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Linear Event-triggered System
Niladri Sekhar Tripathy, I. N. Kar and Kolin Paul

Abstract

This paper proposes a framework to design an event-triggered based robust control law for linear uncertain system. The robust
control law is realized through both static and dynamic event-triggering approach to reduce the computation and communication
usages. Proposed control strategies ensure stability in the presence of bounded matched and unmatched system uncertainties.
Derivation of event-triggering rule with a non-zero positive inter-event time and corresponding stability criteria for uncertain
event-triggered system are the key contributions of this paper. The efficacy of proposed algorithm is carried out through a
comparative study of simulation results.

Index Terms

Event-triggered control; robust control; event-triggered based robust control; dynamic event-triggered control; aperiodic
control; input to state stability.

I. INTRODUCTION

Aperiodic sensing, communication and computation play a crucial role for controlling resource constrained cyber-physical

systems. It is shown in [1]-[4] that aperiodic sampling has more benefits over periodic sampling, which motivates control

researchers towards event-triggered control. In event-triggered control, sensing, communication and computation happens only

when any predefined event condition is violated. Event-triggered control strategy finds applications in different control problems

like tracking [5], estimation [6]-[7] etc. Event-triggered system is modeled as a perturbed system in continuous and discrete

time domain respectively [3], [8]. Also the behaviour of such system is described by an impulsive dynamics in literature

[9]-[10]. To achieve larger average inter-event time, [11] proposes a dynamic event-generating rule over the previous approach

[3], which makes event-triggered strategy more computationally efficient and predictable. The input to state stability (ISS)

property [12]-[13] is exploited to prove the closed loop stability and to define triggering condition for event-triggered system.

Sahoo et al [10], [14] proposed an event based adaptive control approach for uncertain systems. They use a neural network to

estimate the nonlinear function to generate the control law. In event based robust control problems, the uncertainty is mainly

considered in the communication channel in the form of time-delay or data-packet loss [15]. The main shortcoming of the

classical event-triggered system lies in the fact that one must know the exact model of the plant apriori. A plant with an

uncertain (system) model is a more realistic scenario and has far greater significance. However, there are open problems of

designing a control law and triggering conditions to deal with system uncertainties. These uncertainties mainly arise due to

system parameter variations, unmodeled dynamics, disturbances etc. which require the design of robust controller. An optimal

control approach to robust controller design for the uncertain system has been reported in [16]-[19]. The applications include

tracking problem in robot manipulator [20]-[21], set-point regulation in CSTR system etc. To achieve an optimal solution to

the robust control problem there is a need to minimize a cost functional. In this direction, a non-quadratic cost functional is

utilized to solve robust control problem with input constraint [18]-[19]. In the above mentioned approach, event-trigger based

implementation of robust control law is not considered which is essential in the context of networked control systems (NCS).

This paper considers the robust control strategies of linear uncertain system with limited state and input information. The

limited state information is considered to address the channel unreliability or bandwidth constraint which is a very common

phenomena in NCS. To capture the channel unreliability and bandwidth limitations, event-triggered control strategy is adopted

[22]. With limited information, existing robust control results in [16]-[17] can not be simply extended to the event-triggered

system is the primary motivation for this work. This paper proposes a novel event based robust control strategy for both

matched and unmatched uncertain systems. In a matched system, it is assumed that the unknown uncertainty is in the span

of control input matrix. This assumption does not hold in case of the unmatched system. Here control input is computed and

updated only when an event is generated. A conceptual block diagram of the proposed framework is illustrated in Figure 1

where the system, sensor and actuator are co-located but the controller is connected thorough a communication network. A

dedicated computing unit monitors the event condition at the sensor end. The aperiodic state transmission to controller and

control input update instant {tk}k∈I over the network is decided by the same event-triggering law. For simplification, it is

assumed that there is no communication, computation and actuation delay in the system. To design robust control law, an
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Figure 1: Conceptual Block diagram of proposed event-trigger based robust control. Dotted line represents the aperiodic

information transmission through the communication channel. Here x(tk), u(tk) are representing eventual state and contol

input respectively.

equivalent optimal control problem is formulated with an appropriate cost functional which takes care of the upper bound

of system uncertainty. The nominal system dynamics is used to compute the optimal controller gain which minimizes the

cost-functional. A zero-order-hold (ZOH) at the actuation end holds the last transmitted control input until the transmission

of next input. The analysis of this system is done in continuous time domain. The proposed method is verified for both static

and dynamic event-triggering rule. In both cases corresponding triggering rule and their stability criteria for matched and

unmatched uncertain system have been derived. The advantage of the proposed control strategy is that it significantly reduces

the number of control input transmission and computation in spite of system uncertainties.

