13} \\ c_{1}\end{array}\right)$.
We thus have $X B=B^{\prime} X$. First thing we see is that $Z C=C^{\prime} Z$. So we can take C to be a conjugacy class representative in $U T_{3}\left(\mathbf{F}_{q}\right)$, and we thus have the following equations:

$$
\begin{align*}
Z \vec{b}+\vec{y} & =C \vec{y}+\overrightarrow{b^{\prime}} \tag{7.15}\\
Z \vec{d}+\frac{c_{3}}{c_{2}} C_{23} \vec{y}+\vec{w} & =C^{\prime} \vec{w}+\frac{c_{3}}{c_{2}} Z_{23} \overrightarrow{b^{\prime}}+\overrightarrow{d^{\prime}} \tag{7.16}
\end{align*}
$$

When $C=I_{3}$: In this case $C_{12}=C_{13}=C_{23}=0$. We have $Z=\left(\begin{array}{ccc}1 & z_{1} & z_{2} \\ & 1 & z_{3} \\ & & 1\end{array}\right)$.
Equation 7.15 becomes: $\left(\begin{array}{c}b_{1}+z_{1} b_{2} \\ b_{2} \\ 0\end{array}\right)=\left(\begin{array}{c}b_{1}^{\prime} \\ b_{2}^{\prime} \\ 0\end{array}\right)$. We look at two cases here: When $b_{2} \neq 0$, and when $b_{2}=0$.

When $b_{2}=0$, We have $b_{1}^{\prime}=b_{1}$, and Equation 7.16 becomes:

$$
\left(\begin{array}{c}
d_{1}+z_{1} d_{2} \\
d_{2} \\
0
\end{array}\right)=\left(\begin{array}{c}
d_{1}^{\prime}+\frac{c_{3}}{c_{2}} z_{3} b_{1} \\
d_{2}^{\prime}+\frac{c_{33}}{c_{2}} b_{2}^{\prime} \\
0
\end{array}\right)
$$

We have $d_{2}^{\prime}=d_{2}$.

When $b_{2}=b_{1}=d_{2}=0$: We have $d_{1}^{\prime}=d_{1}$. Thus B is reduced to

$$
\left(\begin{array}{lllll}
1 & & & & d_{1} \\
& 1 & & & \\
& & 1 & & \\
& & & 1 & \\
& & & & 1
\end{array}\right)
$$

So $Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A, B)=Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A)$. Hence (A, B) is a branch of type D_{1}, and there are q such branches.
When $b_{2}=b_{1}=0$, and $d_{2} \neq 0$, we can choose z_{1} such that $d_{1}=0$. Thus, B is reduced to $\left(\begin{array}{ccccc}1 & & & & \\ & 1 & & & d_{2} \\ & & 1 & & \\ & & & 1 & \\ & & & & 1\end{array}\right)$, and $Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A, B)=\left\{\left(\begin{array}{cccc}1 & z_{2} & y_{1} & w_{1} \\ & 1 & z_{3} & y_{2}\end{array} w_{2}\right)\right.$, $\left.\left.\begin{array}{ccc} \\ & & \\ & & \frac{c_{3}}{c_{1}} z_{2} \\ & & \\ & & \\ & & \frac{c_{3}}{c_{2}} z_{3} \\ & & \\ & & 1\end{array}\right)\right\}$, which is of
type. So (A, B) is a branch of type B_{4}, as $Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A, B)$ can be conjugated by the
elementary matrix that swaps rows and columns 1 and 2 to get the centralizer subgroup of one of the canonical matrices of type B_{4}, and there are $(q-1)$ branches of this type.

When $b_{1} \neq 0$, in Equation 7.16, we choose z_{3} so that $d_{1}=0$. Thus B is reduced to $\left(\begin{array}{ccccc}1 & & & b_{1} & \\ & 1 & & & d_{2} \\ & & 1 & & \\ & & & 1 & \\ & & & & 1\end{array}\right)$, and $Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A, B)=\left\{\left(\begin{array}{ccccc}1 & z_{1} & z_{2} & y_{1} & w_{1} \\ & 1 & \frac{c_{2} d_{2}}{c_{3} b_{1}} z_{1} & y_{2} & w_{2} \\ & & 1 & \frac{c_{2}}{c_{1}} z_{1} & \frac{c_{3}}{c_{1}} z_{2} \\ & & & & 1 \\ d_{2} & b_{1} \\ & & & & \\ & & & & 1\end{array}\right)\right\}$. Again,
we have 2 cases here:
When $d_{2}=0, B=\left(\begin{array}{ccccc}1 & & & b_{1} & \\ & 1 & & & \\ & & 1 & & \\ & & & 1 & \\ & & & & 1\end{array}\right)$. Here $Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A, B)=\left\{\left(\begin{array}{ccccc}1 & z_{1} & z_{2} & y_{1} & w_{1} \\ & 1 & & y_{2} & w_{2} \\ & & 1 & \frac{c_{2}}{c_{1}} z_{1} & \frac{c_{3}}{c_{1}} z_{2} \\ & & & 1 & 1\end{array}\right)\right\}$.
On conjugating by an elementary matrix, which swaps rows and columns 2 and 3 of each element of $Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A, B)$, we get the centralizer of one of the canonical matrices of the type B_{4}. Thus there are $q-1$ branches of type B_{4}.
When $d_{2} \neq 0$, we have $Z_{U T_{5}\left(\mathbf{F}_{q)}\right)}(A, B)=\left\{\left(\begin{array}{ccccc}1 & z_{1} & z_{2} & y_{1} & w_{1} \\ & 1 & \frac{c_{2} d_{2}}{c_{3} b_{1}} z_{1} & y_{2} & w_{2} \\ & & 1 & \frac{c_{2}}{c_{1}} z_{1} & \frac{c_{3}}{c_{1}} z_{2} \\ & & & 1 & \frac{d_{2}}{b_{1}} z_{1} \\ & & & & 1\end{array}\right)\right\}$. Thus this branch is of the new type $U N T_{3}$, and there are $(q-1)^{2}$ such branches.

When $b_{2} \neq 0$, choose z_{1} such that $b_{1}^{\prime}=0$. Thus equating Equation 7.15 with b_{1} replaced by 0 , we get that $z_{1}=0$. Thus with $b_{1}=0$ and $z_{1}=0$, we get from Equation 7.16, $d_{1}^{\prime}=d_{1}$, and with a nice choice of z_{3}, we can reduce d_{2}^{\prime} to 0 . Hence, B is reduced to $\left(\begin{array}{ccccc}1 & & & & d_{1} \\ & 1 & & b_{2} & \\ & & 1 & & \\ & & & 1 & \\ & & & & 1\end{array}\right)$, and $Z_{U T_{5}\left(\mathbf{F}_{q}\right)}=\left\{\left(\begin{array}{ccccc}1 & & z_{2} & y_{1} & w_{1} \\ & 1 & & y_{2} & w_{2} \\ & & 1 & & \frac{c_{3}}{c_{1}} z_{2} \\ & & & 1 & \\ & & & & 1\end{array}\right)\right\}$, which is a centralizer
of type R_{2}. Thus (A, B) is a branch of type R_{2}, and there are $q(q-1)$ such branches.

$$
\text { When } C=\left(\begin{array}{ll}
1 & \\
& \\
& 1 \\
& \\
1
\end{array}\right), c \neq 0 \text { : Here Equation } 7.15 \text { becomes: }\left(\begin{array}{c}
b_{1}+z_{1} b_{2} \\
b_{2} \\
0
\end{array}\right)=\left(\begin{array}{c}
b_{1}^{\prime}+\frac{c_{3} c}{c_{2}} z_{1} \\
b_{2}^{\prime} \\
0
\end{array}\right) \text {. }
$$

So we have $b_{2}^{\prime}=b_{2}$. We see 2 cases here: $b_{2}=\frac{c_{2}}{c_{1}} c$, and $b_{2} \neq \frac{c_{2}}{c_{1}} c$.
When $b_{2} \neq \frac{c_{2}}{c_{1}} c$. In the above equation, we choose z_{1} such that $b_{1}^{\prime}=0$. Thus, with substituting b_{1} with $b_{1}^{\prime}=0$ in the above equation, we get $z_{1}=0$. Thus, with this,

Equation 7.16 becomes $\left(\begin{array}{c}d_{1} \\ d_{2}+\frac{c_{3}}{c_{1}} c z_{3} \\ \frac{c_{3}}{c_{1}} c\end{array}\right)=\left(\begin{array}{c}d_{1}^{\prime} \\ d_{2}^{\prime}+\frac{c_{3}}{c_{2}} b_{2} z_{3} \\ \frac{c_{3}}{c_{1}} c\end{array}\right)$. As $b_{2} \neq \frac{c_{2}}{c_{1}} c$, we can choose a
z_{3} so that $d_{2}^{\prime}=0$, and we have $d_{1}^{\prime}=d_{1}$. So B boils down to $\left(\begin{array}{ccccc}1 & & c & & \\ & & & d_{1} \\ & 1 & & b_{2} & \\ & & 1 & & \frac{c_{3}}{c_{1}} c \\ & & & 1 & \\ & & & & 1\end{array}\right)$, with $Z_{U T_{5}\left(\mathbf{F}_{q)}\right)}(A, B)=\left\{\left(\begin{array}{ccccc}1 & & z_{2} & y_{1} & w_{1} \\ & 1 & & y_{2} & w_{2} \\ & & 1 & & \frac{c_{3}}{c_{1}} z_{2} \\ & & & 1 & \\ & & & & 1\end{array}\right)\right\}$. Thus (A, B) too is a branch of type R_{2}, and there are $q(q-1)^{2}$ such branches.

