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Stroke is the leading cause of severe chronic disability and the second cause of death

worldwide with 15 million new cases and 50 million stroke survivors. The poststroke

chronic disability may be ameliorated with early neuro rehabilitation where non-invasive

brain stimulation (NIBS) techniques can be used as an adjuvant treatment to hasten the 

effects. However, the heterogeneity in the lesioned brain will require individualized NIBS

intervention where innovative neuroimaging technologies of portable electroencepha-

lography (EEG) and functional-near-infrared spectroscopy (fNIRS) can be leveraged for

Brain State Dependent Electrotherapy (BSDE). In this hypothesis and theory article, we

propose a computational approach based on excitation–inhibition (E–I) balance hypoth-

esis to objectively quantify the poststroke individual brain state using online fNIRS–EEG

joint imaging. One of the key events that occurs following Stroke is the imbalance in

local E–I (that is the ratio of Glutamate/GABA), which may be targeted with NIBS using

a computational pipeline that includes individual “forward models” to predict current flow 

patterns through the lesioned brain or brain target region. The current flow will polarize the 

neurons, which can be captured with E–I-based brain models. Furthermore, E–I balance 

hypothesis can be used to find the consequences of cellular polarization on neuronal

information processing, which can then be implicated in changes in function. We first

review the evidence that shows how this local imbalance between E–I leading to functional 

dysfunction can be restored in targeted sites with NIBS (motor cortex and somatosen-

sory cortex) resulting in large-scale plastic reorganization over the cortex, and probably

facilitating recovery of functions. Second, we show evidence how BSDE based on E–I

balance hypothesis may target a specific brain site or network as an adjuvant treatment. 

Hence, computational neural mass model-based integration of neurostimulation with

online neuroimaging systems may provide less ambiguous, robust optimization of NIBS, 

and its application in neurological conditions and disorders across individual patients.
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introdUCtion

Stroke or cerebrovascular accident is caused when an artery 
carrying blood from heart to an area in the brain bursts or a 
clot obstructs the blood flow thereby preventing delivery of 
oxygen and nutrients. It is the most debilitating consequence of 
cardiovascular disorder with over 50 million stroke survivors 
worldwide. It is also the second leading cause of dementia after 
Alzheimer’s disease. The projected cost of patient care for stroke 
will reach trillions of dollars over the next five decades. Therefore, 
innovative methodologies for restorative neurorehabilitation are 
urgently required to reduce long-term disability. Here, the ability 
of the central nervous system to respond to intrinsic or extrinsic 
stimuli by reorganizing its structure, function, and connections 
can be leveraged, which is called neuroplasticity. Neuroplasticity 
is involved in poststroke restorative rehabilitation but also can 
cause maladaptive functional outcomes, which can compromise 
regain of function via implementation of sub-optimal compen-
satory strategies. Beneficial neuroplasticity may be facilitated 
with carefully designed non-invasive brain stimulation (NIBS) 
protocols, which have been shown to modulate brain and 
spinal (1) network interactions. Indeed, appropriately focused 
NIBS protocol may facilitate learning and consolidation during 
rehabilitative training (2) where transcranial direct current 
stimulation (tDCS), a NIBS modality, uses low direct currents to 
modulate cortical excitability and has been found to be a promis-
ing tool to facilitate neuroplasticity during stroke rehabilitation 
(3). During stroke rehabilitation, it is also important to enforce 
normative movement coordination and sensory feedback and 
penalize maladaptive compensatory movements (4), which can 
be achieved with neuromuscular electrical stimulation (NMES). 
Here, the hypothesis on volitionally (electromyogram, EMG) 
driven NMES for stroke rehabilitation is based on sensorimotor 
integration theory, which states that sensory input from move-
ment of the affected limb directly influences subsequent motor 
output from the brain where alternative motor pathways can 
be recruited and activated to assist the stroke-damaged motor 
output pathways (5). Indeed, it was found that EMG-driven 
NMES effected greater brain cortical perfusion than voluntary 
muscle contraction or NMES alone (6) where the beneficial brain 
activation can be further facilitated with tDCS (7) toward ben-
eficial neuroplasticity. Therefore, it is postulated that a tDCS in 
conjunction with peripheral electrical stimulation will modulate 
the activity in the dysfunctional network, to restore an adaptive 
equilibrium in a disrupted network for optimal behavioral out-
come, and suppress maladaptive plastic changes for functional 
advantage via their synergistic effect on task–relevant neuronal 
activation patterns. Recent studies also suggest that the endog-
enous state of cortical activity that is dependent on individual 
physiology of the brain as well as psycho-physiological factors 
can alter the effects and efficacy of poststroke tDCS treatment 
(8). These studies showed that the evidence for therapeutic 
efficacy is still uncertain since the treatment effects of tDCS 
in patients with stroke are rather inconsistent across studies. 
This is expected poststroke, specifically in acute and sub-acute 
stages, when the heterogeneous acute regional imbalance of 
brain’s E–I balance, for example due to glutamate surge, may 

be going through a dynamic reorganization based on the avail-
able “structural reserve,” i.e., the integrity of the white matter 
pathways. The consequent mal-adaptive neuroplastic alterations 
of cortical activation and excitability and their global impact 
in sub-acute and chronic stages are therefore subject-specific, 
which determine the individual endogenous state of cortical 
activity. Although, tDCS is already used in stroke rehabilitation, 
however, currently available “one-size-fits-all” methods for 
planning tDCS intervention limits its clinical translation due 
to inter-subject variability and lack of intra-subject reliability. 
Here, understanding of individual interactions between the 
endogenous brain states and therapeutic mechanisms can lend 
to tDCS interventions to antagonize subject-specific maladaptive 
alterations by the regulation of cortical excitability, which may 
then lead to beneficial plasticity that is crucial for re-installing 
efficient information transfer in the brain during neurorehabili-
tation. This may be feasible with a computational model based 
on neuroimaging that can objectively monitor individual brain 
state during NIBS that can then be used to adjust stimulation 
protocols accordingly (9).