Summary of contribution: The main contributions of this paper are summarized as follows.

• Defining an optimal control problem to design a robust control law for both matched and unmatched uncertain system.

• Deriving static and dynamic event-triggering rule for uncertain system using the upper bound of system uncertainty.

• Ensuring stability of closed loop system using ISS Lyapunov function.

• Deriving a positive non-zero lower bound of inter-execution time.

• A comparative study is carried out to verify the efficacy of event-triggered robust control law.

Organization of paper: The paper is organized as follows. In Section II, we briefly review of ISS, matched and unmatched

system uncertainty and optimal approach to robust control design. Section III and IV discuss the optimal control approach to

solve the robust stabilization problem for event-triggered system with system uncertainty. Here both static and dynamic event

triggering conditions are stated in the form of theorems and their corresponding proofs are reported. In section III we also

give a mathematical expression of the minimum positive inter-event time. Two different examples with simulation results are

discussed in Section V to validate the proposed control algorithm. Section VI concludes the paper.

Notation: The notation ‖.‖ is used to denote the Euclidean norm of a vector x ∈ R
n. Here R

n denotes the n dimensional

Euclidean real space and R
n×m is a set of all (n × m) real matrices. R+

0 and I denote the all possible set of positive real

numbers and non-negative integers. X ≤ 0, XT and X−1 represent the negative definiteness, transpose and inverse of matrix X ,

respectively. Symbol I represents an identity matrix with appropriate dimensions and time t∞ implies +∞. Symbols λmin(P )
and λmax(P ) denote the minimum and maximum eigenvalue of symmetric matrix P ∈ R

n×n respectively. A function f :

R≥0 → R≥0 is K∞ if it is continuous and strictly increasing and it satisfies f(0) = 0 and f(s) → ∞ as s → ∞.

II. PRELIMINARIES & PROBLEM STATEMENT

A. Preliminaries

1) Input to state stability: In state space form, a linear system with disturbance d(t) ∈ R
n is expressed as

ẋ(t) = Ax(t) +Bu(t) + d(t) (1)
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where x(t) ∈ Rn, u(t) ∈ Rm are used to represent system’s states and control input respectively. For simplification from now

onwards, x(t) and u(t) are denoted by x and u respectively. Assuming disturbance function d(t) as an external input and it is

always bounded by a known function dm(t) i.e. ‖d(t)‖ 6 dm(t). The above system (1) is said to be ISS with respect to d(t)
if there exist an ISS Lyapunov function. For analyzing ISS of the above system, following definition is introduced [12]-[13].

Definition 1. A continuous function V : Rn → R is an ISS Lyapunov function for system (1) if there exist class k∞ functions

α1, α2, α3 and γ for all x, d ∈ R
n and it satisfy

α1(‖x(t)‖) ≤ V (x(t)) ≤ α2(‖x(t)‖) (2)

∇V (x)ẋ ≤ −α3(‖x(t)‖) + γ(‖d(t)‖) (3)

2) System uncertainty: In (1), system matrix A and input matrix B may depend on some uncertain parameters. In general

system uncertainty is classified in two categories namely matched and unmatched uncertainty. They are defined as follows:

System with matched uncertainty: A linear system having system-uncertainty is described by

ẋ = A(p)x+Bu (4)

where p ∈ P is an uncertain parameter vector. The system (4) has matched uncertainty if there exists a bounded uncertain

matrix φ(p) ∈ R
m×n such that

A(p)−A(p0) = Bφ(p) (5)

for any p ∈ P , where p0 is known nominal parameters and A(p0) is nominal system matrix. In other words system uncertainty

is assumed to be in the range space of input matrix B. The condition (5) is made to simplify the derivation of stability results.

It is assumed that there exits a positive semi definite matrix F to represent the upper bound of the uncertainty i.e.,

φ(p)Tφ(p) ≤ F (6)

for all p ∈ P .