When $b_{2}=\frac{c_{2}}{c_{1}} c$, we get from Equation 7.15, $b_{1}^{\prime}=b_{1}$. Equation 7.16 boils down to: $\left(\begin{array}{c}d_{1}+z_{1} d_{2} \\ d_{2} \\ 0\end{array}\right)=\left(\begin{array}{c}d_{1}^{\prime}+\frac{c_{3}}{c_{2}} z_{3} b_{1} \\ d_{2}^{\prime} \\ 0\end{array}\right)$. So we have $d_{2}^{\prime}=d_{2}$. We look first at $b_{1}=d_{2}=0$. B is reduced to $\left(\begin{array}{ccccc}1 & & c & & \\ & 1 & & d_{1} \\ & & \frac{c_{2}}{c_{1}} c & \\ & & 1 & & \frac{c_{3}}{c_{1}} c \\ & & & 1 & \\ & & & & 1\end{array}\right)$, and $Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A, B)=Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A)$. Thus (A, B) is a
branch of type D_{1}, and there are $q(q-1)$ such branches.
When $b_{1} \neq 0$ choose z_{3} such that $d_{1}^{\prime}=0$. So, B becomes: $\left(\begin{array}{ccccc}1 & & c & b_{1} & \\ & 1 & & \frac{c_{2}}{c_{1}} c & d_{2} \\ & & 1 & & \frac{c_{3}}{c_{1}} c \\ & & & 1 & \\ & & & & 1\end{array}\right)$. We
have two cases here:

When $d_{2}=0$, we have $B=\left(\begin{array}{ccccc}1 & & c & b_{1} & \\ & 1 & & \frac{c_{2}}{c_{1}} c & \\ & & 1 & & \frac{c_{3}}{c_{1}} c \\ & & & 1 & \\ \\ & & & 1\end{array}\right)$ and

$$
Z_{U T_{5}\left(\mathbf{F}_{q)}\right)}(A, B)=\left\{\left(\begin{array}{ccccc}1 & z_{1} & z_{2} & y_{1} & w_{1} \\ & 1 & & y_{2} & w_{2} \\ & & 1 & \frac{c_{2}}{c_{1}} z_{1} & \frac{c_{3}}{c_{1}} z_{2} \\ & & & 1 & \\ & & & & \end{array}\right)\right.
$$

thus (A, B) is of a type B_{4}, and there are $(q-1)^{2}$ such branches.
When $d_{2} \neq 0, B=\left(\begin{array}{ccccc}1 & & c & b_{1} & \\ & 1 & & \frac{c_{2}}{c_{1}} c & d_{2} \\ & & 1 & & \frac{c_{3}}{c_{1}} c \\ & & & 1 & \\ & & & & 1\end{array}\right)$, and

$$
Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A, B)=\left\{\left(\begin{array}{ccccc}
1 & z_{1} & z_{2} & y_{1} & w_{1} \\
& 1 & \frac{c_{2} d_{2}}{c_{3} b_{1}} z_{1} & y_{2} & w_{2} \\
& & 1 & \frac{c_{2}}{c_{1}} z_{1} & \frac{c_{3}}{c_{1}} z_{2} \\
& & & 1 & \frac{d_{2}}{b_{1}} z_{1} \\
& & & & 1
\end{array}\right)\right\}
$$

so, this branch too is of the type $U N T_{3}$. Thus there are $(q-1)^{3}$ branches of this new type.

When $b_{1}=0$, and $d_{2} \neq 0$. We choose z_{1} so that $d_{1}^{\prime}=0$. Thus B is reduced to $\left(\begin{array}{ccccc}1 & & c & & \\ & 1 & & \frac{c_{2}}{c_{1}} c & d_{2} \\ & & 1 & & \frac{c_{3}}{c_{1}} c \\ & & & 1 & \\ & & & & 1\end{array}\right)$, and $Z_{U T_{5}\left(\mathbf{F}_{q}\right)}=\left\{\left(\begin{array}{cccc}1 & z_{2} & y_{1} & w_{1} \\ & 1 & z_{3} & y_{2} \\ & w_{2} \\ & & 1 & \\ & & \frac{c_{3}}{c_{1}} z_{2} \\ & & & \\ & & \frac{c_{3}}{c_{2}} z_{3} \\ & & & \\ 1\end{array}\right)\right\}$. This is of type B_{4}. (A, B) is a branch of type B_{4}, and there are $(q-1)^{2}$ such branches.
When $C=\left(\begin{array}{ccc}1 & c \\ & 1 & \\ & & 1\end{array}\right), c \neq 0$: Here, $Z=\left(\begin{array}{ccc}1 & z_{1} & z_{2} \\ & 1 & \\ & & 1\end{array}\right)$. Equation 7.15 boils down to $\left(\begin{array}{c}b_{1}+b_{2} z_{1}+\frac{c_{2}}{c_{1}} c z_{2} \\ b_{2} \\ \frac{c_{2}}{c_{1}} c\end{array}\right)=\left(\begin{array}{c}c y_{2}+b_{1}^{\prime} \\ b_{2}^{\prime} \\ \frac{c_{2}}{c_{1}} c\end{array}\right)$. So $b_{2}^{\prime}=b_{2}$. As $c \neq 0$, we choose y_{2} such that
$b_{1}^{\prime}=0$. Equation 7.16 becomes: $\left(\begin{array}{c}d_{1}+d_{2} z_{1} \\ d_{2} \\ 0\end{array}\right)=\left(\begin{array}{c}c w_{2}+d_{1}^{\prime} \\ d_{2}^{\prime} \\ 0\end{array}\right)$. We have $d_{2}^{\prime}=d_{2}$.
Take w_{2} such that $d_{1}^{\prime}=0$. So B is reduced to $\left(\begin{array}{ccccc}1 & c & & & \\ & 1 & & b_{2} & d_{2} \\ & & 1 & \frac{c_{2}}{c_{1}} c & \\ & & & 1 & \\ & & & & \\ & & & & \end{array}\right)$, and therefore $Z_{U T_{5}\left(\mathbf{F}_{q)}\right)}(A, B)=\left\{\left(\begin{array}{ccccc}1 & z_{1} & z_{2} & y_{1} & y_{2} \\ & 1 & & \frac{b_{2}}{c} z_{1}+\frac{c_{2}}{c_{1}} z_{2} & \frac{d_{2}}{c} z_{1} \\ & & 1 & \frac{c_{2}}{c_{1}} z_{1} & \frac{c_{3}}{c_{1}} z_{2} \\ & & & 1 & \\ & & & & 1\end{array}\right)\right\}$, which is of size q^{4}. It is routine
to check that this centralizer is commutative. Thus this is a centralzier of type R_{3}. Thus (A, B) is a branch of type R_{3}, and there are $q^{2}(q-1)$ such branches.
When $C=\left(\begin{array}{lll}1 & & \\ & 1 & c \\ & & 1\end{array}\right), c \neq 0$: In this case $Z=\left(\begin{array}{ccc}1 & & z_{2} \\ & 1 & z_{3} \\ & & 1\end{array}\right)$. With this, Equation 7.15 becomes $\left(\begin{array}{c}b_{1} \\ b_{2} \\ 0\end{array}\right)=\left(\begin{array}{c}b_{1}^{\prime} \\ b_{2}^{\prime} \\ 0\end{array}\right)$. So, our focus thus is solely on Equation 7.16. The equation is reduced to $\left(\begin{array}{c}d_{1}+\frac{c_{3}}{c_{2}} c y_{1} \\ d_{2}+\frac{c_{3}}{c_{2}} c y_{2} \\ 0\end{array}\right)=\left(\begin{array}{c}d_{1}^{\prime}+\frac{c_{3}}{c_{2}} b_{1} z_{3} \\ d_{2}^{\prime}+\frac{c_{3}}{c_{1}} c z_{2}+\frac{c_{2}}{c_{2}} b_{2} z_{3} \\ 0\end{array}\right)$ As $\frac{c_{3}}{c_{2}} c \neq 0$, choose y_{1}, y_{2} so that $d_{1}^{\prime}=d_{2}^{\prime}=0$. Thus B is reduced to $\left(\begin{array}{ccccc}1 & & & b_{1} & \\ & 1 & c & b_{2} & \\ & & 1 & & \\ & & & 1 & \frac{c_{3}}{c_{2}} c \\ & & & & 1\end{array}\right)$, and $Z_{U T_{5}\left(\mathbf{F}_{q)}\right)}(A, B)=\left\{\left(\begin{array}{ccccc}1 & & z_{2} & \frac{b_{1}}{c} z_{3} & w_{1} \\ & 1 & z_{3} & \frac{c_{2}}{c_{1}} z_{2}+\frac{b_{2}}{c} z_{3} & w_{2} \\ & & 1 & & \frac{c_{3}}{c_{1}} z_{2} \\ & & & 1 & \frac{c_{3}}{c_{2}} z_{3} \\ & & & & 1\end{array}\right)\right\}$. This is of size q^{4}, and with a routine check we see that it is commutative. This is a centralizer of type R_{3}, hence (A, B) is a branch of type R_{3}, and there are $q^{2}(q-1)$ such branches.

