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Nonlinear repulsive force between two solids with axial symmetry
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We modify the formulation of Hertz contact theory between two elastic half-solids with axial symmetry and

show that these modifications to Hertz’s original framework allow the development of force laws of the form

F ∝ zn, 1 < n < ∞, where F is the force and z is the distance between the centers of the two solids. The

study suggests that it may be possible to design physical systems that can realize such force laws. We let the

half-solids be characterized by radii of curvatures R1 and R2 and invoke a factor m > 0 to describe any aspect

ratio in the two bodies, all being valid near the contact surface. We let the x-y plane be the contact surface

with an averaged pressure across the same as opposed to a pressure profile that depends on the contact area of

a nonconformal contact as originally used by Hertz. We let the z axis connect the centers of the masses and

define z1,2 = xα/Rα−1
1,2 + yα/(mR1,2)α−1, where z1,2 � 0 refers to the compression of bodies 1, 2, α > 1, m > 0,

x,y � 0. The full cross section can be generated by appropriate reflections using the first quadrant part of the area.

We show that the nonlinear repulsive force is F = azn, where n ≡ 1 + 1/α, and z ≡ z1 + z2 is the overlap and

we present an expression for a = f (E,σ,m,α,R1,R2) with E and σ as Young’s modulus and the Poisson ratio,

respectively. For α = 2,∞, to similar geometry-dependent constants, we recover Hertz’s law and the linear law,

describing the repulsion between compressed spheres and disks, respectively. The work provides a connection

between the contact geometry and the nonlinear repulsive law via α and m.
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I. INTRODUCTION

The repulsive force between two elastic, paraboloidal

solids with axial symmetry in intimate contact is known to

be strongly nonlinear [1]. The topic has a rich history dating

back to Hertz [1] and others (e.g., see [2–6]). The existence of

the Hertz force has important consequences and here are two

examples. A gently perturbed 1D chain of spherical grains is

known to admit a new kind of solitary wave propagation [7,8].

The propagation of mechanical energy at shallow depths in

dry granular beds depend on the force chains that span the

granular fabric [9] and remains an area of broad interest

in many contexts such as landmine detection [10], shock

absorption [11], and thermal conductivity especially in the

context of geothermal applications [12] and geophysics at

ultrashallow depths [13].

Crucial to the existing studies on the derivation of the

Hertz force for nonconformal contacts are two points: (i) the

contact interface between the two solids is, in general, elliptical

in nature, e.g., with major (x) and minor (y) axis lengths

of a and b and (ii) the pressure in the contact area decays as

[1 − (x/a)2 − (y/b)2]1/2 from the highest value at the center to

zero at the edge of the ellipse. A necessary step is also that the

cross section of the contact region is significantly smaller than

the cross-sectional area of the elastic bodies at their centers

(see, for example, in [6]). The stress-strain relation via Young’s

modulus is next used to establish Hertz’s law.

There is a large body of literature on the precise form

of Hertz’s law as well as on different pressure profiles that

may be relevant for actual applications [14]. In addition, there

is a formidable interest in tribology on cases of conformal

contact, i.e., for contacts with multiple asperities [15]. While

all the treatments agree on the force-displacement behavior,

the prefactors obtained depend on (i) and (ii) above. The

simplest form of Hertz’s law for two elastic bodies with

paraboloidal surfaces in the vicinity of the contact point

is explicitly derived in Ref. [4]. The distance L separating

the undeformed surfaces is characterized by L = Ax2 + By2

where A,B depend on the radii of curvature of the paraboloids.

For an elliptical contact if a and b are the semimajor and

semiminor axes, respectively, we let κ ≡ a/b. Then the

Hertz force has been shown to be F(z) = kz3/2, where k =
4
3

q
3/2
a

(D1+D2)
√

A+B
/[

∫ ∞
0

dξ√
(1+ξ )(κ−2+ξ )ξ

]3/2, where z represents the

overlap function between the two spheres, D1,2 =
1−σ 2

1,2

E1,2
,

and qa = (φ1 + φ2)1/3, φ1 =
∫ ∞

0
dξ√

(1+ξ )3(κ−2+ξ )ξ
and φ2 =

∫ ∞
0

dξ√
(1+ξ )(κ−2+ξ )3ξ

[1,4]. The general properties of the prefac-

tor are described in pp. 195–198 in Ref. [2] and in some detail

in pp. 86–87 in Ref. [4]. The overlap function z is defined

as the distance between the centers of the spheres when they

are barely in contact, i.e., (R1 + R2) less the same distance

when they are pressed against one another (say, d) and hence

the variable z ≡ R1 + R2 − d � 0. It is important to note here

that explicit knowledge of κ is needed from experiments to

determine k.

