The relative aging is an important notion which is useful to measure how a system ages relative to another one. Among the existing stochastic orders, there are two important orders describing the relative aging of two systems, namely, aging faster orders in the cumulative hazard and the cumulative reversed hazard rate functions. In this paper, we give some sufficient conditions under which one coherent system ages faster than another one with respect to the aforementioned stochastic orders. Further, we show that the proposed sufficient conditions are satisfied for k-out-of-n systems. Moreover, some numerical examples are given to illustrate the applications of proposed results. Copyright © Cambridge University Press 2020.