When $C=\left(\begin{array}{ccc}1 & c_{0} & \\ & 1 & d_{0} \\ & & 1\end{array}\right), c_{0}, d_{0} \neq 0$: Here $Z=\left(\begin{array}{ccc}1 & z_{1} & z_{2} \\ & 1 & \lambda_{0} z_{1} \\ & & 1\end{array}\right)$, where $\lambda_{0}=\frac{d_{0}}{c_{0}}$. Equation 7.15 becomes: $\left(\begin{array}{c}b_{1}+z_{1} b_{2}+z_{2} \frac{c_{2}}{c_{1}} c_{0} \\ b_{2}+\frac{c_{2}}{c_{1}} d_{0} z_{1} \\ 0\end{array}\right)=\left(\begin{array}{c}c_{0} y_{2}+b_{1}^{\prime} \\ \frac{c_{2}}{c_{1}} d_{0} z_{1}+b_{2}^{\prime} \\ 0\end{array}\right)$. As c_{0} and d_{0} are nonzero, we have $b_{2}^{\prime}=b_{2}$. We choose y_{2} such that $b_{1}^{\prime}=0$. Hence, on replacing b_{1} with 0 in the above equation we get $y_{2}=\frac{b_{2}}{c_{0}} z_{1}+\frac{c_{2}}{c_{1}} z_{2}$. With these, Equation 7.16 boils down to $\left(\begin{array}{c}d_{1}+z_{1} d_{2}+\frac{c_{3}}{c_{2}} d_{0} y_{1} \\ d_{2} \\ 0\end{array}\right)=\left(\begin{array}{c}c_{0} w_{2}+d_{1}^{\prime} \\ d_{2}^{\prime} \\ 0\end{array}\right)$. So $d_{2}^{\prime}=d_{2}$, and choose w_{2} such
that $d_{1}^{\prime}=0$. Hence, B is reduced to $\left(\begin{array}{ccccc}1 & c_{0} & & & \\ & 1 & d_{0} & b_{2} & d_{2} \\ & & 1 & \frac{c_{2}}{c_{1}} c_{0} & \\ & & & 1 & \frac{c_{3}}{c_{2}} d_{0} \\ & & & & 1\end{array}\right)$, with $Z_{U T_{5}\left(\mathbf{F}_{q)}\right)}(A, B)=$ $\left\{\left(\begin{array}{ccccc}1 & z_{1} & z_{2} & y_{1} & w_{1} \\ & 1 & \frac{d_{0}}{c_{0}} z_{1} & \frac{b_{2}}{c_{0}} z_{1}+\frac{c_{2}}{c_{1}} z_{2} & \frac{c_{3}}{c_{2} c_{0}} y_{1}+\frac{d_{2} c_{0}}{d_{0}} z_{1} \\ & & 1 & \frac{c_{3}}{c_{1}} z_{1} & \frac{c_{1}}{c_{1}} z_{2} \\ & & & 1 & \frac{c_{3} d_{0}}{c_{2} c_{0}} z_{1} \\ & & & & 1\end{array}\right)\right\}$. This too is of type R_{3}. So (A, B) is
a brach of type R_{3}, and there are $q^{2}(q-1)^{2}$ such branches.
So, on adding up the branches of each of the types, we have

- q^{2} branches of type D_{1},
- $2 q(q-1)$ branches of type B_{4},
- $q^{2}(q-1)$ branches of type R_{2},
- $q^{2}\left(q^{2}-1\right)$ branches of type R_{3}, and
- $q(q-1)^{2}$ branches of type $U N T_{3}$.

These match with the estimations done for $q=3$ in GAP.

Proposition 7.14. An upper unitriangular matrix of type D_{2} has q^{3} branches of type D_{2}, and $q^{2}\left(q^{2}-1\right)$ branches of regular type R_{3}.

Proof. Let $A=\left(\begin{array}{ccccc}1 & a & & & \\ & 1 & b & & \\ & & 1 & & c \\ & & & 1 & \\ & & & 1\end{array}\right), a, b, c \neq 0$ a matrix of type D_{2}. The centralizer
$Z_{U T_{5}}(A)$ of A is $\left\{\left.\left(\begin{array}{ccccc}1 & x_{0} & x_{1} & x_{2} & x_{3} \\ & 1 & \lambda_{1} x_{0} & & \lambda_{2} x_{1} \\ & & 1 & & \lambda_{2} x_{0} \\ & & & 1 & w_{0} \\ & & & & 1\end{array}\right) \right\rvert\, \lambda_{1}=\frac{b}{a}, \lambda_{2}=\frac{c}{a}, x_{i}, w_{0} \in \mathbf{F}_{q}\right\}$.
Let $X=\left(\begin{array}{ccccc}1 & x_{0} & x_{1} & x_{2} & x_{3} \\ & 1 & \lambda_{1} x_{0} & & \lambda_{2} x_{1} \\ & & 1 & & \lambda_{2} x_{0} \\ & & & 1 & w_{0} \\ & & & & 1\end{array}\right)$ be an element of $Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A)$. Let $B=\left(\begin{array}{ccccc}1 & a_{0} & a_{1} & a_{2} & a_{3} \\ & 1 & \lambda_{1} a_{0} & & \lambda_{2} a_{1} \\ & & 1 & & \lambda_{2} a_{0} \\ & & & 1 & d_{0} \\ & & & & 1\end{array}\right)$,
and $B^{\prime}=\left(\begin{array}{ccccc}1 & a_{0}^{\prime} & a_{1}^{\prime} & a_{2}^{\prime} & a_{3}^{\prime} \\ & 1 & \lambda_{1} a_{0}^{\prime} & & \lambda_{2} a_{1}^{\prime} \\ & & 1 & & \lambda_{2} a_{0}^{\prime} \\ & & & 1 & d_{0}^{\prime} \\ & & & & 1\end{array}\right)=X B X^{-1}$. Thus equating $X B=B^{\prime} X$ gives us
$a_{0}=a_{0}^{\prime}, a_{1}=a_{1}^{\prime}, a_{2}=a_{2}^{\prime}, d_{0}=d_{0}^{\prime}$, and the following equation:

$$
x_{2} d_{0}+a_{3}=w_{0} a_{2}^{\prime}+a_{3}^{\prime}
$$

We look at two cases, when $\left(a_{2}, d_{0}\right)=(0,0)$ and $\left(a_{2}, d_{0}\right) \neq(0,0)$.
Case: $\left(a_{2}, d_{0}\right)=(0,0)$ In this case, we get $a_{3}=a_{3}^{\prime}$. Therefore $Z_{U T_{5}\left(\mathbf{F}_{q)}\right.}(A, B)=$ $Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A)$. So (A, B) is a branch of type D_{2}, and there are q branches.

Case: $\left(a_{2}, d_{0}\right) \neq(0,0)$ In this case, one of d_{0} and a_{2} is non-zero. We can choose x_{2} or w_{0} in such a way that we get $a_{3}=0$. By routine check, we get $Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A, B)$ is commutative group of size q^{4}. Thus (A, B) is of the regular type R_{3}, and there are $q^{2}\left(q^{2}-1\right)$ branches of this type.

Proposition 7.15. A matrix of the R_{1} type has q^{6} branches of type R_{1}, a matrix of the R_{2} type has q^{5} branches of type R_{2}, and a matrix of the R_{3} type has q^{4} branches of type R_{3}.