Though much remains to be learned about systems with

nonlinear forces, Fermi et al. showed that one dimensional

systems with nonlinear forces may have unique energy

transport characteristics [16]. Studies have considered energy

transport in a variety of simple nonlinear systems (see, e.g.,

Sen and Manciu in Ref. [8]). We now show how it is possible

to construct an infinite set of nonlinear force laws of the form

F ∝ zn, where n � 1, by tuning the contact geometry between

two elastic objects while keeping a constant average pressure

at fixed z. Dissipative and nondissipative nonlinear chains with

arbitrary n can be realized as very large scale integrated (VLSI)

circuits [17], and preliminary studies are currently under way

for the class of systems discussed here [7].
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FIG. 1. (a) Cross-sectional areas along the x-y plane for various values of α, m = 1. (b) Cross-sectional areas obtained for the same cases

as in (a) but for m > 1, where m is eccentricity.

We start by noting that nonelliptic cross sections may be

realized in contacts between solids with axial symmetry. We

construct a treatment that relies on the cross-section geometry

and elasticity theory. To this end, we introduce a generalized

relation between x, y, and z for various contact geometries

pertaining to the two solids with axial symmetry of interest

(see Fig. 1). We show that this generalized relation leads to a

generalization of Hertz’s law. Our result reproduces all known

elastic force laws between two solids with axial symmetry up to

a geometry-dependent constant factor and hence provides the

conceptual framework for constructing systems with desired

nonlinear force laws.

II. CONTACT CROSS SECTION

The centers of the bodies are placed along the z axis. The

radii of curvatures of these bodies near the contact surface

are described as R1 and R2 and we invoke a factor m, for

simplicity, to describe the aspect ratio in the two bodies. We

claim now that

z1,2 =
xα

Rα−1
1,2

+
yα

(mR1,2)α−1
⇒ yα + mα−1xα

= z1,2(mR1,2)α−1 ≡ ρα, (1)

where z1,2 is the grain compression for grain 1,2 and the

overlap is defined as z ≡ z1 + z2. In Eq. (1), α > 0 and m > 0

and m controls the aspect ratio of the cross-sectional areas

as shown in Fig. 1. Observe that knowledge of ρ implies

knowledge of a and b in the Hertz theory that has been sketched

above [4]. We assume x,y � 0 in Eq. (1) and will use the

appropriate reflections for constructing the full cross section.

This simplification reduces unnecessary algebra without any

loss of generality. Observe that for α = 2 and z = constant,

Eq. (1) reduces to that of an ellipse. The quantity ρ is a

generalized radius of the cross-sectional area with its perimeter

given by Eq. (1). Figure 2 illustrates the geometry along the

axis of axial symmetry (z axis) with reference to R1, z1,

and ρ.

III. TRANSVERSE EXPANSION AND CROSS SECTION

We expect that when two elastic bodies are in intimate

contact and share a flat interface, they will both suffer some

transverse expansion as shown by curve b in Fig. 2. This

transverse expansion turns out to be important in constructing

the derivation of the repulsive force law between two elastic

bodies in contact in our approach. This correction can be

introduced quite generally by assuming ρ2
new = m(R1+R2)

Q
ρ,

where ρnew is the equivalent radius of the contact area with the

transverse expansion. Q enters naturally as a dimensionless pa-

rameter associated with the assertion that ρnew is proportional

to m, (R1 + R2), and ρ. From an experimental standpoint,

knowledge of κ with and without transverse expansion would

reveal ρ and ρnew in our approach.