System with unmatched uncertainty: System (4) have unmatched uncertainty if its uncertainty is not in the range of input

matrix, B. In general system uncertainty (A(p) − A(p0)) can be decomposed in matched and unmatched component using

pseudo-inverse B+ of input matrix B [24]. Using B+ = (BTB)−1BT , the uncertainty introduced in (4) can be written as

A(p)−A(p0) = BB+(A(p)−A(p0)) + (I −BB+)(A(p)−A(p0)) (7)

Here BB+(A(p)− A(p0)) is matched and (I − BB+)(A(p)− A(p0)) is an unmatched component of system uncertainty. It

is assumed that ∀ p ∈ P their exist Fu > 0 and H > 0, such that following holds:

(A(p)−A(p0))
T (B+)TB+(A(p)−A(p0)) ≤ Fu (8)

α−2((A(p)−A(p0))
T (A(p)−A(p0)) ≤ H (9)

Here the scalar α ≥ 0 is a design parameter. Now to stabilize (4) with matched uncertainty (5) (or unmatched uncertainty (7)),

we need to design a robust controller. The primary aim of robust controller is stated as follows:

3) Robust control problem: Find a state feedback control law u = Kx such that the uncertain system (4) is stable with (5)

or (7) for any p ∈ P .

To solve the above mentioned robust control problem, this paper has adopted an optimal control approach. The essential idea is

to compute the optimal control input for the nominal system which minimizes the modified cost functional. The cost functional

is called modified cost functional as it depends on the upper bound of system uncertainty. The obtained optimal control input

for nominal system is shown to be a robust control input for the actual uncertain system. Here the system (4) may have matched

or unmatched uncertainty. In both cases their corresponding nominal dynamics and cost functional are considered as follows:

• Nominal dynamics and cost functional for matched uncertain system are described as

ẋ = A(p0)x+Bu1 (10)

Jm =

∫ ∞

0

(xTFmx+ xTQx+ uT
1 Ru1)dt (11)

The matrix Fm ≥ 0 is the upper bound of matched uncertainty and it is defined as

φ(p)TRφ(p) ≤ Fm (12)

• Auxiliary dynamics and cost functional for the unmatched uncertain system are defined as

ẋ = A(p0)x+Bu2 + α(I −BB+)v (13)

Ju =

∫ ∞

0

(xT (Fu + ρ2H + β2I)x+ uT
2 u2 + ρ2vT v)dt (14)
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The state feedback control input u1 = K1x is used to stabilize (10). Similarly control inputs u2 = K2x and v = Lx are used

for (13). The control input v is an auxiliary control input which ensures robustness in-spite of unmatched uncertainty. Now to

design a robust control law using optimal control approach, following lemma is introduced [16]-[17], [19].

Lemma 1. Suppose we have an optimal control solution of nominal system (10) for matched system [(13) for unmatched]

with a modified cost functional (11) [(14) for unmatched]. Then the optimal control law for the nominal system will be the

robust control solution of the original system (4) for all bounded system uncertainty (5) [unmatched uncertainty (7)].

Proof. A detailed explanation is given in Appendix A. �

B. Problem description and statement

In this paper, we realize the above mentioned robust control problem through an aperiodic state feedback control law.

This formulation helps to realize such controller in the network control domain with limited state information. The aperiodic

control input computation and actuation instant is determined through a predefined state-dependent event condition. This event

condition is derived from a stability criteria. Now if {tk} represents (aperiodic state transmission, control input computation

and actuation instant) the event occurring instant, then the event-based state feedback control input will be

u(tk) = Kx(tk), (15)

which replaces the general continuous time state feedback control law u(t) = Kx(t). To solve the robust control problem

through a aperiodic control law (15) the uncertain linear system (4) can be rewritten as

ẋ = A(p)x(t) +Bu(tk) (16)

for any p ∈ P . Adopting the concepts introduced in [3], the event-based closed loop system (16) reduces to

ẋ = A(p)x+BK(x+ e) (17)

Here the variable e ∈ Rn is referred to as measurement error and is defined as

e(t) = x(tk)− x(t), ∀t ∈ [tk, tk+1), k ∈ I (18)

Using (17) and (5) the event-triggered system with matched uncertainty is described as

ẋ = A(p0)x+Bu1 +B(φ(p)x+K1e) (19)

For unmatched uncertainty (7), the event-triggered system (17) is written as

ẋ = A(p0)x+BK2(x+ e) + α(I −BB+)L(x+ e) +BB+(A(p)−A(p0))x

+(I −BB+)(A(p)−A(p0))x− α(I −BB+)L(x+ e) (20)

Problem statement: The design of the controller gain K1 for (19) and K2 along with L for (20) to stabilize an uncertain

event-triggered system (19) or (20) such that the entire closed loop system is ISS with respect to its measurement error e
(defined in (18)) is the problem that we attempt to solve. The solution to the problem is derived in two steps. Firstly, we

design a controller using Lemma 1 and then define an event-triggering rule such that the closed loop system (19) [or (20)] is

ISS. These two solution steps are briefly discussed in next two subsections.