Proof. The type R_{1}, R_{2} and R_{3} are Regular types, hence the centralizer of matrices of such a type is a commutative.
7.4. Branching Rules for the New Types. While determining the branching rules for the types in $U T_{5}\left(\mathbf{F}_{q}\right)$, we observed that there are some commuting pairs of elements of
$U T_{5}\left(\mathbf{F}_{q}\right)$, which are not isomorphic to the centralizers of any of the elements in $U T_{5}\left(\mathbf{F}_{q}\right)$. Thus, giving rise to what we call "new types". The new types, we have seen so far are $U N T_{1}$ (first observed in Proposition 7.4), $U N T_{2}$ (observed in Proposition 7.7) and $U N T_{3}$ (observed in Propositions 7.7). Now, we compute the branching for these cases and we see that no further new types occur.

Proposition 7.16. The new type $U N T_{1}$ has q^{3} branches of type $U N T_{1}, q^{2}\left(q^{2}-1\right)$ branches of type R_{2}, and $q^{4}-q^{3}$ branches of type R_{3}.

Proof. For some pair (A, B) of commuting elements in $U T_{5}\left(\mathbf{F}_{q}\right)$, of type $U N T_{1}$, the centralizer subgroup is $Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A, B)=\left\{\left(\begin{array}{cccc}1 & x_{0} & x_{1} & \lambda z_{0}\end{array} x_{3}\right)\right.$ $C=\left(\begin{array}{ccccc}1 & a_{0} & a_{1} & \lambda c_{0} & a_{3} \\ & 1 & b_{0} & & b_{2} \\ & & 1 & & \\ & & & 1 & c_{0} \\ & & & & 1\end{array}\right)$, and let $C^{\prime}=\left(\begin{array}{ccccc}1 & a_{0}^{\prime} & a_{1}^{\prime} & \lambda c_{0}^{\prime} & a_{3}^{\prime} \\ & 1 & b_{0}^{\prime} & & b_{2}^{\prime} \\ & & 1 & & \\ & & & 1 & c_{0} \\ & & & & 1\end{array}\right)=X C X^{-1}$, where
$X=\left(\begin{array}{ccccc}1 & x_{0} & x_{1} & \lambda z_{0} & x_{3} \\ & 1 & y_{0} & & y_{2} \\ & & 1 & & \\ & & & 1 & z_{0} \\ & & & & 1\end{array}\right)$. On equation $X C=C X$, we get $a_{0}^{\prime}=a_{0}, b_{0}^{\prime}=b_{0}, b_{2}^{\prime}=b_{2}$,
$c_{0}^{\prime}=c_{0}$, and the following equations:

$$
\begin{align*}
& a_{1}+x_{0} b_{0}=a_{1}^{\prime}+a_{0} y_{0} \tag{7.17}\\
& a_{3}+x_{0} b_{2}=a_{3}^{\prime}+y_{2} a_{0} \tag{7.18}
\end{align*}
$$

We look at two main cases: $\left(a_{0}, b_{2}\right)=(0,0)$, and $\left(a_{0}, b_{2}\right) \neq(0,0)$.
When $a_{0}=b_{2}=0$: Equation 7.18 becomes $a_{3}^{\prime}=a_{3}$, Equation 7.17 becomes $a_{1}^{\prime}=$ $a_{1}+x_{0} b_{0}$. We have two subcases here:

When $b_{0}=0$, then we get $a_{1}^{\prime}=a_{1}$. Thus C boils down to $\left(\begin{array}{ccccc}1 & & a_{1} & \lambda c_{0} & a_{3} \\ & 1 & & & \\ & & 1 & & \\ & & & 1 & c_{0} \\ & & & & 1\end{array}\right)$, and $Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A, B, C)=Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A, B) .(A, B, C)$ is therefore of type $U N T_{1}$, and there are q^{3} such branches.

When $b_{0} \neq 0$, in Equation 7.17, we can choose x_{0} such that $a_{1}^{\prime}=0$. Hence C is reduced to $\left(\begin{array}{ccccc}1 & & & \lambda c_{0} & a_{3} \\ & 1 & b_{0} & & \\ & & 1 & & \\ & & & 1 & c_{0} \\ & & & & 1\end{array}\right)$, and $Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A, B, C)=\left\{\left(\begin{array}{ccccc}1 & & x_{1} & \lambda z_{0} & x_{3} \\ & 1 & y_{0} & & y_{2} \\ & & 1 & & \\ & & & 1 & z_{0} \\ & & & & 1\end{array}\right)\right\}$. Easy to see that this is a commutative group of size $q^{5} .(A, B, C)$ is a branch of type R_{2}, and there are $q^{2}(q-1)$ such branches.
When $\left(a_{0}, b_{2}\right) \neq(0,0)$: When $a_{0} \neq 0$, in Equation 7.17, we choose y_{0} such that $a_{1}^{\prime}=0$. Thus, on replacing a_{1} with $a_{1}^{\prime}=0$ in that equation, we get $y_{0}=\frac{b_{0}}{a_{0}} x_{0}$. In Equation 7.18 choose y_{2} so that $a_{3}^{\prime}=0$. Thus C is reduced to $\left(\begin{array}{ccccc}1 & a_{0} & & \lambda c_{0} & \\ & 1 & b_{0} & & b_{2} \\ & & 1 & & \\ & & & 1 & c_{0} \\ & & & & 1\end{array}\right)$, and thus $Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A, B, C)=\left\{\left(\begin{array}{ccccc}1 & x_{0} & x_{1} & \lambda z_{0} & x_{3} \\ & 1 & \frac{b_{0}}{a_{0}} x_{0} & & \frac{b_{2}}{a_{0}} x_{0} \\ & & 1 & & y_{1} \\ & & & 1 & z_{0} \\ & & & & 1\end{array}\right)\right\}$.
group is a commutative one of size q^{4}. Thus (A, B, C) is a branch of type R_{3}, and there are $(q-1) q^{3}=q^{4}-q^{3}$ such branches.

When $a_{0}=0$, and $b_{2} \neq 0$. Equation 7.18 becomes $a_{3}+x_{0} b_{2}=a_{3}^{\prime}$, and Choose x_{0} such that $a_{3}^{\prime}=0$. Then, on replacing a_{3} with $a_{3}^{\prime}=0$ in Equation 7.18, we get $x_{0}=0$. With these, Equation 7.17 becomes $a_{1}^{\prime}=a_{1}$. C thus boils down to $\left(\begin{array}{ccccc}1 & & a_{1} & \lambda c_{0} & \\ & 1 & b_{0} & & b_{2} \\ & & 1 & & \\ & & & 1 & c_{0} \\ & & & & 1\end{array}\right)$, and $Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A, B, C)=\left\{\left(\begin{array}{ccccc}1 & & x_{1} & \lambda z_{0} & x_{3} \\ & 1 & y_{0} & & y_{2} \\ & & 1 & & \\ & & & 1 & z_{0} \\ & & & & 1\end{array}\right)\right\}$. This branch too is of type R_{2}, and there are $q^{3}(q-1)$ such branches. So, in total there are $q^{3}(q-1)+q^{2}(q-1)=q^{4}-q^{2}$ branches of type R_{2}.

Proposition 7.17. The new type $U N T_{2}$ has q^{3} branches of type $U N T_{2}, q^{5}-q^{2}$ branches of type R_{1}, and $q^{4}-q^{3}$ branches of type R_{3}.