In this hypothesis and theory article, we present an E–I based 
brain model to objectively quantify the individual brain state post-
stroke, which can then guide the planning of tDCS as an adjuvant 
treatment (to physical therapy and/or pharmacotherapy). The 
dysregulation of cortical excitability during acute and sub-acute 
stroke is a characteristic feature of unbalanced network, which 
may lead to symptoms depending on the area(s) in which the 
imbalance occurs. Here, we present innovative technologies 
of portable functional near-infrared spectroscopy (fNIRS) 
and electroencephalography (EEG) neuroimaging systems to 
objectively build the E–I based poststroke brain model that can 
be used to guide and quantify the progress of tDCS treatment 
regime. Here, E–I balance hypothesis implements homeostatic 
regulation of cortical E–I to allow efficient information transfer 
using multi-focal tDCS. It is postulated that tDCS leads to a rapid 
dynamic variations of the brain cell microenvironment (10) that 
perturbs hemodynamic (fNIRS) and electrophysiological (EEG) 
responses. The interactions between the hemodynamic and 
electrophysiological responses, captured with NIRS–EEG joint 
imaging, may provide an assessment of underlying E–I balance. 
Also, while the plastic changes occur during neurorehabilitation, 
the adjuvant tDCS treatment is planned such that the network 
maintains a certain amount of stability in order to produce 
meaningful output (11). In Section “Evidence in Support of 
Alterations in Cortical Excitation–Inhibition with Non-invasive 
Cortical and Peripheral Electrical Stimulation,” we give a sum-
mary of the evidence in support of post-tDCS perturbation of E–I 
balance from EEG, fMRI, and computational studies. In Section 
“Computational E–I Modeling using fNIRS–EEG Joint-Imaging 
During tDCS,” we propose biophysical “forward models” of the 
alterations in neural and hemodynamic responses due to tDCS 
perturbation. In Section “E–I Balance Hypothesis for Brain-State 
Dependent Electrotherapy in Stroke Rehabilitation,” we propose 
a new framework for online brain-state dependent electrotherapy 
during poststroke neurorehabilitation along with pilot data and 
simulations. Section “Discussion” summarizes and concludes 
with future directions.



FiGUre 1 | electroencephalography (eeG)-functional near-infrared spectroscopy (fnirs) joint-imaging during non-invasive brain stimulation (niBs) 

and neuromuscular electrical stimulation (nMes). Left panel: experimental setup for the upper limb, Right panel: EEG–fNIRS sensor montage along with NIBS 

stimulation electrodes [from Ref. (20)]. Figure adapted from Dutta et al. (19).
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eVidenCe in sUpport oF aLterations 

in CortiCaL eXCitation–inHiBition 

WitH non-inVasiVe CortiCaL and 

peripHeraL eLeCtriCaL stiMULation

evidence from eeG–fMri studies 
with niBs
A common practice that is followed during NIBS is the applica-
tion is restricted to an isolated brain area. Although isolated 
brain areas are targeted during non-invasive stimulation, it 
affects multiple local as well as distant brain areas of the cer-
ebral cortex in essence impacting cognitive networks (12, 13). 
We suggest that the regional cortical E–I balance, measured by 
ratios of glutamate/GABA, and local oscillations (representing 
intrinsic brain state) (14) are crucial for meaningful interpre-
tations of individual cognitive performance and deficits than 
glutamate and/or GABA alone. This formulation finds support 
from evidences where E/I balance plays a major role in normal 
cognition, as well as the symptomatic patterns of a variety of 
clinical conditions (11). Although abnormality in E/I balance is 
perhaps critical for mechanistically understanding neurocogni-
tive disorders, there is a genuine gap in understanding the role of 
E/I balance in conjunction with variety of well accepted (tDCS) 
or not so well accepted transcranial brain stimulation techniques 
(15). We posit that by combining computational methods, NIBS, 
and neuroimaging, in principle, we can bridge that gap and pro-
vide a detailed mathematical framework for understanding the 
impact of E/I balance for brain networks where reorganization 
takes place following plasticity.

