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The dynamical encirclement around a second order exceptional point (EP) and corresponding chirality

driven nonadiabatic modal dynamics have attracted enormous attention in the topological study of various non-

Hermitian systems. However, dynamical encirclement around multiple second-order EPs in a multi-state system

is yet to be explored. Here, exploiting an exclusive design of a planar gain-loss assisted three-mode supported

optical waveguide with local Kerr-nonlinearity, we encounter multiple second-order EPs. Judiciously, choosing

a specific parameter space by varying the unbalanced gain-loss profile, we encircle multiple EPs simultaneously,

and explore the beam-dynamics toward corresponding chiral or non-chiral aspects of the device. While prop-

agating through the designed waveguide, three coupled modes are collapsed into a specific dominating mode,

owing to corresponding nonadiabatic corrections around multiple EPs. Even in the absence of chirality, here,

the same amount of focusing and de-focusing type nonlinearity gives different dominating output, irrespective

of the choice of inputs, for the same topological structure of the waveguide. This exclusive topologically robust

compact scheme of nonlinearity induced asymmetric and non-chiral light dynamics should provide a promising

opportunity to switch or retrieve a selective mode from a multi-mode signal in integrated devices.

Exhibiting Exceptional Points (EPs) is a nontrivial topolog-

ical feature of open systems [1] that have been substantially

studied theoretically [2, 3] as well as experimentally [4] in al-

most all branches of non-Hermitian physics [5]. Especially in

the topological photonics domain, using the optical gain-loss

as non conservative ingredients [6–10], EPs have widely con-

tributed to meet a wide range of benchmark applications like,

asymmetric mode switching/conversion [7, 8], lasing and anti-

lasing [9], extreme enhancement in sensing [11], optical iso-

lation with enhanced nonreciprocity [12], etc. While an open

system approaches an EP in parameter plane, the coupled

eigenvalues coalesce in complex eigenvalue-plane; and simul-

taneously, the corresponding eigenvectors lose their identities

and become self-orthogonal [1, 2]. A stroboscopic parametric

encirclement enclosing a second order EP results in adiabatic

flipping between a pair of coupled eigenmodes [4–7] with an

accumulation of Berry phase [3]. In this context successive

state-flipping in a multi-state system can be observed by en-

circling a higher-order EP [13, 14] or multiple second-order

EPs [15, 16] in the system parameter space. A higher-order

EP can be realized with coalescence of more than two cou-

pled states [13, 14], however, there are several investigations

where similar unconventional physical effects associated with

a higher-order EP have been realized by winding around mul-

tiple second-order EPs [15–17].

Instead of stroboscopic encirclement around a second order

EP, if we consider a time (or length-scale) dependent para-

metric variation to encircle the EP dynamically, then adia-

baticity breaks down during state-evolutions [18] in the sense

that a clockwise and an anticlockwise parametric rotation re-

sults in different dominating state at the output, irrespective of

the choice of the input state [7, 8]. This chiral behavior due

to the average effective loss difference between the coupled

states during evolutions yields an asymmetric state-transfer

phenomenon in practice [7, 8]. Now, to consider a higher-
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order system, a natural question to be raised that whether the

chiral property maintained for a second order EP connecting

two eigenstates in the presence of other noninteracting states

and again what would be the chiral aspect of the device if more

than two states are mutually interacting in the vicinity multiple

second-order EPs with proper parameter manipulation. In this

context, the state-dynamics during the dynamical parametric

encirclement around multiple second-order EPs or an higher-

order EP in a multi-state system is yet to be explored. Beyond

the already reported dual-mode systems [7, 8], it should be

quite interesting and more compact from feasibility point-of-

view in integrated devices, if it is possible to switch or retrieve

a selective mode using few-mode or multi-mode systems.