Proof. A commuting pair (A, B) of type $U N T_{2}$ has the centralizer $\left\{\left(\begin{array}{ccccc}1 & x_{1} & y_{1} & y_{2} & x_{2} \\ & 1 & z_{1} & z_{2} & w_{1} \\ & & 1 & & \lambda x_{1} \\ & & & 1 & x_{1} \\ & & & & 1\end{array}\right)\right\}$.
Let $C=\left(\begin{array}{ccccc}1 & a_{1} & b_{1} & b_{2} & a_{2} \\ & 1 & c_{1} & c_{2} & d_{1} \\ & & 1 & & \lambda a_{1} \\ & & & 1 & a_{1} \\ & & & & \\ \hline\end{array}\right), C^{\prime}=\left(\begin{array}{ccccc}1 & a_{1}^{\prime} & b_{1}^{\prime} & b_{2}^{\prime} & a_{2}^{\prime} \\ & 1 & c_{1}^{\prime} & c_{2}^{\prime} & d_{1} \\ & & 1 & & \lambda a_{1}^{\prime} \\ & & & 1 & a_{1}^{\prime} \\ & & & & 1\end{array}\right)$
and let $X=\left(\begin{array}{ccccc}1 & x_{1} & y_{1} & y_{2} & x_{2} \\ & 1 & z_{1} & z_{2} & w_{1} \\ & & 1 & & \lambda x_{1} \\ & & & 1 & x_{1} \\ & & & & 1\end{array}\right)$ such that $X C=C^{\prime} X$. Equating $X C=C^{\prime} X$ gives
us $a_{1}^{\prime}=a_{1}, c_{1}^{\prime}=c_{1}$ and $c_{2}^{\prime}=c_{2}$, and the following bunch of equations:

$$
\begin{align*}
\left(\begin{array}{lll}
a_{1} & b_{1}+x_{1} c_{1} & b_{2}+x_{1} c_{2}
\end{array}\right) & =\left(\begin{array}{lll}
a_{1} & b_{1}^{\prime}+a_{1} z_{1} & b_{2}^{\prime}+a_{1} z_{2}
\end{array}\right) \tag{7.19}\\
d_{1}+\left(\lambda z_{1}+z_{2}\right) a_{1} & =d_{1}^{\prime}+\left(\lambda c_{1}+c_{2}\right) x_{1} \tag{7.20}\\
a_{2}+x_{1} d_{1}+\left(\lambda y_{1}+y_{2}\right) a_{1} & =a_{2}^{\prime}+\left(\lambda b_{1}^{\prime}+b_{2}^{\prime}\right) x_{1}+w_{1} a_{1} \tag{7.21}
\end{align*}
$$

There are two main cases here:
Case: $a_{1}=0$
When $c_{1}=c_{2}=0$, Equation 7.19 leads us to $b_{1}^{\prime}=b_{1}, b_{2}^{\prime}=b_{2}$, and from Equation 7.20 $d_{1}^{\prime}=d_{1}$. With these, Equation 7.21 becomes $a_{2}+x_{1} d_{1}=a_{2}^{\prime}+\left(\lambda b_{1}+b_{2}\right) x_{1}$.
When $d_{1}=\lambda b_{1}+b_{2}$, we get $a_{2}^{\prime}=a_{2}$. Thus C is reduced to $\left(\begin{array}{ccccc}1 & & b_{1} & b_{2} & a_{2} \\ & 1 & & & \lambda b_{1}+b_{2} \\ & & 1 & & \\ & & & 1 & \\ & & & & 1\end{array}\right)$,
and $Z_{U T_{A, B, C}\left(\mathbf{F}_{q}\right)}=Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A, B)$. Thus, (A, B, C) is of type $U N T_{2}$, and there are q^{3} such branches.

When $d_{1} \neq \lambda b_{1}+b_{2}$, we can choose x_{1} such that $a_{2}^{\prime}=0$. Thus C is reduced to $\left(\begin{array}{lllll}1 & & b_{1} & b_{2} & \\ & 1 & & & d_{1} \\ & & 1 & & \\ & & & 1 & \\ & & & & 1\end{array}\right)$, and $Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A, B, C)=\left(\begin{array}{ccccc}1 & & y_{1} & y_{2} & x_{2} \\ & 1 & z_{1} & z_{2} & w_{1} \\ & & 1 & & \\ & & & 1 & \\ & & & & 1\end{array}\right)$. Thus (A, B, C) is
of type R_{1}, and there are $q^{2}(q-1)$ such branches.

When $c_{1} \neq 0$, in Equation 7.19, we can choose x_{1} so that $b_{1}^{\prime}=0$. Thus on replacing b_{1} with $b_{1}^{\prime}=0$, we get $x_{1}=0$, and thus $b_{2}^{\prime}=b_{2}$. And Equation 7.20 reduces to $d_{1}^{\prime}=d_{1}$,
and Equation 7.21 boils down to $a_{2}^{\prime}=a_{2}$. C is reduced to $\left(\begin{array}{ccccc}1 & & & b_{2} & a_{2} \\ & 1 & c_{1} & c_{2} & d_{1} \\ & & 1 & & \\ & & & 1 & \\ & & & & \\ & & & & \end{array}\right)$, and $Z_{U T_{5}\left(\mathbf{F}_{q)}\right)}(A, B, C)=\left(\begin{array}{ccccc}1 & & y_{1} & y_{2} & x_{2} \\ & 1 & z_{1} & z_{2} & w_{1} \\ & & 1 & & \\ & & & 1 & \\ & & & & 1\end{array}\right) .(A, B, C)$ is thus of type R_{2}, and there are $(q-1) q^{4}$ such branches.

When $c_{1}=0$, and $c_{2} \neq 0$. In Equation 7.19, we get $b_{1}^{\prime}=b_{1}$, and choose x_{1} such that $b_{2}^{\prime}=0$. Hence on substituting b_{2} with $b_{2}^{\prime}=0$ and equating Equation 7.19, we get $x_{1}=0$. With this Equation 7.20 boils down to $d_{1}^{\prime}=d_{1}$, and Equation 7.21 boils down to $a_{2}^{\prime}=a_{2} . C$ is reduced to $\left(\begin{array}{ccccc}1 & & b_{1} & & a_{2} \\ & 1 & & c_{2} & d_{1} \\ & & 1 & & \\ & & & 1 & \\ & & & & 1\end{array}\right)$, and $Z(A, B, C)=\left(\begin{array}{ccccc}1 & & y_{1} & y_{2} & x_{2} \\ & 1 & z_{1} & z_{2} & w_{1} \\ & & 1 & & \\ & & & 1 & \\ & & & & 1\end{array}\right)$.
(A, B, C) is a branch of type R_{1}, and there are $q^{3}(q-1)$ such branches.
Case $a_{1} \neq 0$: In this case, in Equation 7.19, we choose z_{1} and z_{2} such that $b_{1}^{\prime}=0$ and $b_{2}^{\prime}=0$ respectively. Thus, on replacing b_{1} by $b_{1}^{\prime}=0$, and b_{2} by $b_{2}^{\prime}=0$ in Equation 7.19, and equating, we get $z_{1}=\frac{c_{1}}{a_{1}} x_{1}$ and $z_{2}=\frac{c_{2}}{a_{1}} x_{1}$. Putting these in Equation 7.20 leads us to $d_{1}+\left(\lambda \frac{c_{1}}{a_{1}} x_{1}+\frac{c_{2}}{a_{1}} x_{1}\right) a_{1}=d_{2}^{\prime}+\left(\lambda c_{1}+c_{2}\right) x_{1}$. Thus $d_{1}^{\prime}=d_{1}$.

With all this, Equation 7.21 boils down to $a_{2}+x_{1} d_{1}+\left(\lambda y_{1}+y_{2}\right) a_{1}=a_{2}^{\prime}+w_{1} a_{1}$.
Choose w_{1} so that $a_{2}^{\prime}=0$. Hence C is reduced to $\left(\begin{array}{ccccc}1 & a_{1} & & & \\ & 1 & c_{1} & c_{2} & d_{1} \\ & & 1 & & \lambda a_{1} \\ & & & 1 & a_{1} \\ & & & & 1\end{array}\right)$, and

$$
Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A, B)=\left(\begin{array}{ccccc}
1 & x_{1} & y_{1} & y_{2} & x_{2} \\
& 1 & \frac{c_{1}}{a_{1}} x_{1} & \frac{c_{2}}{a_{1}} x_{1} & \lambda y_{1}+y_{2}+\frac{d_{1}}{a_{1}} x_{1} \\
& & 1 & & \lambda x_{1} \\
& & & 1 & x_{1} \\
& & & 112 &
\end{array}\right) .
$$

Easy to check that the above centralizer subgroup is a commutative one, of size q^{4}. Thus (A, B, C) is of type R_{3}, and there are $(q-1) q^{3}$ such branches.

Adding up all the branches of type R_{1} gives us $q^{2}(q-1)+q^{3}(q-1)+q^{4}(q-1)=q^{5}-q^{2}$ branches of type R_{1}.

Proposition 7.18. The new type $U N T_{3}$ has q^{3} branches of type $U N T_{3}, q^{4}-q^{2}$ branches of type R_{2}, and $q^{4}-q^{3}$ branches of type R_{3}.