evidence from eeG–fnirs 

studies with niBs
Non-invasive brain stimulation, e.g., tDCS (3), can lead to altera-
tions in both the cortical neural activity and the hemodynamics 
(16) that are related by neurovascular coupling (NVC). The 
EEG can record the potential at the scalp due to the electric 
currents from all excitable membranes of the brain tissue (17). 
To measure the hemodynamics, near-infrared spectroscopy 
(NIRS) sensor contains light source in the near-infrared (NIR) 
wavelength range (700–1300  nm) that biological tissue is 
relatively transparent to and can penetrate into the superficial 
brain (1–3 cm penetration depth) (18). In the blood supply to 
the brain tissue, hemoglobin’s constituents  –  oxyhemoglobin 
and deoxyhemoglobin – exhibit distinct absorption spectra (i.e., 
distinct chromophore) in the NIR range. Here, the brain tissue 
serves as the scattering medium that allows NIR light detectors 
placed on the scalp to help estimate the chromophore’s (in both 
arterial and venous blood) absorption using the Beer- Lambert 
law (18). Therefore, while EEG provides an electrophysiological 
measure of cortical neural activity, functional NIRS provides a 
measure of the related hemodynamic component that supplies 
glucose via NVC. Figure  1, adapted from Dutta et  al. (19), 
shows an illustrative experimental setup. An eight-channel dual 
tDCS–EEG system (StarStim, Neuroelectrics, Spain) was used 
to deliver constant direct current (2 mA for 20 min) to the left 
sensorimotor cortex (SMC) via a 4 × 1 anodal High-Definition-
tDCS (HD-tDCS) electrode montage with the anode at C3 (red 
circle in Figure  1) and surrounding four cathodes as return 
electrodes (blue circles in Figure 1). EEG was recorded at 500 Hz 



FiGUre 2 | (a) Electric field estimated at the gray matter surface due to 2-mA HD-tDCS (electrode montage shown in Figure 1). (B) Measurement sensitivity 

distribution of the fNIRS probe (montage shown in Figure 1) at gray matter surface.
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from all the eight electrodes before “Pre” and after “Offline,” and 
only from three non-stimulation electrodes during “Online” 
(C1, C4, FC2). A multi-channel fNIRS system (Oxymon MK III, 
Artinis Medical Systems, Netherlands) was used to continually 
measure the cortical hemodynamic changes from 16 channels at 
10 Hz, represented by receiver (green circles in Figure 1) – emit-
ter (yellow circles in Figure  1) combination covering the left 
(Channels 1–8) and right (Channels 9–16) hemisphere. EMG 
was measured from the left and right hand finger flexors and 
extensors at 2000 Hz (PowerLab, ADInstruments, USA). Prior 
work has shown that HD-tDCS reduced bilateral activation of 
primary SMC during task performance during and after tDCS 
(20). Here, it is important to quantify the interactions between 
motor training and NIBS in order to determine their relative 
timing as well as to optimize the NIBS protocol as an adjuvant 
treatment in poststroke rehabilitation. We have shown with a 
computational pipeline (16) that tDCS-evoked cortical neural 
activity and hemodynamics can be monitored with NIRS–EEG 
joint imaging. The electric field in the gray matter surface 
during 4 × 1 anodal HD-tDCS with 2 mA constant direct cur-
rent is shown in Figure  2A while the measurement sensitivity 
distribution of fNIRS probe at gray matter surface is shown in 
Figure 2B. Here, the EEG measurement sensitivity analysis using 
the Laplacian spatial filter consisting of HD-tDCS electrodes 
in “Offline” condition is related to the HD-tDCS electric field/
current density modeling, as discussed in Guhathakurta and 
Dutta (16). We postulate that tDCS may non-specifically alter 
the synaptic activity of the excitatory pyramidal neurons (ePN) 
at a population level (21) where glutamate activates patterns 
of calcium signaling for opposing control of inhibitory GABA 
synapses (22) thereby regulating the E-I balance by the balance of 
excitatory and inhibitory synaptic currents (23) which have been 
found to promote efficient coding and metabolic efficiency (24). 
Here, EEG–NIRS-based joint imaging can be used to assess NVC 
during the application of anodal tDCS (25) using intrinsic mode 
functions (IMFs) for fNIRS and EEG time-series (16). However, 

the challenge remains in capturing mostly non-linear spatiotem-
poral interactions between the cortical neural activity and the 
hemodynamics (26), which may be possible with an E-I brain 
model (27) based on EEG–NIRS joint-imaging during tDCS.

evidence from fMri and fnirs studies 

with peripheral electrical stimulation
Neurophysiological research has shown that repetitive electrical 
stimulation of the common peroneal nerve elicits lasting changes 
in corticospinal excitability, possibly as a result of co-activating 
motor and sensory fibers (28). In fact, primary sensory and 
motor cortex excitability have been found to be co-modulated 
in response to peripheral electrical stimulation (29). This may be 
due to cortico-cortical projections between primary sensory and 
motor cortex, and this mechanism may underpin changes in cor-
ticomotor excitability in response to afferent input generated by 
peripheral electrical nerve stimulation. Moreover, Khaslavskaia 
and Sinkjaer (30) showed in humans that concurrent motor 
cortical drive present at the time of stimulation enhanced motor 
cortical excitability. This leads to the exciting possibility that 
peripheral electrical stimulation could be used to drive cortical 
plasticity during stroke rehabilitation (31), possibly in conjunc-
tion with NIBS (32). Here, the cerebral activation patterns during 
peripheral electrical stimulation can be elucidated with fMRI 
(33) and fNIRS (34). The fMRI study (33) revealed peripheral 
electrical stimulation-related activation pattern comprising the 
contralateral primary motor cortex, primary somatosensory 
cortex and premotor cortex; the ipsilateral cerebellum; bilateral 
secondary somatosensory cortex, the supplementary motor area, 
and anterior cingulate cortex. Also, a greater bilateral sensorimo-
tor network activation profile with high current intensities was 
attributed to an increased bilateral sensorimotor integration (34). 
However, dosing of peripheral electrical stimulation remains a 
challenge because of non-linear effects where stimulation above 
motor threshold increased cortical excitability while stimulation 
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below motor threshold, but sufficient to induce sensory percep-
tion, produced conflicting results (31). Moreover, there appeared 
to be time effects, where longer periods of stimulation induced 
more sustained changes in cortical excitability. Therefore, a 
computational framework based on neuroimaging is necessary to 
delineate these effects and computational modeling approaches 
are explored in the next section.

