Header menu link for other important links
On the estimation and control of welding distortion of guide blade carrier for a 660 MW turbine by using inherent strain method
A. Vishvesha, , M.M. Mahapatra, R.S. Mulik
Published in Korean Society of Steel Construction
Volume: 17
Issue: 1
Pages: 53 - 63
While predicting the welding distortion for a complex welded structure like the guide blade carrier assembly of power generation turbine, the traditional thermo-mechanical models commonly utilized for geometrically simple welded butt and T joints may not be adequate. For large and complex welded structures,the thermo-mechanical elasto-plastic analysis can be computationally prohibitive. Other than simplistic butt and T joints, the aforementioned distortion prediction technique is not so suitable to provide reliable results when applied to large complex 3-D welded structures. Hence, inherent strain method is proposed here to predict distortion in an outer ringof GBC (Guide Blade Carrier) of a steam turbine. Such welded outer rings of GBC are large welded structures having many welded joints of different weld geometries at several planes. In the present study, inherent strain based technique was utilized for the aforementioned welded structure in elastic finite element analysis for the accurate prediction of 3-D distortion patterns with reduced computational time. The predicted and measured values of 3-D distortions of GBC were observed to be in good agreement with the ones provided from the shop floor, indicating the adequacy of inherent strain based method for the prediction of welding distortion in large and complex welded structures. As part of this investigation, a suitable welding fixture was also designed and welding sequence was modified, which were verified through inherent stain method to aid in minimizing the distortion of welded GBC. © 2017, Korean Society of Steel Construction and Springer-Verlag Berlin Heidelberg.
About the journal
JournalInternational Journal of Steel Structures
PublisherKorean Society of Steel Construction