Proof. A commuting pair (A, B) of matrices in $U T_{5}\left(\mathbf{F}_{q}\right)$ of type $U N T_{3}$ has as its centralizer: $\left\{\left(\begin{array}{ccccc}1 & x_{1} & y_{1} & y_{2} & x_{2} \\ & 1 & \lambda_{1} x_{1} & z_{2} & w_{1} \\ & & 1 & \lambda_{2} x_{1} & \frac{\lambda_{2}}{\lambda_{1}} y_{1} \\ & & & 1 & x_{1} \\ & & & & 1\end{array}\right)\right\}$.
Let $C=\left(\begin{array}{ccccc}1 & a_{1} & b_{1} & b_{2} & a_{2} \\ & 1 & \lambda_{1} a_{1} & c_{2} & d_{1} \\ & & 1 & \lambda_{2} a_{1} & \frac{\lambda_{2}}{\lambda_{1}} b_{1} \\ & & & 1 & a_{1} \\ & & & & 1\end{array}\right)$, and $C^{\prime}=\left(\begin{array}{ccccc}1 & a_{1}^{\prime} & b_{1}^{\prime} & b_{2}^{\prime} & a_{2}^{\prime} \\ & 1 & \lambda_{1} a_{1}^{\prime} & c_{2}^{\prime} & d_{1}^{\prime} \\ & & 1 & \lambda_{2} a_{1}^{\prime} & \frac{\lambda_{2}}{\lambda_{1}} b_{1}^{\prime} \\ & & & 1 & a_{1}^{\prime} \\ & & & & 1\end{array}\right)=$ $X C X^{-1}$, where $X=\left(\begin{array}{ccccc}1 & x_{1} & y_{1} & y_{2} & x_{2} \\ & 1 & \lambda_{1} x_{1} & z_{2} & w_{1} \\ & & 1 & \lambda_{2} x_{1} & \frac{\lambda_{2}}{\lambda_{1}} y_{1} \\ & & & 1 & x_{1} \\ & & & & 1\end{array}\right)$. From $X C=C^{\prime} X$, we get $a_{1}^{\prime}=a_{1}$, $b_{1}^{\prime}=b_{1}, c_{2}^{\prime}=c_{2}$, and the following equations:

$$
\begin{align*}
b_{2}+x_{1} c_{2}+\lambda_{2} y_{1} a_{1} & =b_{2}^{\prime}+z_{2} a_{1}+\lambda_{2} x_{1} b_{1} \tag{7.22}\\
d_{1}+\lambda_{2} x_{1} b_{1}+z_{2} a_{1} & =d_{1}^{\prime}+\lambda_{2} y_{1} a_{1}+x_{1} c_{2} \tag{7.23}\\
a_{2}+x_{1} d_{1}+y_{2} a_{1} & =a_{2}^{\prime}+w_{1} a_{1}+x_{1} b_{2}^{\prime} . \tag{7.24}
\end{align*}
$$

Case $a_{1}=0$: Equation 7.22 becomes $b_{1}+x_{1} c_{2}=b_{1}^{\prime}+x_{1} \lambda_{2} b_{1}$. When $c_{2}=\lambda_{2} b_{1}$, then $b_{2}^{\prime}=$ b_{2}, and similarly in Equation 7.23, $d_{1}^{\prime}=d_{1}$. Here, if $b_{2}=d_{1}$, we get from Equation 7.24, $a_{2}^{\prime}=a_{2}$. Hence C is reduced to $\left(\begin{array}{cccc}1 & & b_{1} & b_{2} \\ & a_{2} \\ & 1 & & \lambda_{2} b_{1} \\ & b_{2} \\ & & 1 & \\ & & & \frac{\lambda_{2}}{\lambda_{1}} b_{1} \\ & & & 1\end{array}\right)$, and $Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A, B, C)=$
$Z_{U T_{5}\left(\mathbf{F}_{q)}\right)}(A, B) .(A, B, C)$ is a branch of type $U N T_{3}$, and there are q^{3} such branches.

When $b_{2} \neq d_{1}$, choose x_{1} such that $a_{2}^{\prime}=0 . C$ is reduced to

$$
\left(\begin{array}{cccc}
1 & & b_{1} & b_{2} \\
\\
& 1 & & \lambda_{2} b_{1} \\
\\
& & 1 & \\
& & & 1 \\
& d_{1} \\
& & & \\
\lambda_{1} b_{1} \\
& & & 1
\end{array}\right)
$$

and $Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A, B, C)=\left\{\left(\begin{array}{ccccc}1 & & y_{1} & y_{2} & x_{2} \\ & 1 & & z_{2} & w_{1} \\ & & 1 & & \frac{\lambda_{2}}{\lambda_{1}} y_{1} \\ & & & 1 & \\ & & & & 1\end{array}\right)\right\} .(A, B, C)$ is thus of type R_{2}, and
there are $q^{2}(q-1)$ such branches.
When $c_{2} \neq \lambda_{2} b_{1}$. In this case, in equation 7.22 itself, we choose x_{1} such that $b_{2}^{\prime}=0$. And on substituting b_{2} with 0 in this equation and equating, we get $x_{1}=0$. Thus, Equation 7.23 becomes $d_{1}^{\prime}=d_{1}$, and from Equation 7.24, we get $a_{2}^{\prime}=a_{2}$. Thus C is reduced
to ${ }^{1}$
$\begin{array}{ccc} & b_{1} & \\ 1 & & c_{2} \\ & 1 & \\ & & 1\end{array}$ $\left.\begin{array}{c}a_{2} \\ d_{1} \\ \frac{\lambda_{2}}{\lambda_{1}} b_{1} \\ 1\end{array}\right)$
$, B, C)=\left\{\begin{array}{l}1 \\ \end{array}\right.$
$\left.\left.\begin{array}{ccc}y_{1} & y_{2} & x_{2} \\ & z_{2} & w_{1} \\ 1 & & \frac{\lambda_{2}}{\lambda_{1}} y_{1} \\ & 1 & \\ & & 1\end{array}\right)\right\}$. This
too is a branch of type R_{2}, and there are $q^{3}(q-1)$.
Case $a_{1} \neq 0$: In Equation 7.22 choose z_{2} such that $b_{2}^{\prime}=0$. Thus, substituting b_{2} with $b_{2}^{\prime}=0$ in this equation, leads us to $z_{2}=\lambda_{2} y_{1}+\frac{\left(c_{2}-\lambda_{2} b_{1}\right)}{a_{1}} x_{1}$. With these Equation 7.23 becomes $d_{1}^{\prime}=d_{1}$. Thus Equation 7.24 becomes $a_{2}+x_{1} d_{1}+y_{2} a_{1}=a_{2}^{\prime}+w_{1} a_{1}$. Choose w_{1} such that $a_{2}^{\prime}=0$. Thus C is reduced to $\left(\begin{array}{cccccc}1 & a_{1} & b_{1} & & \\ & 1 & \lambda_{1} a_{1} & c_{2} & d_{1} \\ & & 1 & \lambda_{2} a_{1} & \frac{\lambda_{2}}{\lambda_{1}} b_{1} \\ & & & 1 & a_{1} \\ & & & & & 1\end{array}\right)$, and

$$
Z_{U T_{5}\left(\mathbf{F}_{q}\right)}(A, B, C)=\left\{\left(\begin{array}{ccccc}
1 & x_{1} & y_{1} & y_{2} & x_{2} \\
& 1 & \lambda_{1} x_{1} & \lambda_{2} y_{1}+\frac{\left(c_{2}-\lambda_{2} b_{1}\right)}{a_{1}} x_{1} & y_{2}+\frac{d_{1}}{a_{1}} x_{1} \\
& & 1 & \lambda_{2} x_{1} & \frac{\lambda_{2}}{\lambda_{1}} y_{1} \\
& & & 1 & x_{1} \\
& & & & 1
\end{array}\right)\right\} .
$$

By a routine check, one can see that this centralizer group is commutative. Thus we have a branch of type R_{3}, and there are $(q-1) q^{3}$ such branches.

Adding up the branches of type R_{2}, there is a total of $q^{2}(q-1)+q^{3}(q-1)=q^{4}-q^{2}$ branches of type R_{2}.

8. Commuting Probabilities

The number of simultaneous conjugacy classes of commuting k-tuples in $U T_{n}\left(\mathbf{F}_{q}\right)$ is denoted by $c_{U T}(n, k, q)$ and the same for $G T_{n}\left(\mathbf{F}_{q}\right)$ is denoted by $c_{G T}(n, k, q)$. From Lemma 7.1 [SS], it follows that $c_{G T}(n, k, q)=1 . B_{G T_{n}\left(\mathbf{F}_{q}\right)}^{k} \cdot e_{1}$ and $c_{U T}(n, k, q)=1 . B_{U T_{n}\left(\mathbf{F}_{q}\right)}^{k} \cdot e_{1}$ where $\mathbf{1}=\left(\begin{array}{llll}1 & 1 & \cdots & 1\end{array}\right)$, and $\mathbf{e}_{1}={ }^{t}\left(\begin{array}{lllll}1 & 0 & 0 & \cdots & 0\end{array}\right)$. We note that all of the branching matrices computed in this paper for triangular and unitriangular groups have entries polynomial in q with integer coefficients. Thus, $c_{U T}(n, k, q)$ for $n=3,4,5$ and $c_{G T}(n, k, q)$ for $n=2,3,4$ are polynomials in q with integer coefficients.