CoMpUtationaL e–i ModeLinG UsinG 

fnirs–eeG Joint-iMaGinG dUrinG tdCs

One of the major goals of electrical stimulation techniques is to 
provide capacity of neurorehabilitation by facilitating movement 
(with peripheral electrical stimulation) and modulating the brain 
plasticity in specific brain areas (with NIBS). It is generally agreed 
upon that cortical stimulation alters excitability in specific cortical 
areas so as to enhance plasticity in various motor, perceptual tasks. 
Many approaches often do not consider that brain is a dynamical 
system with the amount of plasticity and functional connectivity 
well regulated in specific brain areas in an activity-dependent 
manner. These activity levels, being persistent, do not show 
signs of adaptation and the connectivity patterns dynamically 
change mostly in an unpredictable manner. In order to look at 
the persistent activity levels, one can focus on underlying synaptic 
changes as has been recently carried out in a computational study 
by Sigala et al. (14). We preview here what could be considered 
as a dynamic consequence of E–I parameter variation and ongo-
ing modulation of power, amplitude and firing rate of multiunit 
activity (MUA), or neural population activity as measured by 
EEG. Oscillations are important markers of neural state activity 
during sensori-motor plasticity and behavior (35, 36). Increasing 
excitatory–excitatory (EE) synaptic connectivity has the potential 
to increase firing rate without any bound. Hence, it is necessary 
to simultaneously adjust excitatory–inhibitory (EI) synaptic 
strength or inhibitory–excitatory (IE) in order to compensate for 
excess excitation received by cortical population in the targeted 
brain area. In general, as has been understood, NIBS would 
result in an increase in the firing rate (in Hertz) in the targeted 
brain area. This excess may destabilize the network and results 
in abnormal oscillations indicated by the neural state. There, the 
appropriate feedback inhibition must be applied in order to bring 
endogenous oscillations under control and to produce stable cor-
tical output from the targeted brain regions (27). This is certainly 
possible to achieve given the thalamocortical neural mass model 
(NMM) proposed in this work where observed lasting changes 
are attributed to the lasting modulation of the E–I balance. We 
have also enriched the thalamocortical NMM to investigate 
cortico-muscular coherence during anodal tDCS in conjunction 
with volitional muscle activation and/or peripheral electrical 
stimulation, by adding a resonant spinal-musculoskeletal system 
driven by cortical NMM that fed back to the thalamic NMM 
via sensory afferents (21). This was based on the hypothesis that 
perturbations from ePN to the spinal-musculoskeletal system can 
be shaped by its resonant properties (21), which can feed back to 
the relay nucleus of the thalamus via sensory afferents and create 
coherence between thalamus, cortex, and muscle in human.

neural Mass Model for Capturing 

neuronal response to tdCs Using eeG
Polarity-specific cortical excitability alterations have been shown 
with transcranial direct current stimulation (tDCS) (3, 37) where 
it is postulated that the orientation of the electric field may be 
more relevant for neuronal stimulation while the electric field 
strength may be more relevant for astrocytic stimulation within 
the neurovascular unit (NVU) (16). After the forward model of 
the electric field is obtained (see Figure 2A), the sensitivity of the  
neuronal population (or, neural mass) to the electric field is 
determined by its morphology (38). Such tDCS-induced neu-
ronal membrane polarization in a polarity-dependent manner 
can lead to synaptically driven after-effects after a sufficient long 
stimulation duration (39). The transmembrane currents, primar-
ily responsible for EEG, contribute to intrinsic resonance and 
fluctuations of the membrane potential where inter-neurons and 
thalamocortical inputs can play a significant role in shaping the 
power spectrum (21, 36, 40). In fact, these spatiotemporal field 
fluctuations in the brain may “feedback” (and even amplify) the 
cellular discharge properties thereby shaping the power spectrum 
(40). Here, NMM can provide insights into the neuromodulatory 
mechanisms underlying alterations of cortical activity induced 
via tDCS (40). In our prior work, we explored the origin of tDCS-
induced alterations in the electroencephalogram (EEG) power 
spectrum using a thalamocortical NMM (21). The left panel of 
the Figure 3 shows a single cortical source NMM coupled to a 
thalamic NMM. The cortical NMM comprises of ePN, excitatory 
interneurons (eIN), slow inhibitory interneurons (siIN), and fast 
inhibitory interneurons (fiIN) based on prior work (41). Also, 
the thalamic NMM comprised an excitatory thalamocortical 
(eTCN) and an inhibitory reticular-thalamic (iRT) based on prior 
work (42). The population of ePN (output) cells receives inputs 
from inhibitory and excitatory populations of interneurons via 
intrinsic connections (intrinsic connections are confined to the 
cortical sheet). An extrinsic thalamo–cortico–thalamic loop 
consists of eTCN and iRT in the thalamic NMM (43). We found 
that anodal tDCS non-specifically enhanced the activity of the 
ePN at a population level where μ-rhythm desynchronization 
was generated in EEG. Also, the modifications to the model 
parameters (e.g., average gain of synapses, their time constants) 
(41) of the lumped thalamo–cortico–thalamic network model 
was used to successfully simulate the subject-specific EEG 
power spectral density changes during/following tDCS (21). 
Here, the excitation versus inhibition effects of acute tDCS on 
the population kinetics can produce a whole spectrum of EEG 
signals within the oscillatory regime of the NMM (44) so that the 
cortical NMM can be sub-divided into two populations – excita-
tory, E, and inhibitory, I, – of adaptive neural masses (right panel 
of Figure  3). At a macroscopic level, Radman et  al. quantified 
the cell-specific polarization by weak direct current fields using 
a “coupling constant,” which is a single number linearly relating 
the membrane polarization at any given compartment, includ-
ing the soma, with the stimulation intensity. Therefore, different 
sub-populations of neurons will be affected differently by a given 
stimulation protocol, which may have distinct affects on E–I 
neuronal populations/neuronal compartments. For example, the 