Here, to address the highlighted issues, we investigate in

a gain-loss assisted three-mode supported planar waveguide

structure with local Kerr-nonlinearity. A particular topolog-

ical structure of the waveguide with proper gain-loss varia-

tion has been judiciously chosen to modulate the interactions

between the three supported modes. Initially, tuning the un-

balanced gain-loss profile in the absence of nonlinearity, we

encounter an EP between two coupled modes, keeping the

third one unaffected, and dynamically encircling the identi-

fied EP, we study the chiral aspect of the device. In this let-

ter, we establish the immutable chiral behavior of the device

in the scene that depending on the encircling direction and

corresponding EP-aided nonadiabatic corrections, a specific

dominating mode from the pair of coupled modes survives, in

simultaneous presence of the noninteracting mode. Now, with

the onset of the nonlinearity in the optical medium, the pre-

viously unaffected mode is supposed to interact with the rest

of the coupled modes. Simultaneously, varying the gain-loss

profile, we encounter multiple second-order EPs to connect

three coupled modes analytically. In this context, nonchi-

ral behavior of three interacting eigenstates around multiple

second-order EPs or a higher order EP was predicted ana-

lytically in a previous work [19]. Now, simultaneously en-

closing at least two EPs inside the dynamical parametric loop,

we study the dynamics of the coupled eigenmodes. Here, we

have shown that regardless of the choice of input mode, all

ar
X

iv
:1

90
7.

08
43

7v
1 

 [
ph

ys
ic

s.
op

tic
s]

  1
9 

Ju
l 2

01
9



2

of them are collapsed into a specific dominating mode, and

most importantly, the chirality of the device is destroyed. An

analytical model to describe this anomalous mode-collapsing

phenomenon has been developed. Now, we exclusively in-

vestigate and report the influence of nonlinearity on the nona-

diabatic mode-conversions around multiple EPs and establish

that even in the absence of chirality, the same amount of focus-

ing and de-focusing nonlinearity will lead to different domi-

nating mode at the output.

To mimic a non-Hermitian system, as shown in Fig. 1(a),

we consider a step-index planar optical waveguide, having a

core and a cladding with refractive indices nh = 1.5 and

nl = 1.46, respectively. We normalize the operating fre-

quency ω = 1 and set the total width W = 40λ/π = 80 and

operating length L = 15× 103 in a dimensionless unit. To in-

troduce non-Hermiticity in the passive waveguide, we impose

a transverse unbalanced gain-loss profile in the following way.

n(x) =











nh − iγ, −W/6 ≤ x ≤ 0

nh + iτγ, 0 ≤ x ≤W/6

nl + iγ, W/6 ≤ |x| ≤W/2.

(1)

Eq. 1 represents the overall refractive index profile for a

specific cross-section of the waveguide, as shown in the up-

per panel of Fig. 1(b); where two independent parameters

γ and τ represent gain-coefficient and loss-to-gain ratio, re-

spectively. Obeying Kramers-Kronig causality relation at a

single operating frequency [20], we can independently tune

γ and τ along the longitudinal direction to modulate overall

non-Hermiticity. For the chosen parameter set, the waveg-

uide hosts three quasi-guided linearly polarized modes, as

shown in the lower panel of Fig. 1(b), that are LP01, LP11

and LP02. In this paper we depict these modes as ψj with

j = 1, 2, 3, respectively, and compute the corresponding prop-

agation constants βj (j = 1, 2, 3) using the scalar modal equa-

tion [∂2x + n2(x)ω2 − β2]ψ(x) = 0. To control the inter-

actions between the supported modes, in addition with op-

tical gain-loss, we introduce local Kerr-nonlinearity having

the form ∆nNL(x, z) = σn2I (n2 → nonlinear-coefficient,

I → signal-intensity and σ = ±1 for focusing and de-

focusing nonlinearity, respectively); where actual nonlinearity

FIG. 1. Waveguide design: (a) Schematic of the designed optical

waveguide with transverse x-axis (considering propagation along z-

axis). (b) (Upper panel) Transverse refractive index profile n(x)
showing Re(n) (solid blue line) and Im(n) a specific γ = 0.005
and τ = 3.45 (dotted brown line). (Lower panel) Normalized field-

intensity profiles of the supported modes ψj (j = 1, 2, 3).