From Theorem 1.1 in [SS], for $k \geq 2$, and any finite group G, the probability that a k-tuple commutes is $c p_{k}(G)=\frac{c_{G}(k-1)}{|G|^{k-1}}=\frac{1 B_{G}^{k-1} \cdot e_{1}}{|G|^{k-1}}$. Now, that we have determined the branching matrix for the groups $G T_{i}\left(\mathbf{F}_{q}\right)$ for $i=2,3,4$, and $U T_{j}\left(\mathbf{F}_{q}\right)$ for $j=3,4,5$, for each of the groups, we will mention the commuting probabilities for $k \leq 5$. This computation is done using Sage [SA].

For the triangular groups we have:

k	$c p_{k}\left(G T_{2}\left(\mathbf{F}_{q}\right)\right)$	k	$c p_{k}\left(G T_{2}\left(\mathbf{F}_{q}\right)\right)$
2	$\frac{1}{q-1}$	4	$\frac{q^{2}}{q^{5}-2 q+4}$
			$q^{4}+3 q^{3}-q^{2}$
3	$\frac{q^{2}-q+2}{q^{4}-2 q^{3}+q^{2}}$	5	$\frac{q^{4}-3 q^{3}+7 q^{2}-3 q+2}{q^{8}-4 q^{7}+6 q^{6}-4 q^{5}+q^{4}}$

k	$c p_{k}\left(G T_{3}\left(\mathbf{F}_{q}\right)\right)$	k	$c p_{k}\left(G T_{3}\left(\mathbf{F}_{q}\right)\right)$
2	$\frac{q^{2}+q-1}{q^{3}(q-1)^{2}}$	4	$\frac{q^{3}-3 q^{4}+7 q^{3}-5 q^{2}+11 q+4}{q^{8}(q-1)^{6}}$
3	$\frac{q^{3}-q^{2}+q+5}{q^{5}(q-1)^{4}}$	5	$\frac{q^{7}-5 q^{6}+17 q^{5}-32 q^{4}+54 q^{3}-34 q^{2}+25 q+2}{q^{11}(q-1)^{8}}$

k	$c p_{k}\left(G T_{4}\left(\mathbf{F}_{q}\right)\right)$
2	$\frac{q^{3} 3+3 q^{2}-2 q-1}{q^{10}(q-1)^{3}}$
3	$\frac{12 q^{5}-52 q^{4}+116 q^{3}-97 q^{2}+63 q-37}{q^{20}(q-1)^{6}}$
4	$\frac{6 q^{8}-16 q^{7}+3 q^{6}+195 q^{5}-593 q^{4}+1105 q^{3}-1129 q^{2}+912 q-477}{q^{30}(q-1)^{9}}$
5	$\frac{7 q^{11}-32 q^{10}+122 q^{9}-192 q^{8}+342 q^{7}-714 q^{6}+2038 q^{5}-3954 q^{4}+6136 q^{3}-6304 q^{2}+4596 q-2213}{q^{40}(q-1)^{12}}$

In the case of unitriangular group we have:

Appendix A. Conjugacy classes of $G T_{4}\left(\mathbf{F}_{q}\right)$
The conjugacy classes for upper triangular group can be algorathmically computed following Belitskii's algorithm as described in [Ko] and in the appendix of [Bh]. We list them here for the convenience of reader and also to set the notation for types.

Class Representatives	Number of	$\begin{gathered} \text { Order of } \\ \text { Centralizer } \end{gathered}$	$\begin{gathered} \text { Name of } \\ \text { Type } \end{gathered}$
$a_{0} I_{4}, a_{0} \neq 0$	$(q-1)$	$(q-1)^{4} q^{6}$	C
$\left.\begin{array}{c} \left(\begin{array}{lll} a_{1}^{1} & \\ & & \\ & & a \\ & & a \end{array}\right),\left(\begin{array}{lll} a & a & \\ & a & \\ & & 1 \end{array}\right) \\ \\ \\ a \end{array}\right)$	$2(q-1)$	$(q-1)^{3} q^{4}$	A_{1}
$\begin{gathered} \left(\begin{array}{llll} a & & \\ & a & 1 \\ & a & \\ & a & a \end{array}\right) \\ a \neq 0 \end{gathered}$	$q-1$	$(q-1)^{3} q^{4}$	A_{1}^{\prime}
$\begin{gathered} \left(\begin{array}{lll} a & 1 \\ & 1 & \\ & & a \\ & & \end{array}\right),\left(\begin{array}{lll} a & a & \\ & a & 1 \\ & & a \\ & & \\ & & a \neq 0 \end{array}\right) \end{gathered}$	$2(q-1)$	$(q-1)^{3} q^{5}$	A_{2}
$\left(\begin{array}{lll}a & & 1 \\ & a & \\ & & a \\ & & \\ a\end{array}\right)$ $a \neq 0$	$q-1$	$(q-1)^{3} q^{6}$	A_{3}

$\begin{gathered} \left(\begin{array}{lll} a & 1 & \\ & a & 1 \\ & a & 1 \\ & a & a \end{array}\right) \\ a \neq 0 \end{gathered}$	$q-1$	$(q-1)^{2} q^{4}$	A_{4}
$\begin{gathered} \left(\begin{array}{lll} a & & 1 \\ & a & 1 \\ & a & \\ & a & a \end{array}\right) \\ a \neq 0 \end{gathered}$	$q-1$	$(q-1)^{2} q^{4}$	A_{5}
$\begin{gathered} \left(\begin{array}{ccc} a & 1 & 1 \\ & a & \\ & & 1 \\ & a & a \end{array}\right) \\ a \neq 0 \end{gathered}$	$q-1$	$(q-1)^{2} q^{5}$	A_{6}
$\begin{gathered} \left(\begin{array}{lll} a & 1 & \\ & a & 1 \\ & a & \\ & & a \end{array}\right),\left(\begin{array}{llll} a & & & \\ & a & 1 & \\ & & a & 1 \\ & & a \end{array}\right) \\ \\ \end{gathered}$	$2(q-1)$	$(q-1)^{2} q^{3}$	A_{7}
$\begin{gathered} \left(\begin{array}{lll} a & 1 & \\ & a & 1 \\ & & a \\ & & a \end{array}\right),\left(\begin{array}{lll} a & 1 & 1 \\ & a & \\ & & 1 \\ & & a \end{array}\right) \\ \\ \end{gathered}$	$q-1$	$(q-1)^{2} q^{4}$	A_{8}
$\begin{gathered} \left(\begin{array}{lll} a & 1 & 1 \\ & a & \\ & a & 1 \\ & a & a \end{array}\right) \\ a \neq 0 \end{gathered}$	$q-1$	$q(q-1) q^{4}$	A_{9}
$\begin{gathered} \left(\begin{array}{lll} a & & \\ & a & \\ & b & \\ & & b \end{array}\right),\left(\begin{array}{lll} a & & \\ & b & \\ & a & \\ & & b \end{array}\right) \\ \\ \\ \\ \\ \\ \\ \end{gathered}$	$3(q-1)(q-2)$	$(q-1)^{4} q^{2}$	B_{1}
	$4(q-1)(q-2)$	$(q-1)^{4} q^{3}$	B_{2}
$\left(\begin{array}{ccc}a & 1 & \\ & a & \\ & & \\ a & \\ a & & b \\ & a & 1 \\ & a & \\ & & b\end{array}\right)$, and 3 more	$8(q-1)(q-2)$	$(q-1)^{3} q^{2}$	B_{3}
	$4(q-1)(q-2)$	$(q-1)^{3} q^{3}$	B_{4}
$\left(\begin{array}{cc}a & 1 \\ & a \\ & b \\ & \\ & \\ & \\ & \\ & \\ \end{array}\right)$, and 5 more; $a \neq b$	$6(q-1)(q-2)$	$(q-1)^{3} q^{2}$	B_{5}
$\left(\begin{array}{cc}a & \\ & \\ & \\ & \\ & \\ & \\ & \\ & a \neq b \neq c \neq a\end{array}\right)$, and 5 more;	$6(q-1)(q-2)(q-3)$	$(q-1)^{4} q$	B_{6}
The Regular types			