FiGUre 3 | thalamocortical neural mass model (left panel) and a reduced network model of the cortical neural mass containing two populations 

(excitatory, e and inhibitory, i) of adaptive neural masses receiving recurrent external inputs from thalamic neural mass (right panel).
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Layer V pyramidal neurons exhibit the highest measured somatic 
sensitivities to subthreshold fields (45) such that somatic depo-
larization of Layer V pyramidal neurons by anodal tDCS may 
result in corresponding alterations of spontaneous firing rate (38) 
thereby causing a rapid increase in extracellular ionic concentra-
tions that can activate the glial network (46). The glial network 
plays an important role in regulating neural activity by spatial 
buffering with a time course of seconds (47). Due to this relatively 
long time course, some of these diffusing extracellular ions can 
act as mediators of vasodilation (48) as well as neurotransmitters, 
affecting other neuronal compartments, including GABAergic 
and glutamatergic synapses. Moreover, the large glial–vascular 
bath within the NVU that can buffer extracellular ion concentra-
tions will result in an inhibitory mechanism (49) for the cortical 
NMM (26). Also, it has been postulated recently that tDCS can 
directly affect the astrocytic network within the NVU (16).

neurovascular Unit Model Coupling 

Hemodynamic response Captured with 

fnirs and neuronal response Captured 

with eeG during tdCs
Zheng et al. (50) have found a significant correlation between the 
strength of tDCS current and the increase in regional cerebral 
blood flow (CBF). This regional cerebral vascular reactivity 
(CVR), defined as the change in CBF to tDCS current (32), was 
investigated during anodal tDCS-induced local brain activa-
tion by adapting an arteriolar compliance model of the CBF 
response to a neural stimulus (51). Here, Dutta et al. (32) used 
continuous-wave NIRS to capture hemodynamic response which 
can be combined with diffusion correlation spectroscopy (52) 
to non-invasively measure cerebral blood flow as well as blood 
oxygenation (53). If the hemodynamic response to tDCS is cap-
tured with NIRS simultaneously with neuronal response using 
EEG, then the coupling relation via metabolic hemodynamics 
(54) can provide an estimate of the state of the neurovascular 
unit, as illustrated in Figure 4 and explained below. It was found 
that the tDCS-induced change in the synaptic transmembrane 

current, u(t) (only excitatory effects were considered in Dutta 
et  al. (32) but both excitatory and inhibitory metabolic effects 
will be relevant) (40) can be captured by a first-order Friston’s 
model (55) relating u(t) to a change in the concentration of mul-
tiple vasoactive agents (such as NO, potassium ions, adenosine) 
causing a change in a single vascular flow-inducing vasoactive 
signal, s, leading to CBF. Oxygen consumption is limited by the 
diffusion of oxygen from the vasculature in case of diffusion-
limited oxygen delivery (56), and thus oxygen consumption is 
tightly coupled to the induced blood flow (57) and the surface 
area of the vasculature. Here, the NMM (21) discussed in “Section 
Neural Mass Model for Capturing Neuronal Response to tDCS 
using EEG Related Anodal tDCS Intensity” (current density), 
σ(t), to the tDCS-induced changes in synaptic transmembrane 
current, u(t) (40), which was coupled with this phenomological 
hemodynamic model representing changes in the CBF. Now, neu-
roenergetics of the neural activity (both excitatory and inhibitory 
metabolic effects) can relate the hemodynamic (Hbt) response 
to anodal tDCS, σ(t), where deoxy- (Hb) was a byproduct of the 
consumption of oxygen delivered by oxy- (HbO2) hemoglobin 
that can be estimated using the cerebral metabolic rate of oxygen, 
CMRO2 (32). However, fNIRS is an optical imaging technique 
where a transfer function representing the sensitivity matrix of 
the optics equation can relate the optical density changes in fNIRS 
due to the changes in chromophores, HbO2 and Hb. Recently, Tak 
et al. (58) presented such a generative model for fNIRS data based 
on the interactions among hidden neuronal states that could 
be elucidated from EEG (59) with fNIRS–EEG joint imaging. 
fNIRS–EEG joint imaging is ideally suited with its spatiotemporal 
resolution to capture the cortical state of the NVU where tDCS 
has primarily cortical direct effects for its electric field penetra-
tion with spatiotemporal range amenable to fNIRS–EEG joint 
imaging (16).

interactions between neuronal and 

Hemodynamic responses to tdCs
The homeostasis of the brain microenvironment is maintained 
by the neurons, astrocytes, and vessels operating in tandem as 