We can now introduce an equation which has the same form

as Eq. (1) but uses scaled variables X and Y instead of x and

y such that we retain the form of Eq. (1) while incorporating

the transverse expansion as follows:

Y α + mα−1Xα =
[

m(R1 + R2)

Q
ρ

]α/2

≡ ρα
new. (2)

FIG. 2. Undistorted radius of curvature of one of the bodies is

shown as curve a, the modification of the contact surface of the object

deformed by z1 is shown as curve b, and curve c shows the curvature

at the origin after the transverse expansion, indicated by ρnew [see

Eq. (2)], has taken place.
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Once we have characterized the cross section, it is imperative

that we understand how ρnew depends upon z1 and z2 (though

Fig. 2 shows z1 only, note that z2 can be shown in a similar

way). To this end we may write

z ≡ z1 + z2 = ραm1−α
(

R1−α
1 + R1−α

2

)

= ραm1−α Rα−1
1 + Rα−1

2

Rα−1
1 Rα−1

2

. (3)

Making ρα the subject of our interest in Eq. (3) and using

Eq. (2) we can write

ρ2α
new =

[

[m(R1 + R2)]

Q

]α

mα−1 (R1R2)α−1

(

Rα−1
1 + Rα−1

2

)z. (4)

We are now in a position to study the cross-sectional area A

as a function of z, which turns out to be the crucial part of this

calculation. Since the cross section is symmetric, we integrate

over a quarter of the area,

A(z) = 4

∫ X(Y=0)

X=0

Y (X) dX

= 4

∫ ρnewm
1
α −1

X=0

[

ρα
new − mα−1Xα

]1/α
dX

= 4m
1
α
−1

(

ρ2
new

)

2F1

[

−
1

α
,

1

α
; 1 +

1

α
; 1

]

, (5)

where 2F1[− 1
α
, 1
α

; 1 + 1
α

; 1] is a hypergeometric function of α.

The above integral can be evaluated using the online Mathe-

matica integrator or a similar utility. A series representation of

this function is given as

2F1[a,b; c; 1] = 1 +
ab

1!c
+

a(a + 1)b(b + 1)

2!c(c + 1)
+ · · ·

=
∞

∑

n

(a)n(b)n

(c)nn!
, (6)

where the series converges if c is a positive integer. In the above

expression, (· · ·)n is Pochhammer’s symbol and is written as

(a)n ≡
Ŵ(a + n)

Ŵ(a)
= a(a + 1) · · · (a + n − 1). (7)

IV. GENERALIZED LAW

To obtain the force associated with compressing the two

elastic objects under consideration, we use standard elasticity

theory [2] to write an expression for the change in averaged

pressure,

	F

A(z)
∝

	z

h − z
, (8)

where we consider h to be the distance between the centers of

the grains along the z axis. At this point to express Eq. (8) we

note that regardless of the nature of the stress on the elastic

objects, the extensions along the directions of the axes and the

FIG. 3. Plot showing how the exponent n in the force law depends

on α in Eq. (1). For n = 2 one obtains Hertz’s law, whereas for

n → ∞ one obtains the force between two disks as discussed in the

text.

normal tractions across planes at right angles are linked by

equations of the following form (see Ref. [2], Chap. 3, p. 102):

ǫzz =
1

E
(σzz − νσxx − νσyy), (9)

etc., with E as Young’s modulus and ν as the Poisson ratio to

describe the constrained compression along the z axis. Also

(see [3], p. 20)

σxx = σyy =
ν

2
σzz. (10)

Using Eq. (10) in Eq. (9) then leads to

σzz =
E

1 − ν2
ǫzz, (11)

which implies for h >> z in Eq. (8) we can write

	F

A(z)
=

E

1 − ν2

	z

h
, (12)

and hence we find

F =
E

1 − ν2

∫ z

0

A(z′)

h
dz′, (13)

which implies

F = az1+1/α = azn, (14)

where

a =
4

Q

E

(1 − ν2)

m

(1 + 1/α)

(R1 + R2)

h

×

[

Rα−1
1 Rα−1

2

Rα−1
1 + Rα−1

2

]1/α

2F1

[

−
1

α
,

1

α
; 1 +

1

α
; 1

]

. (15)

Equation (15) describes the general form of the force law

associated with elastic repulsion between two solids with axial

symmetry. The contact surface is described by parameters α

and m in Eq. (1) and the exponent of the nonlinear law depends

only on α. We show below that for α = 2 and spherical (m = 1)

grains, we recover Hertz’s law; while for the case of contact
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FIG. 4. Schematic of how grains satisfying two different force

laws on opposite ends may be constructed. Note that in this case

h = R1 + R2 + a.

between two disks, we recover the linear force law. Figure 3

relates the force law F = az1+1/α with the shapes of those

identical elastic solids that would relate to the contact interface

for the specific α value.