$\begin{gathered} \left(\begin{array}{ccc} a & 1 & \\ & a & 1 \\ & a & 1 \\ & a & a \end{array}\right), \\ a \neq 0 \end{gathered}$	$q-1$	$(q-1) q^{3}$	R_{1}
$\left(\begin{array}{ccc}a & 1 & \\ & a & \\ & & a \\ & & \\ b\end{array}\right)$, and 3 more; $a \neq b$	$4(q-1)(q-2)$	$(q-1)^{2} q^{2}$	R_{2}
$\begin{gathered} \left(\begin{array}{lll} a & 1 & \\ & a & \\ & b & 1 \\ & b \end{array}\right),\left(\begin{array}{lll} a & 1 & \\ & b & \\ & & 1 \\ & a & b \end{array}\right) \\ \left(\begin{array}{lll} & & \\ & & 1 \\ & & b \\ & b & a \end{array}\right) ; a \neq b \end{gathered}$	$3(q-1)(q-2)$	$(q-1)^{2} q^{2}$	R_{3}
$\left(\begin{array}{cc}a & 1 \\ & a \\ & \\ & b \\ & \\ & \\ & \end{array}\right)$, and 5 others; $a \neq b \neq c \neq a$	$6(q-1)(q-2)(q-3)$	$(q-1)^{3} q$	R_{4}
$\begin{gathered} \left(\begin{array}{cc} a & b \\ & \\ & \\ & \\ & \\ a \neq b \neq c \end{array}\right), \\ a, b, c \neq a \end{gathered}$	$\begin{gathered} (q-1) \cdot(q-2) . \\ (q-3) \cdot q-4) \end{gathered}$	$(q-1)^{4}$	R_{5}

Appendix B. Conjugacy classes of $U T_{4}\left(\mathbf{F}_{q}\right)$ and $U T_{5}\left(\mathbf{F}_{q}\right)$
Understanding conjugacy classes in unitriangular group is a challenging problem. We refer a reader to [VA1, VA2] for the reference. We list down the same for $U T_{4}\left(\mathbf{F}_{q}\right)$ and $U T_{5}\left(\mathbf{F}_{q}\right)$, what we need for our purpose.

Class Representatives	Number of Classes	Centralizer size in $U T_{4}\left(\mathbf{F}_{q}\right)$	Name of Type
$\left(\begin{array}{llll}1 & & \\ & 1 & \\ & & 1 & \\ & & 1\end{array}\right), a \in \mathbf{F}_{q}$	q	q^{6}	C
$\left(\begin{array}{ccc} 1 & a & \\ & & a \\ & & \\ & & 1 \end{array}\right),\left(\begin{array}{lll} 1 & & \\ & & \\ & & a \\ & & 1 \\ & & a \in \mathbf{F}_{q}^{*} \\ & & \\ \hline \end{array}\right),$	$(q-1),(q-1)$	q^{5}	A_{1}
$\left(\begin{array}{lll}1 & & a \\ & & \\ & & b \\ & 1 & \\ & & \end{array}\right), a, b \in \mathbf{F}_{q}^{*}$	$(q-1)^{2}$	q^{5}	A_{2}
	$\begin{gathered} (q-1),(q-1), \\ (q-1)^{2},(q-1)^{2}, \\ (q-1)^{2},(q-1)^{3} \end{gathered}$	q^{4}	A_{3}

	$(q-1),(q-1)^{2}$	q^{4}	R_{1}
	$\begin{gathered} (q-1)^{2},(q-1)^{2}, \\ (q-1)^{3} \end{gathered}$	q^{3}	R_{2}

Class Representatives	Number of Classes	Order of Centralizer in $U T_{5}\left(\mathbf{F}_{q}\right)$	Name of Type
$\left(\begin{array}{lllll}1 & & & \\ & 1 & & \\ & & & \\ & & 1 & \\ & & & \end{array}\right), a \in \mathbf{F}_{q}$	q	q^{10}	C
$\left(\begin{array}{lll} \left(\begin{array}{llll} 1 & & a \\ & 1 & a \\ & & 1 & \\ & & & \\ & & & 1 \end{array}\right),\left(\begin{array}{lllll} 1 & & & & \\ & & & & \\ & & & & \\ & & & 1 & \\ & & & a \in \mathbf{F}_{q}^{*} \\ & & & \end{array}\right) \\ \hline \end{array}\right.$	$(q-1),(q-1)$	q^{9}	A_{1}
$\begin{gathered} \left(\begin{array}{llll} 1 & & & \\ & 1 & a & \\ & & 1 & 1 \\ & & & 1 \end{array}\right),\left(\begin{array}{llll} q & 1 & & \\ & 1 & & a \\ & & & a \\ & & & 1 \\ & & & a, b \in \mathbf{F}_{q}^{*} \\ & & & \\ \hline \end{array}\right) \end{gathered}$	$(q-1),(q-1)^{2}$	q^{8}	A_{2}
	$\begin{gathered} (q-1),(q-1)^{2}, \\ (q-1),(q-1)^{2} \end{gathered}$	q^{8}	A_{3}
	$\begin{gathered} (q-1),(q-1)^{2}, \\ (q-1),(q-1)^{2} \end{gathered}$	q^{7}	A_{4}
	$\begin{gathered} (q-1),(q-1)^{2}, \\ (q-1)^{2},(q-1)^{2}, \\ (q-1)^{3},(q-1), \\ (q-1)^{2},(q-1)^{2}, \\ (q-1)^{3} \end{gathered}$	q^{7}	A_{5}

	$\begin{gathered} (q-1)^{3},(q-1)^{3}, \\ (q-1)^{4},(q-1)^{3} \\ (q-1)^{4} \end{gathered}$	q^{5}	D_{2}
	$(q-1)^{2},(q-1)^{2}$	q^{6}	R_{1}
$\begin{gathered} \left(\begin{array}{cccc} 1 & & & \\ & 1 & a & \\ & 1 & b \\ & & 1 & 1 \end{array}\right),\left(\begin{array}{llll} 1 & & & \\ & 1 & a & c \\ & 1 & b \\ & & b & 1 \\ & & a, b, c \in \mathbf{F}_{q}^{*} & \\ \hline \end{array}\right) \\ \hline \end{gathered}$	$(q-1)^{2},(q-1)^{3}$	q^{5}	R_{2}
	$\begin{gathered} (q-1)^{3},(q-1)^{3} \\ (q-1)^{4} \end{gathered}$	q^{4}	R_{3}

[Bh] Bhunia, Sushil, "Conjugacy classes of centralizers in the group of upper triangular matrices", Journal of algebra and its applications, vol 19, no. 1 (2020).
[GR] Guralnick, Robert M.; Robinson, Geoffrey R., "On the commuting probability in finite groups", J. Algebra 300 (2006), no. 2, 509-528.
[Ko] Kobal, Damjan, "Belitskii's canonical form for 5×5 upper triangular matrices under upper triangular similarity", Linear Algebra Appl. 403 (2005), 178-182.
[KSS] Kaur, Dilpreet; Sharma, Uday Bhaskar; Singh, Anupam, "Branching Rules and commuting probabilities of triangular and unitriangular Matrices", Arxiv:????
[SA] SageMath, the Sage Mathematics Software System (Version 8.3), The Sage Developers, 2019, https://www.sagemath.org.
[Sh1] Sharma, Uday Bhaskar, "Simultaneous Similairty Classes of Commuting Matrices over a Finite Field", Linear Algebra and its Applications, 501 (2016) 48-97.
[SS] Sharma, Uday Bhaskar; Singh, Anupam, "Branching Rules for Unitary and Symplectic Matrices", Communications in Algebra (published online, March 2020)., DOI: 10.1080/00927872.2020.1726366
[SS2] Sharma, Uday Bhaskar; Singh, Anupam, "Commuting probability and simultaneous conjugacy classes of commuting tuples in a group", arXiv: 2002.01253.
[VA1] Vera López, Antonio; Arregi, Jesus Maria, "Conjugacy classes in Sylow p-subgroups of $G L(n, q) "$, J. Algebra 152 (1992), no. 1, 1-19.
[VA2] Vera-López, A.; Arregi, J. M., "Conjugacy classes in Sylow p-subgroups of $G L(n, q)$. II", Proc. Roy. Soc. Edinburgh Sect. A 119 (1991), no. 3-4, 343-346.
E-mail address: dilpreetmaths@gmail.com
Department of Mathematics, Indian Institute of Technology (IIT) Jodhpur, NH 65, Surpura Bypass Rd, Karwar, Rajasthan 342037

E-mail address: udaybsharmaster@gmail.com
Tata Institute of Fundamental Research, Dr. Homi Bhabha Road, Navy Nagar, Colaba, Mumbai 400005, India

E-mail address: anupamk18@gmail.com
Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road Pashan, Pune 411008, India

[^0]: 2010 Mathematics Subject Classification. 05A05,20G40,20E45.
 Key words and phrases. Triangular group, Unitriangular group, Commuting tuples of matrices, Branching rules, Commuting probability.

 The third named author would like to acknowledge support of SERB grant CRG/2019/000271 during this project.