FiGUre 4 | Coupling hemodynamic response captured with nirs with neuronal response captured with eeG for the cortical neural mass jointly 

imaged with simultaneous nirs and eeG.
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semi-independent networks within the NVU (60) consisting of 
the endothelium, glia, neurons, pericytes, and the basal lamina 
(see Figure 5). It has been postulated that the neurons as a col-
lective phenomena alter their intrinsic or synaptic properties to 
maintain a target level of electrical activity (61), which is called 
homeostatic regulation of neuronal excitability. In homeostatic 
regulation of neuronal excitability, previous amount of network 
activity determines the ease with which a synaptic connection 
is facilitated or suppressed (62–65). Here, Fricke and coworkers 
(62) hypothesized a role for L-type voltage-gated Ca2+ channels 
(L-VGCC) in short-term homeostatic plasticity, since tDCS 
has been shown to induce a long-lasting disturbance of Ca2+ 
homeostasis (66) and induce calcium-dependent plasticity (67). 
In principal accordance, Fricke and coworkers (62) proposed 
two ideas based on prior animal experiments to explain the time 
course of the induction of homeostatic plasticity generated by 
repeated tDCS of the human motor cortex [see Ref. (68, 69)] that 
the direction [long-term potentiation (LTP)/long-term depres-
sion (LTD)] of synaptic plasticity depends on the magnitude and 
dynamics of different postsynaptic levels of Ca2+ induced by the 
presynaptic input, with high levels favoring LTP and lower levels 
LTD; and (2) that the history of activation of a neuron can affect 
the function of L-VGCC channels such that high preceding levels 
of activity would reduce their activity, whereas low levels would 
increase it. LTP/LTD can be elicited by activating N-methyl-d-
aspartate (NMDA)-type glutamate receptors, typically by the 
coincident activity of pre- and postsynaptic neurons (70), which 
function as calcium channels. Moreover, neuronal activity can 
trigger Ca2+ signals (66) in apposed glial cells, and glial Ca2+ 
waves can affect neurons (71). The glial network may have an 
important role (i.e., spatial buffering) in regulating neural activity 
by distributing ions (47). An influence of long-lasting disturbance 
of Ca2+ homeostasis via tDCS on the myogenic and the metabolic 

control of cerebral circulation cannot be excluded. Here, recent 
computational models (72) presented bidirectional interactions 
within the NVU (26) where a (delayed) “reverse” influence in 
the NVU from the vessel back to neuron via lactate is possible 
with lactate as a signaling molecule (73). Indeed, recent work 
showed that lactate can modulate the activity of primary cortical 
neurons through a receptor-mediated pathway (74), and vasomo-
tion rhythms can influence neural firing patterns (75) presenting 
interactions between neuronal and hemodynamic responses.

e–i BaLanCe HypotHesis For Brain-

state dependent eLeCtrotHerapy 

in stroKe reHaBiLitation

During stroke rehabilitation, we postulate that peripheral NMES 
combined with tDCS would not only suppress maladaptive plas-
tic changes but also facilitate beneficial neuroplasticity. Indeed, it 
was found that EMG-driven NMES affected greater brain cortical 
perfusion than voluntary muscle contraction or NMES alone (6) 
where the beneficial brain activation can be further facilitated 
with tDCS (7) toward beneficial neuroplasticity. Therefore, it is 
postulated that a tDCS in conjunction with peripheral electrical 
stimulation will modulate the activity in the perturbed network, 
to restore an adaptive equilibrium for optimal behavioral out-
come and suppress maladaptive plastic changes for functional 
advantage via their synergistic effect on task–relevant neuronal 
activation patterns. Following initial human studies by Nitsche 
and Paulus (37), numerous subsequent tDCS studies have been 
performed using their conventional montage and stimulation 
parameters. However, recent studies have suggested that stimula-
tion parameters may affect the focality and specificity of tDCS in 
inducing neuroplastic alterations (76). Moreover, in poststroke 



FiGUre 5 | neurovascular unit (nVU) that consists of the endothelium, glia, neurons, pericytes, and the basal lamina. Computational model for the 

interactions between the hemodynamic and electrophysiological responses, captured with NIRS–EEG joint imaging, may help in online modulation of tDCS. 

Figure adapted from Dutta et al. (19, 26).
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subjects, heterogeneously damaged cortical regions presents a 
challenge because of alterations of current flow, where individu-
alized tDCS protocols based on neuroimaging are required (3). 
Therefore, computational techniques are required to develop 
patient-specific multi-electrode tDCS montages based on neu-
roimaging to optimize tDCS of the targeted brain locations (77).

Computational Models to Understand 

interplay between e–i Balance and Brain 

state dependency during electrotherapy
In a recent study by Sigala et  al. (35), authors have explored 
the possibility of using repetitive tactile stimulation protocol to 
explore the reorganization of resting state connectivity in the 
somatosensory cortex that is highly modulated by Alpha band 
power. Figure 6 is adapted from this study where we look at the 
EEG Alpha band power (indicating current brain state) and ERD 
generated over the channels located in the contralateral side of the 
stimulation on the left primary somatosensory cortex. Figure 6A 
captures the Alpha and Beta band power activation for a time 
frequency analysis in channels located in CPz and Cz distributed 
over left somatosensory, motor cortex and also partly association 
area. Figure  6B captures two peaks in the power spectra one 
at 10–12  Hz (central Alpha) and the other at 15–20  Hz (Beta 
frequency band) related to tactile, motor cortex stimulation. 