V. FORCE LAW BETWEEN SPHERES

For spherical grains, we set α = 2 and m = 1 in Eqs. (1) and

(2), and with reference to Fig. 4 define h ≡ R1 + R2, which

yields

F =
1

Q

2

3

4E

(1 − ν2)

[

R1R2

R1 + R2

]1/2

2F1

[

−
1

2
,
1

2
;

3

2
; 1

]

z3/2

=
π

Q

2

3

E

(1 − ν2)

[

R1R2

R1 + R2

]1/2

z3/2. (16)

It may be puzzling to see the quantity Q in the prefactor on

the right-hand side of Eq. (16). A closer look reveals that

a very similar quantity, κ = a/b, also enters the derivation

of the prefactor in the typical derivation of Hertz’s law as

presented in detail in Ref. [4] and sketched earlier in this

paper. In the typical derivation, κ needs to be determined from

the actual system geometry at hand. In the present treatment,

Q needs to be determined by observing the bulging effect

of the grains near the contact region as shown schematically

by curve b in Fig. 2 [see the discussion below Eq. (16) in

Leroy’s paper in Ref. [5] in this connection). Here, unlike

in the existing treatments of the Hertz problem, we have

assumed that the force across the entire contact region is

only z dependent rather than assuming that the pressure

in the contact surface is x,y dependent as introduced by

Hertz [1]. It turns out that an assumption regarding the

x,y dependence of pressure at the contact surface is not

necessary if one uses Eqs. (1) and (2) to derive Hertz’s

law. What is, however, important is that Eq. (1) provides

the option to introduce nonelliptical contact interfaces using

two parameters α and m. The transverse expansion at the

interface of two soft elastic solids can be accounted for by

defining ρnew. The quantity ρnew can be used to successfully

calculate the correct contact area described in Eq. (2).

Thus, it is critical that when the area integration is per-

formed, expected results are recovered. We address this point

below.

The factor π in Eq. (16) should be understood as follows.

Indeed, the cross-sectional area for α = 2, m = 1 (i.e., circular

contact) in Eq. (5) yields A = 4ρ2
new 2F1[− 1

2
, 1

2
; 3

2
; 1] = 4 ×

π
4
ρ2

new as expected. Hence π enters because of the geometry

of the contact surface.

VI. FORCE LAW BETWEEN DISKS

Let us now turn our attention to the case of two disks of

radius R, which would lead to a rectangular cross section in

contact. This case is realized when α → ∞ in Eq. (3) above

(see Fig. 1). Setting R1 = R2 = R, h = 2R, and α → ∞, and

using 2F1[0,0; 1; 1] = 1, Eq. (15) becomes

a =
2m

Q

ER

1 − ν2
, (17)

and

F = az, (18)

which is the expected linear force law F = az that char-

acterizes the force between two disks as expected. We

did not require the radius to diverge in our formulation.

Rather, the disk contact was achieved via α → ∞ as shown

in Fig. 1.

Given that the studies presented here concern two elastic

half-solids, one can imagine constructing “designer grains”

(see Fig. 4) where adjacent granular contacts may be made to

vary if needed.

VII. CONCLUSION

To summarize, we have developed a connection between

the geometry of the contact region between two elastic objects

with axial symmetry [given by Eq. (1)] and the magnitude

and behavior of the repulsive force between these two objects.

The contact region is perpendicular to the axis joining the

centers of the objects [Eq. (15)]. We recover Hertz’s law for

two spheres in contact and the linear force law for two disks in

contact. The ability to control the forces between adjacent

elastic objects is expected to introduce novel possibilities

in energy transport, dispersion, and localization in granular

systems [7,8,16]. Further, the solutions of dynamical equations

of motion for designer grains in granular alignments can be

realized using VLSI circuits [17]. Hence, this work raises

the possibility of exploring systems with novel nonlinear

potentials and across parameter ranges that may not necessarily

have known physical significance.
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