1) Controller design: The system (10) is the nominal dynamics of (19) for matched system. Now using Lemma 1 the

optimal controller gain K1 of (10) which minimizes the cost functional (11) will be the robust solution of (19). Similarly for

unmatched system optimal gain K2, L of (13), that minimizes cost functional (14), is the robust solution for (20).

Step 1 For matched system, control input u(t) is designed by minimizing Jm. Suppose V (x) be a Lyapunov function for

(19), using optimal control results V (x) should satisfy Hamilton Jacobi Bellman (HJB) equation [23], [17]

minu1∈Rm(xTFmx+ xTQx+ uT
1 Ru1 + V T

x (A(p0)x+Bu1) = 0 (21)

where Vx = ∂V
∂x

and u1 = K1x. The equation (21) reduces to

(xTFmx+ xTQx+ uT
1 Ru1 + V T

x (A(p0)x+Bu1) = 0 (22)

Step 2 According to optimal control theory, the optimal input u1(t) should minimize the Hamiltonian [23]

H(x(t), u1(t), Vx) = xTFx+ xTQx+ uT
1 Ru1 + V T

x (A(p0)x+Bu1) (23)

which leads to
∂H(x(t), u1(t), Vx, t)

∂u1(t)
= 2xTKT

1 R+ V T
x B = 0 (24)
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Step 3 For solving an infinite-time linear quadratic regulator (LQR) problem, a quadratic function V (x) = xTSx is defined,

where matrix S > 0. With this choice the HJB equation reduces to the following algebraic Riccati equation

SA(p0) +A(p0)
TS + Fm +Q− SBR−1BTS = 0 (25)

The solution S of (25) is used to compute the optimal control input u1 which is

u1(t) = −R−1BTSx(t) = K1x(t) (26)

Step 4 Control gain K1 for (10) and aperiodic state information of original system x(tk) are used to compute the control

law

u1(tk) = K1x(tk) (27)

The above mentioned steps 1 to 4 are also adopted for the unmatched system (13) with cost functional Ju (14). The control

input u2(t) and auxiliary input v(t) are computed if the following are satisfied:

xT (Fu + ρ2H + β2I)x+ uT
2 u2 + ρ2vT v + V T

x (A(p0)x+Bu2 + α(I −BB+)v) = 0 (28)

xTKT
2 + V T

x B = 0 (29)

2ρ2xTLT + V T
x α(I −BB+) = 0 (30)

In LQR problem, the HJB equation (28), reduces to a following algebraic Riccati equation

ŜA(p0) +A(p0)
T Ŝ + Fu + ρ2H + β2I − Ŝ(BBT + α2ρ−2(I −BB+)2)Ŝ = 0 (31)

The solution Ŝ > 0 of (31) is used to compute control input u2 and auxiliary input v and given by
[

u2(t)
v(t)

]

=

[

−BT Ŝ

−αρ2(I −BB+)Ŝ

]

=

[

K2

L

]

x(t) (32)

The optimal controller gain K2 for (13) is used to generate the robust event-triggered control input for (20) and it is written as

u2(tk) = K2x(tk) (33)

Now for event-triggered control it is important to design the event triggering instant such that uncertain system (16) is ISS

with a aperiodic control law (15). The approach for deriving the triggering law is discussed below.

2) Triggering condition design: Given an uncertain system (16) with a linear controller (15) there must have an event-

triggering instant tk∈Iwith a positive inter-execution time (tk+1 − tk = τ > 0) such that the closed loop system (16) is ISS.