Figure 6C shows the evoked somatosensory response potential 
(ERSP) to stimulation where maximum powers in decibel are 
located in the two identified frequency bands. Figure 6D shows 
amplitude of the evoked response potential, which captures the 
ERD followed by stimulation. In Figure 6E, we have simulated a 
thalamo-cortical NMM similar to the one presented here in this 
article to generate mean field EEG activity in the somatosensory, 
motor cortex. Shown here in Figure 6F is a representative exam-
ple of wavelet analysis on the generated EEG time series to reveal 
Alpha band specific cortical activation. Finally, in Figure  6G, 
we show power spectral density estimate using Welch method 
to compare power spectral distribution from model against 
empirical power spectral distribution displayed in Figure  6B. 
Power spectral density from computational model reveals ERSP 
(in dB) exhibits maximum in the Alpha and Beta frequency band 
as observed in the experimental results.

Next, we present preliminary results based on simulation of 
computational NMM. Our preliminary investigations suggest that 
modulation of feedback inhibitory synaptic strength plays criti-
cal role in the model. Recent evidence for plasticity in inhibitory 
connections (78) motivates underlying biophysical parameter 
space explorations. Role of inhibition is further demonstrated 
in a computational cortical model proposed recently by Reato 
et  al. (14) and Vattikonda et  al. (27), a thalamo-cortical mean 
field model by Roy et al. (36). Our computational results show 



FiGUre 6 | alpha band oscillations and state dependent reorganization in the cortex. Figure adapted and modified from Sigala et al. (35). (a) Alpha and 

Beta band power in channels distributed over left somatosensory, motor cortex (contralateral side to the tactile stimulation side). (B) Two prominent power spectral 

peaks one at 10–12 Hz (central μ Alpha) and the other at 15–20 Hz (Beta band). (C) The evoked somatosensory response potential (ERSP) to repetitive stimulation 

where maximum powers in decibel are located in the two identified frequency bands. (d) Temporal dynamics of amplitude exhibit ERD followed by stimulation.  

(e) Simulated mean field EEG activity is shown for the somatosensory, motor cortex based on channel location map. (F) A representative example of Alpha band 

specific cortical activation. (G) Power spectral density estimate using Welch method to compare power spectral distribution from model against empirical power 

spectral distribution displayed in (B).
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that the modulation of strength of specific synapses changing 
(EI) or (IE) synapses strongly modulated Alpha band amplitude, 
power (10–12  Hz) (Figure  7). Average firing rate of excitatory 
units are more sensitive to changes in EE connections (Figure 7). 
Steady state solutions in the parameter space that concurs with 
the present experimental observation are indicated with an “C” 
for control (no stimulation) and “+”, “−” for anodal (positive) and 
cathodal (negative) electric field stimulation. Interestingly, along 
these diagonals, variables such as amplitude, power and firing-rate 
change while oscillatory frequency remains the same. Therefore, 
the computational results suggest that the observed sustained 
changes may be explained partly by the alteration of excitation 
matched by a corresponding change in feedback inhibition (a 
kind of homeostatic control mechanism). In Figure 7, we look 

at the evoked potential (EP) under simulated control conditions 
and also simulated with cathodal, anodal electric field stimula-
tions, respectively. This preliminary result suggests naively the 
operating point in the EE–EI or EE–IE parameter space that may 
bring the EP response closer to control whenever excess runway 
excitation is resulted from positive or more depression resulted 
from negative stimulation.

Transcranial direct current stimulation differs qualitatively 
from other brain stimulation techniques such as transcranial 
electrical stimulation (TES) and transcranial magnetic stimula-
tion (TMS). In case of tDCS, static fields in the stimulation 
range do not yield the rapid depolarization required to produce 
action potentials in neuronal membranes. Hence, tDCS might be 
considered a neuromodulatory intervention. In this stimulation, 



FiGUre 7 | Modulation of alpha band (brain state) amplitude, firing rate, ep with anodal and cathodal tdCs and ee, ei, ie synaptic parameters. In 

(a–d) EI or IE synapses strongly modulated alpha band amplitude, power (10– 12 Hz) (highest values of amplitude, firing rate is color coded in dark green; lowest 

values of the same are color coded in white). Population firing rate is more sensitive to changes in EE connections. Points in this parameter space that are consistent 

with the present experimental observation are indicated with an “C” for control (no stimulation) and “+” for anodal (positive) and “−” cathodal (negative) electric field 

stimulation. In (e–F), we look at the evoked potential (EP) under simulated control conditions (in black no stimulation) and also simulated with cathodal (in dark 

yellow), anodal electric field (in light yellow), stimulations, respectively [figure adapted and modified from Molaee-Ardekani et al. (40)].
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exposed tissue is polarized, and tDCS modifies spontaneous neu-
ronal excitability and activity by a tonic de- or hyperpolarization 
of resting membrane potential (42, 79). The efficacy of tDCS to 
induce acute modifications of membrane polarity depends on 
current density, which determines the induced electrical field 
strength (79) and is the quotient of current strength and electrode 
size. Also, for humans, it was shown that larger current densities 
result in stronger effects of tDCS. Due to very weak currents 
and the non-invasiveness of tDCS, this technique is suitable for 
modulation of the cerebral cortex, the most outer part of the 
brain, which lies closest to the surface electrodes attached to the 
patient’s head. This weak direct current applied non-invasively 
is strong enough to elicit significant effects on cortical activity. 
These effects cause the oxygen saturation levels to increase at 
the stimulated area in the healthy case. It has been shown that 
anodal tDCS enhanced activity and excitability of the ePN at 
a population level in a non-specific manner, where μ-rhythm 
de-synchronization found to be generated (43). Studies suggests 
that cathodal tDCS decreases the firing rate of neurons thereby 
down-regulating the activity and excitability of the ePN (43). 
Cathodal tDCS induces a decrease in regional CBF (rCBF) in 
cortical and subcortical areas (44). tDCS involves the use of at 
least two surface electrodes (one anode and one cathode) to 
deliver a stimulating current to the patient. Electrical current 