FIG. 2. Dynamical EP-encirclement: (a) Chosen topological struc-

ture of the waveguide with simultaneous variation of γ and τ around

two embedded EPs. Here, EP(2) appears inside the loop only in the

presence of nonlinearity. In absence of nonlinearity, the loop en-

closes only EP(1). (b) Length-dependent variation of Im(n) after

mapping the chosen parameter space as shown in (a).

level is quantified in the form of (∆nNL/∆n) × 100% with

∆n = (nh − nl).
To encounter a second order EP between two coupled

modes, we identify the transition between two topologically

dissimilar avoided resonance crossing (ARC) phenomena be-

tween the β-values of the corresponding modes with cross-

ing/anticrossing in Re[β] and Im[β] in the vicinity of a par-

ticular singular point [6, 7]. Now, in absence of nonlinearity,

varying γ within the range from 0 to 0.01, we track the dynam-

ics of βj (j = 1, 2, 3) for different τ values and numerically

identify an EP at (γEP = 0.0017, τEP = 3.356) (say, EP(1),

as indicated in Fig. 2(a)), where ψ1 and ψ2 are analytically

connected, however, ψ3 remains unaffected. To encircle the

identified EP dynamically, we choose an enclosed parametric

loop with a length-dependent distribution of γ and τ following

the equations given by

γ(φ) = γ0 sin

[

πL

z

]

; τ(φ) = τEP + a sin

[

2πL

z

]

. (2)

Here, γ0 and a are two characteristics parameters; where to

enclose the EP properly, we have to consider γ0 > γEP and

a > 0. The shape of the parametric loop in (γ, τ )-plane

has been shown in Fig. 2(a) for a chosen γ0 = 0.007 and

a = 0.12. The corresponding distribution of the Im[n(x, z)]
has been shown in Fig. 2(b). According to the chosen shape

of the parameter space in (γ, τ )-plane, for both z = 0 and

z = L, γ must be equal to 0. Thus the complete profile

of Im[n(x, z)] from z = 0 to z = L perfectly encloses the

EP dynamically, and at the input and output interface, we can

get the passive modes, avoiding any loss-dominated modes.

Here, one of two different directions of propagation indicates

clockwise encirclement and the other indicates anticlockwise

encirclement. Here, the propagation of the modes through

the waveguide should follow the time dependent Schrödinger

equation (TDSE) using z as the time axis. Considering parax-

ial approximation and the variation of Im(n) within adia-

batic limit, we use scalar beam-propagation to solve the equa-

tion 2iω∂zψ(x, z) = −[∂2x + ∆n2(x, z)ω2]ψ(x, z) (with

∆n2(x, z) ≡ n2(x, z)−n2
l ) to study the modal propagations.

Now, following dynamical encirclement scheme as de-

scribed in Fig. 2, we study the beam propagations of ψj (j =
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1, 2, 3) that have been shown in Fig. 3. To implement a

clockwise encirclement scheme, the light has been launched

at z = 0 as can be seen in Fig. 3(a). Here, both ψ1 and

ψ2 associated with EP(1) are essentially converted to ψ2 at

z = L. Thus, there is one non-adiabatic transition (NAT)

