The advent of near infrared imagery and it's applications in face recognition has instigated research in cross spectral (visible to near infrared) matching. Existing research has focused on extracting textural features including variants of histogram of oriented gradients. This paper focuses on studying the effectiveness of these features for cross spectral face recognition. On NIR-VIS-2.0 cross spectral face database, three HOG variants are analyzed along with dimensionality reduction approaches and linear discriminant analysis. The results demonstrate that DSIFT with subspace LDA outperforms a commercial matcher and other HOG variants by at least 15%. We also observe that histogram of oriented gradient features are able to encode similar facial features across spectrums. © 2014 IEEE.