We present results from a comprehensive numerical study of morphological phase separation (MPS) in unstable thin liquid films on a 2-dimensional substrate. We study the quantitative properties of the evolution morphology via several experimentally relevant markers, e.g., correlation function, structure factor, domain-size and defect-size probability distributions, and growth laws. Our results suggest that the late-stage morphologies exhibit dynamical scaling, and their evolution is self-similar in time. We emphasize the analogies and differences between MPS in films and segregation kinetics in unstable binary mixtures. © the Owner Societies 2011.