corresponding to ψ2. Interestingly, ψ3 is not affected by the

presence of EP(1) and retains as ψ3 at z = L. Now, launch-

ing the light at z = L, we implement anticlockwise encir-

clement scheme; corresponding beam propagation results are

shown in Fig. 3(b). Here, ψ1 follow a NAT, ψ2 is adiabat-

ically converted to ψ1 at z = 0, however, ψ3 remains un-

affected. In Fig. 3(c), we have shown a comparative study

among the output field intensities under different launching

conditions considered for common excited field intensities at

the input (shown in Fig. 3(c.1)). While encircling the EP in

the clockwise direction, we get the combination of ψ2 and ψ3

at the output; corresponding output field intensities are shown

in Fig. 3(c.2). On the other hand, while encircling the EP in

the anticlockwise direction, the device delivers the combina-

tion of ψ1 and ψ3 at the output; corresponding output field

intensities are shown in Fig. 3(c.3). Thus, owing to the break-

down in adiabaticity during evolutions of the coupled modes,

the chiral transmission behavior is evident for dynamical en-

circlement scheme enclosing only EP(1), even in the presence

of non-interacting ψ3. Here, as the parametric loop encloses

only EP(1), the overall loss distribution usually affects the cor-

responding coupled modes ψ1 and ψ2, however, not ψ3; and

during transmission, one of the coupled modes that evolves

with higher average loss in comparison to other behaves nona-

diabatically. For a dual-mode system, an analytical treatment

FIG. 3. Beam propagation simulation results in absence of non-

linearity: (a) Modal propagations of ψj (j = 1, 2, 3) with dynam-

ical encirclement of EP(1) in clockwise direction showing adiabatic

conversion of ψ1 → ψ2 and nonadiabatic evolution of ψ2 (→ ψ2).
(b) Nonadiabatic evolution of ψ1 (→ ψ1) and adiabatic conversion

of ψ2 → ψ1, while encircling the EP(1) in anticlockwise direction.

For both (a) and (b) ψ3 remains unaffected. (c) (c.1) Supported field

intensities. (c.2) Output field intensities at z = L for clockwise EP-

encirclement process (considering input at z = 0). (c.2) Output field

intensities at z = 0 for anticlockwise EP-encirclement process (con-

sidering input at z = L). We re-normalize the modal intensities at

each z for clear visualization and hence the overall intensity varia-

tions are essentially scaled.

behind such nonadiabatic modal dynamics around an EP has

been established in Ref. [7, 18].

Above described investigations have been carried out in the

absence of nonlinearity, when ψ1 and ψ2 are interacting with

the simultaneous presence of noninteracting ψ3. Now, with

the onset of nonlinearity up to 5%, we further investigate the

dynamics of the eigenmodes, where we observe that once we

reach 1.2% nonlinearity, all three modes start interacting mu-

tually. For convenience, we introduce 2.5% nonlinearity in

the spatial index distribution of the waveguide; and study-

ing the mutual interactions and corresponding ARCs between

βj (j = 1, 2, 3), we encounter multiple second-order EPs.

In addition with EP(1) (as described in previous), the waveg-

uide hosts another such a second-order EP in (γ, τ )-plane at

∼ (0.0051, 3.452) (say, EP(2)) in the presence of nonlinearity.

Here, simultaneous presence of EP(1) and EP(2) analytically

connects all the three supported modes ψj (j = 1, 2, 3).

We dynamically encircle both EP(1) and EP(2) simultane-

ously inside the length-dependent parametric loop shown in

Fig. 2, and perform the beam propagation results in Fig. 4.

Essentially, we fix the topological structure of the waveguide

in such a way that we can consider both the cases, i.e., with

and without nonlinearity, given that only in the presence of

chosen nonlinearity, ψ3 interacts, but in the absence of non-

linearity, ψ3 behaves as noninteracting state and accordingly

EP(2) disappears. Now, we choose σ = +1 to consider focus-

ing nonlinearity (FN), and considering the light propagation

from z = 0 to z = L, we implement a clockwise encirclement

scheme in Fig. 4(a). Here, this is evident that all the three in-

teracting modes have been collapsed in ψ2, given that ψ1 and

ψ3 evolve adiabatically and converted to ψ2, and ψ2 evolves

nonadiabatically and retains itself. Now, even we change the

direction of light propagation to consider anticlockwise en-

circlement scheme, we get similar modal dynamics as can be

seen in Fig. 4(b). Thus, the results, as shown in Fig. 4(a)

and (b), establish a new nonchiral behavior in modal dynam-

ics for three interacting modes around multiple second-order

EPs. Now, in the absence of chirality, we can switch or re-

trieve a different mode rather than ψ2. Considering σ = −1,

we consider same amount of de-focusing nonlinearity (DFN)

