Header menu link for other important links
X
Modeling Barkhausen Noise in magnetic glasses with dipole-dipole interactions
A.K. Dubey, H.G.E. Hentschel, , C. Mondal, I. Procaccia, B. Sen Gupta
Published in Institute of Physics Publishing
2015
Volume: 112
   
Issue: 1
Abstract
Long-ranged dipole-dipole interactions in magnetic glasses give rise to magnetic domains having labyrinthine patterns on the scale of about 1 micron. Barkhausen Noise then results from the movement of domain boundaries which is modeled by the motion of elastic membranes with random pinning. Here we propose that on the nanoscale new sources of Barkhausen Noise can arise. We propose an atomistic model of magnetic glasses in which we measure the Barkhausen Noise which results from the creation of new domains and the movement of domain boundaries on the nanoscale. The statistics of the Barkhausen Noise found in our simulations is in striking disagreement with the expectations in the literature. In fact we find exponential statistics without any power law, stressing the fact that Barkhausen Noise can belong to very different universality classes. In the present model the essence of the phenomenon is the fact that the spin response Green's function is decaying too rapidly for having sufficiently large magnetic jumps. A theory is offered in excellent agreement with the measured data without any free parameter. © EPLA, 2015.
About the journal
JournalEPL
PublisherInstitute of Physics Publishing
ISSN02955075