flows in the direction from anode to cathode for anodal tDCS. 
It  induces polarity-specific changes of cortical blood perfu-
sion (45). In fact, a significant correlation between tDCS current 
strength and increase in rCBF has been found (46) that can 
be captured using NIRS [Diffusion Correlation Spectroscopy 
(52)]. It has been postulated that CBF-alterations are causally 
related to tDCS-induced alterations in cortical excitability via 
neuro-vascular coupling. Anodal tDCS can increase rCBF during 
stimulation. Thus combining NIRS with tDCS can be an easy 
and economical setup for use in clinical population at risk for 
ischemic stroke (80).

Brain-state dependent adaptive 

tdCs system
We propose an online tDCS adaptation system, called Brain 
State Dependent electrotherapy (BSDE) system, whose central 
aim is achieving E–I balance for therapeutic intervention 
(see  Figure  8). The hemodynamic and electromagnetic vari-
ables corresponding to tDCS stimulation are estimated from the 
combined fNIRS and EEG system (as shown in Figure 5) using 
the framework developed by Dutta et al. (19). The Neural Mass 
Model system works as a generative model that takes the variables 
estimated from fNIRS and EEG such as ratio of oxygenated-to-
deoxygenated hemoglobin, band-specific power, event-related 



FiGUre 8 | adaptive Brain state dependent electrotherapy (Bsde). The block diagram depicts combined recording of brain signals from fNIRS and EEG. 

Brain signals recorded during online tDCS convey relevant EEG and Hemodynamic parameters. This parameter set provides the current brain state. An independent 

block diagram is presented in the form of a neural mass model (NMM). Output neuronal signal convolved with a Balloon model to generate Hemodynamic response 

and EEG forward model is used as a generator of EEG activity from specific channel location where stimulation is applied. Generative model parameters are 

adjusted and calibrated based on the comparison between simulated and measured current brain states. Generative model estimates the predicted E/I state as 

shown in the block diagram. Predicted E/I states are compared with a Multilayer Neural Network (NN) model that is pre-trained offline with control signals taken from 

healthy and patient populations. tDCS stimulation parameters are derived in the online control module by arriving at a match between the predicted E/I and 

measured E/I values. This stimulation parameter values are then used for application of tDCS.
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de-synchronization (ERD), etc., in order to compute the E–I 
balance state corresponding to the current stimulation epoch. 
The estimated state from the NMM system is used along with the 
current stimulation parameters (such as amplitude of stimulation 
current and the duration of stimulation) as inputs to a trained 
model in order to predict the required parameters for anodal 
and cathodal tDCS. These predictions are used in conjunction 
with the control chart shown in Figure  7 to arrive at optimal 
stimulation protocol to achieve target E–I balance. Trained model 
that maps current E–I state and stimulation parameters to the 
target values is constructed off-line using data from patient and 
healthy controls. The proposed closed-loop system is aimed at 
online adaptation of the tDCS stimulation protocol for efficient 
and effective therapy.

disCUssion

Because the state of brain networks is more likely to be altered 
depending on the impact of damage, perturbation to neural state; 
the stimulation strategies that work fairly accurately in healthy 
control may need to be adapted for clinical applications. In this 
perspective article, we have proposed brain state dependent 
NIRS-EEG neuroimaging of those brain networks during NIBS 
and an understanding of operating point based on computational 
models. To address this systematically interactions between a 
particular brain state and E–I balance in a group of neurons 

located in a target brain area during focal perturbation is abso-
lutely necessary to identify the operating point of the parameter 
space. Recent in  vivo and in  vitro studies have demonstrated 
that the electric fields whose amplitude is comparable to the one 
expected in NIBS, can modulate firing rate (81), Spike timing 
(82), and the magnitude of the synaptic responses (45). Reato and 
coworkers (14) have shown that acute effects of weak electrical 
stimulation can be amplified during endogenous oscillatory 
activity. Weak constant current electrical stimulation applied for 
a longer period of time can induce lasting effects, measureable 
potentially as altered Gamma frequency band power and multi-
unit activity (MUA). Importantly, this poststimulation effect 
was consistent with the acute effect, reminiscent of Hebbian like 
activation or neuroplastic effects. In this article, we also propose 
an online, adaptive, closed-loop control framework for NIBS 
whose central objective is to restore E–I balance that has been 
perturbed following neural impairment. Online balancing of E–I 
is achieved by matching the current brain state estimated from 
fNIRS and EEG with that predicted by a generative computational 
model comprising neural masses. Subsequently the predicted 
E–I state is compared with a target operating point in order to 
adjust the stimulation protocol. Our proposed framework for a 
BSDE combined with generative large-scale biologically realistic 
computational models is presented here in the form of an E–I 
balance hypothesis (see Figure  8). We expect that numerous 
testable predictions would come out from our approach that not 
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only will benchmark our model as a tool for clinical research 
but also would provide systematic insight about the limitation 
of certain existing protocols with regards to NIBS. Independent 
of this study, a computational modeling work constrained by 
combined EEG–fNIRS imaging (16) is currently underway to 
test the limitation and success of this framework as an adjuvant 
therapeutic approach to improve efficacy of rehabilitation.
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