and study the dynamics of ψj (j = 1, 2, 3) in Fig. 4(c) for

a clockwise encirclement along the same parametric loop de-

scribed in Fig. 2. As can be seen in Fig. 4(c), all the coupled

modes are collapsed in ψ1 at z = L, owing to adiabatic evo-

lutions of ψ2 and ψ3, and nonadiabatic evolution of ψ1. In the

presence of de-focusing nonlinearity, the nonchiral behavior

in modal dynamics can also be observed by considering the

anticlockwise encirclement scheme. In Fig. 4(d), a compara-

tive study has been presented where we have shown the output

field intensities under different launching conditions consid-

ered in the presence of nonlinearity. The commonly excited

field intensities (normalized) at the input have been shown in

Fig. 4(d.1). Figs. 4(d.2) and (d.3) show the normalized output

field intensities for clockwise and anticlockwise encirclement,

respectively, in the presence of FN, whereas Fig. 4(d.4) shows

the same for clockwise encirclement in the presence of DFN.

This new and anomalous dynamics of the three interacting

modes in presence of multiple EPs can be analytically treated
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FIG. 4. Beam propagation simulation results in presence nonlin-

earity: (a) In presence of focusing nonlinearity (FN), the propaga-

tions of ψj (j = 1, 2, 3) following dynamical encirclement around

two identified EPs (EP(1) and EP(2)) in clockwise direction where

all the modes are collapsed to ψ2. (b) Similar propagation character-

istic of ψj (→ ψ2) showing the nonchiral behavior, while both the

EPs have been dynamically encircled in the anticlockwise direction.

(c) Propagation characteristic of ψj following a clockwise multiple

EPs-encirclement process, however, in the presence of de-focusing

nonlinearity (DFN) in the optical medium where all the modes are

collapsed to ψ1. (c) (c.1) Supported field intensities. In the pres-

ence of FN, the output field intensities (c.2) for clockwise and (c.3)

anticlockwise encirclement process. (c.4) In the presence of DFN,

the output field intensities, while, multiple EPs are encircled in the

clockwise direction.

as follows. For intense, consider the 3 × 3 Hamiltonian H
corresponding to the designed waveguide depends on three

time dependent parameters µj(t) (for j = 1, 2, 3; analogous

to γ, τ and ∆nNL). Here, under adiabatic limit, the evalu-

ations of the eigenfunctions of H follow TDSE. To present

a generic mathematics behind nonadiabatic dynamics during

conversion between two eigenmodes, we consider the con-

versions between ψad
m and ψad

n with eigenvalues βad
m and βad

n ;

where for our three mode supported waveguide, we can con-

sider (m,n) ∈ {1, 2, 3}, m 6= n. The corresponding dynami-

cal nonadiabatic correction terms around multiple EPs can be

written as

ΩNA
m→n = ϑm→n exp

{

−i

∮ T

0

∆βad
m,n[µj(t)]dt

}

, (3a)

ΩNA
n→m = ϑn→m exp

{

+i

∮ T

0

∆βad
m,n[µj(t)]dt

}

; (3b)

with

ϑm→n =

〈

ψad
m[µj(t)]

∣

∣

∣

∣

∣

∣

3
∑

j=1

µ̇j

∂

∂µj

∣

∣

∣

∣

∣

∣

ψad
n [µj(t)]

〉

, (4a)

ϑn→m =

〈

ψad
n [µj(t)]

∣

∣

∣

∣

∣

∣

3
∑

j=1

µ̇j

∂

∂µj

∣

∣

∣

∣

∣

∣

ψad
m[µj(t)]

〉

, (4b)

and ∆βad
m,n[µj(t)] = βad

m[µj(t)]− βad
n [µj(t)]

≡ Re[∆βad
m,n[µj(t)]]− i∆γad

m,n[µj(t)]. (4c)

In Eqs. 3 and 4, the suffixes m → n and n → m indicate

the conversions
∣

∣ψad
m

〉

→
∣

∣ψad
n

〉

and vice-versa, respectively.

