Authenticating fingerphoto images captured using a smartphone camera, provide a good alternate solution in place of traditional pin or pattern based approaches. There are multiple challenges associated with fingerphoto authentication such as background variations, environmental illumination, estimating finger position, and camera resolution. In this research, we propose a novel ScatNet feature based fingerphoto matching approach. Effective fingerphoto segmentation and enhancement are performed to aid the matching process and to attenuate the effect of capture variations. Further, we propose and create a publicly available smartphone fingerphoto database having three different subsets addressing the challenges of environmental illumination and background, along with their corresponding live scan fingerprints. Experimental results show improved performance across multiple challenges present in the database. © 2015 IEEE.