To prove this there must have an ISS Lyapunov function with the time derivative in the form of (3). The ISS condition in the

form of (3) helps to construct the event-triggering rule in-terms of measurement error norm ‖e(t)‖ and the state norm of the

system original system ‖x(t)‖. To design the event-triggering law for matched system (19) and unmatched system (20), the

ISS Lyapunov functions are considered as follows:

• ISS Lyapunov function for matched system:

Vm(x) = xTSx (34)

• ISS Lyapunov function for unmatched system:

Vu(x) = xT S̃x (35)

III. STATIC EVENT-TRIGGERED ROBUST CONTROL

This section describes static event-triggering law for both matched and unmatched uncertain systems. Here the main results

of this paper are stated in the form of following theorems and proofs.

Theorem 1. Suppose the controller gain matrix K1 is designed for the nominal system (10) by minimizing the cost functional

(11). The matched uncertain system (19), with even-trigger based controller (27), is ISS if there exist a static event occurring

sequence {tk}k∈I given by

t0 = 0, tk+1 = inf{t ∈ R|t > tk ∧ µ1‖x‖ − ‖e‖ ≤ 0} (36)

where parameter µ1 is defined in (42).

Proof. To prove ISS of (19), it is necessary to simplify the derivative of ISS Lyapunov function V (x) in the form of (3). Here

the expression of V (x) is same as Vm(x), as defined in (34). The time derivative of V (x) along the trajectories of (19) can

be written as

V̇ (x) = V T
x ẋ (37)

= V T
x (A(p0)x+BK1x+Bφ(p)x+BK1e)
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Using (22) and substituting V T
x = 2xTS

V̇ (x) = −xTFmx− xTQx− uTRu− 2xTKT
1 Rφ(p)x+ 2xTSBK1e

= −xT ((Fm − φ(p)TRφ(p)) +Q+ (K1 + φ(p))TR(K1 + φ(p)))x+ 2xTSBK1e

According to Definition 1, the condition (3) holds if

α(‖x‖) =
λmin(Q1)

2
‖x‖2 (38)

γ(‖e‖) =
2‖SBK1K

T
1 B

TS‖

λmin(Q1)
‖e‖2 (39)

In the above expression,

Q1 = (Fm − φ(p)TRφ(p)) +Q+ (K1 + φ(p))TR(K1 + φ(p)) (40)

From (3), (38) and (39) it can be written that the following triggering condition need to be violated to update the control input.

‖e‖ ≤ µ1‖x‖ (41)

Here notation µ1 is used to represent

µ1 =
σλmin(Q1)

2‖SBK1‖
(42)

Also (41), (42) suggest the time instant at which the event has occurred.

t0 = 0, tk+1 = inf{t ∈ R|t > tk ∧ µ1‖x‖ − ‖e‖ ≤ 0} (43)

Using (43), V̇ (x) becomes

V̇ (x) ≤ (σ − 1)λmin(Q1)‖x‖
2

Therefore the uncertain static event-triggered system (19) is stable ∀ σ ∈ (0, 1). �

Remark 1. It is seen from (6) that the first term of Q1 is a positive definite matrix. The bound on final term of Q1 is derived as

(K1 + φ(p))TR(K1 + φ(p)) 6 ‖KT
1 RK1‖+ λmax(RFm). The positiveness of all three terms ensure the positive definiteness

of Q1.

Remark 2. In the absence of uncertainty, φ(p) = 0, the expression (36) reduces to the similar results reported in [3], [11].

In this sense, the proposed algorithm generalizes the existing results and also valid for uncertain systems.

The results for unmatched system is stated in the form of following theorem:

Theorem 2. Suppose the controller gain matrices K2 and L are designed for the nominal system (13) by minimizing the cost

functional (14) and the inequality β2I− 2ρ2LTL > 0 holds, then the uncertain system (20), with event-based control law (33)

is ISS if there exist a static event occurring sequence {tk}k∈I given by

t0 = 0, tk+1 = inf{t ∈ R|t > tk ∧ µ2‖x‖ − ‖e‖ ≤ 0} (44)

where the design parameter µ2 is defined in (50).