In Eq. 3, T is the EP-encirclement duration and in Eq. 4c,
∣

∣∆γad
m,n

∣

∣ represents the relative gain between two considering

modes. Now, if we consider a situation ∆γad
m,n > 0, then T →

∞ yields ΩNA
m→n → 0 and ΩNA

n→m → ∞. As the pre-exponent

terms in Eqs. 3a and 3b contain the time derivative of three

potential parameters, i.e., µ̇j as given in Eqs. 4a and 4b, the

exponential divergence in T of the exponent term of ΩNA
n→m

beats the T−1 suppression associated with ϑn→m. Thus, for a

slow parametric evolution around the EP with in the adiabatic

limit, between two considered eigenmodes, only one of them

having lower decay-rate evolves adiabatically and the other

one behaves non-adiabatically; i.e., at the present condition
∣

∣ψad
m

〉

evolutes adiabatically and converted to
∣

∣ψad
n

〉

, whereas
∣

∣ψad
n

〉

follows NAT.

Now, with proper choices ofm and n, we can study the pos-

sible adiabatic and nonadiabatic conversions between three in-

teracting modes ψj (j = 1, 2, 3) in our designed waveguide.

While we individually consider two different type of nonlin-

earity (σ = ±1) in the optical medium of the waveguide, the

modified refractive index profile changes order of β-values of

the supported modes depending on the type of nonlinearity

and accordingly the signs of relative gain ∆γad
m,n for differ-

ent choices of m and n are modified. Here, in presence of

focusing nonlinearity (σ = +1), we obtain ∆γad
1,2 > 0 and

∆γad
3,2 > 0; which gives the adiabatic conversions |ψ1〉 and

|ψ3〉 to |ψ2〉, and NAT of |ψ2〉, as can be seen in Figs. 4(a) and

(b). On the other hand, we obtain ∆γad
2,1 > 0 and ∆γad

3,1 > 0,

while we consider de-focusing nonlinearity (σ = −1). This

yields the conversions {ψ1, ψ2, ψ3} → ψ1, as can be seen in

Fig. 4(c), where ψ2 and ψ3 evolve adiabatically, and ψ1 be-

haves nonadiabatically.

The overall performance of our designed waveguide under

different conditions considered throughout this work has been

summarized in Table I.

TABLE I. Overall device performance

Starting Nonlinearity End states Dynamics

states type (σ) Clockwise Anti- type

clockwise

(ψ1+ 0 ψ2 + ψ3 ψ1 + ψ3 Chiral

ψ2+ +1 ψ2 ψ2 Nonchiral

ψ3) −1 ψ1 ψ1 Nonchiral
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In summary, an exclusive topologically robust and com-

pact nonlinearity induced anomalous mode collapsing phe-

nomenon in a few-mode/multi-mode system has been pro-

posed using the framework of a three-mode supported pla-

nar gain-loss assisted optical waveguide that does not bear

the chiral property in the presence of multiple second-order

EPs. The topological structure of the waveguide in terms of

an unbalanced gain-loss distribution is configured in such a

way that in the absence of nonlinearity, only two modes are

mutually coupled around a single second-order EP keeping

the third mode unaffected, whereas, in the presence of non-

linearity, all the three modes are mutually coupled and exhibit

multiple second-order EPs. We have been observed that in

the absence of nonlinearity, the waveguide exhibits the chi-

ral property even in the presence of a noninteracting mode.

Here, depending on the direction of encirclement, only one

of two coupled modes survive with the simultaneous presence

of third noninteracting mode. Now, with the onset of nonlin-

earity, we observe that irrespective of the choice of inputs, all

the three coupled modes are collapsed in a specific dominat-

ing mode, and where the different directions of encirclement

around multiple EPs are not able to change the nature of the

output due to ruination in the chiral property. Here, we have

established that even in the absence of chirality, the individ-

ual presence of focusing and de-focusing nonlinearity having

the same amount results in different dominating output for the

same parametric encirclement process around two EPs. The

proposed scheme should also be applicable for systems hav-

ing more than three states. As irrespective of the choices of

the propagation directions, light is converted in a specific state

based on the types of the nonlinearities, we may also explore

this proposed scheme to achieve nonreciprocal light transmis-

sion in a multi-mode system. In the presence of nonlinear-

ity, the proposed new physical aspect of light manipulation

around multiple second-order EPs in a multi-state system will

certainly provide opportunities in chip-scale integrated pho-

tonic devices for next-generation communication systems.
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