Proof. Assume Vu(x) is an ISS Lyapunov function of (20) and denote Vu(x) by V (x). The time derivative of V (x) along the

state-trajectory of (20) is simplified as

V̇ (x) = V T
x ẋ

= V T
x (A(p0)x+BK2x+BK2e) + V T

x α(I −BB+)Lx+ V T
x α(I −BB+)Le

+V T
x BB+(A(p)−A(p0))x+ V T

x (I −BB+)(A(p)−A(p0))x+ V T
x α(I −BB+)(Le+ Lx)

Using (28), (29) and (30)

V̇ (x) = −xT {(Fu + ρ2 + β2I) +KT
2 K2 + ρ2LTL+ 2KT

2 B
T (A(p)−A(p0))

+2α−1ρ2LT (A(p)−A(p0))}x+ 2xT S̃BK2e

Implying the upper bound mentioned in (8), (9) and after simplification the above equality turns to the following inequality.

V̇ (x) ≤ −λmin(Q2)‖x‖
2 + ‖S̃BK2K

T
2 B

T S̃‖‖e‖‖x‖ (45)

Now as per Defination I the ISS condition mentioned in (2), (3) holds if
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α(‖x‖) =
λmin(Q2)

2
‖x‖2 (46)

γ(‖e‖) =
2‖S̃BK2K

T
2 B

T S̃‖

λmin(Q2)
‖e‖2 (47)

In the above expression (46)

Q2 = β2I − 2ρ2LTL (48)

By hypothesis of Theorem 2, matrix Q2 > 0. Using (3), (46) and (47) it can be concluded that control input should update if

the following inequality is violated.

‖e‖ ≤ µ2‖x‖ (49)

Here parameter µ2 is defined as

µ2 =
σλmin(Q2)

2‖S̃BK2‖
(50)

Equation (49), (50) also suggest the time instant when the condition (49) dose not hold and it is expressed as

t0 = 0, tk+1 = inf{t ∈ R|t > tk ∧ µ2‖x‖ − ‖e‖ ≤ 0} (51)

Using (51) the trajectory of V (x) will be bounded by

V̇ (x) 6 (σ − 1)λmin(Q2)‖x‖
2 (52)

which ensure that V̇ (x) is decreasing ∀σ ∈ (0, 1). �

Theorem 1 & 2 ensure stability of uncertain systems (19), (20) by static event-triggering rule respectively. An algorithmic

representation of static event-triggered control with matched system uncertainty is given next.

Algorithm 1 Static event-triggered control for matched uncertain system

1: Initialization: t ⇐ 0, x ⇐ x0 , x(tk) ⇐ x0.

2: Given: A(p0), B, Fm, σ
3: Compute ‖x‖, ‖e‖ and µ1 using (42)

4: if ‖e‖ ≥ µ1‖x‖ then

5: Transmit x(tk) from system end to controller end.

6: Solve algebraic Riccati equation (25) and compute controller gain K1

7: Compute u1(tk) = K1x(tk)
8: Update u1(tk) in (27)

9: else

10: u1(t) = u1(tk−1)
11: end if

12: Return to line 3

Minimum time interval in between two consecutive events

In event-triggered control inter execution time depends on the evolution of ‖e‖/‖x‖ with respect to time. At tk the ratio of

‖e‖/‖x‖ is zero as measurement error e = 0. The next event will occur at tk+1, when the ‖e‖/‖x‖ turns to µ1. Using (51), the

minimum time required to evolve ‖e‖/‖x‖ from 0 to µ1 defines the lower bound of the inter-event time {tk+1−tk}∀k∈I = τ > 0.

Here inter-event time τ should be always a non-zero positive time interval to avoid the so called Zeno behaviour1. The minimum

time interval in between two consecutive events of proposed robust control mechanism is stated in the form of a theorem.

Theorem 3. ∀ σ ∈ (0, 1), the system (19) with triggering law (43) has strictly positive lower bound of inter-event time τ > 0
and it is expressed as

τ =
2

√

L2
3 − 4L2L1

ln{‖
2L2µ1 + L3

√

L2
3 − 4L2L1

‖‖
L3 +

√

L2
3 − 4L2L1

L3 −
√

L2
3 + 4L2L1

‖} (53)

where L1 = ‖(A(p0) +Bφ(p) +BK)‖, L2 = ‖BK‖ and L3 = L1 + L2.

1Infinite number of transmission and computation in a finite time [26].
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Proof. From [3] the time derivative of ‖e‖/‖x‖ can be written as

d

dt

‖e‖

‖x‖
≤

‖e‖‖ẋ‖

‖e‖‖x‖
+

‖x‖‖ẋ‖

‖x‖‖x‖

‖e‖

‖x‖

≤ (1 +
‖e‖

‖x‖
)
‖ẋ‖

‖x‖
(54)

Applying triangular inequality of vector norm on (19)

‖ẋ(t)‖ ≤ ‖(A(p0) +Bφ(p) +BK1)‖‖x‖+ ‖BK1‖‖e‖ (55)

Denoting L1 = ‖(A(p0) +Bφ(p) +BK1)‖ , L2 = ‖BK1‖ and the ratio
‖e‖
‖x‖ = y the inequality (55) is simplified as

dy

dt
≤ L1 + (L1 + L2)y + L2y

2 (56)

Applying comparison lemma [25] on (56), the differential inequality (56) turns to the following differential equality

Ω̇ = L1 + (L1 + L2)Ω + L2Ω
2 (57)

With a initial value Ω(0,Ω0) = Ω0, the solution Ω(t,Ω0) of ( 57) must satisfy the inequality y(t) ≤ Ω(t,Ω0). Thus the

inter-event time, τ is bounded by R
+ time to evolve Ω from 0 to µ1. The expression of τ can be derived by solving (57).

τ =
2

√

L2
3 − 4L2L1

ln

∥

∥

∥

∥

(N1 +N2)N3

(N1 +N3)N2

∥

∥

∥

∥

, ∀
√

L2
3 − 4L2L1 > 0

From (58) it is obvious that τ has positive value as N3 > N2. �

Remark 3. For unmatched uncertain system expression of τ is similar to (53) but the value of L1, L2 and L3 are L1 =
‖A(p0) + BB+(A(p) − A(p0)) + (I − BB+)(A(p) − A(p0)) + BK‖, L2 = ‖BK‖ and L3 = L1 + L2. In both cases the

expressions of L1 and L3 depend on unknown system uncertainty. Therefore to compute the lower bound of inter-event time, the

value of L1 and L3 are computed in entire uncertainty region such that τ is minimal. It is possible as the bound of parametric

uncertainty is known for both matched and mismatched systems.

IV. DYNAMIC EVENT-TRIGGERED ROBUST CONTROL

A. Girad proposed a dynamic event-triggering mechanism where a dynamic variable η(t) ≥ 0 is added to achieve larger

inter-event time [11]. The time evolution of new variable η(t) is expressed by the following differential equation.

η̇(t) = −β(η(t)) + σα(‖x(t)‖)− γ(‖e(t)‖) (58)

Here β, α, γ are smooth class K∞ functions and σ ∈ (0, 1). The preliminaries and efficiency of dynamic event-triggering

mechanism over the static one [3] is reported in [11]. In this section the dynamic event-triggering approach is adopted to solve

the present robust control problem with limited state and input information. The dynamic event triggering instant generated

for uncertain system is discussed through the following theorem.

Theorem 4. Suppose the controller gain matrix K1 is designed for the nominal system (10) by minimizing the cost functional

(11), then the augmented matched system (19), (58) with event-trigger based controller (27), is asymptotically stable if there

exist a dynamic event occurring sequence {tk}k∈I given by

t0 = 0, tk+1 = inf{t ∈ R|t > tk ∧ η(t)

+θ(µ1‖x‖ − ‖e‖) ≤ 0} (59)

Where µ1 is defined in (42).

Proof. From (58) the evolution of η(t) with respect to time can be defined as

η̇(t) = −λη(t) + (µ1‖x‖ − ‖e‖) (60)

Now select W (x(t), η(t)) = Vm(x) + η(t) as a Lyapunov function for augmented systems (19), (60). Then using (37) and

(60) the time derivative of W (x) can be written as

Ẇ (x) ≤ (σ − 1)λmin(Q1)‖x‖
2 − λη(t) (61)

Form (61), for any value of σ ∈ (0, 1) and η(t) > 0 the closed loop system (19) is ISS by dynamic event-triggering rule

(59). �

Remark 4. Dynamic event-triggering law for unmatched system is not discussed here. In that case triggering law will depend

on parameter µ2 and Q2, defined in (50), (48). The stability proof will be similar to the proof of Theorem 4. The mathematical
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expression of τ for dynamic, robust event-triggered strategies is not included in this paper. The existence of a strictly positive

inter-event time τ for dynamic event-triggered case is shown through numerical results which is discussed in subsequent section.

To realize dynamic event-triggered control following algorithm is considered.

Algorithm 2 Dynamic event-triggered control for matched uncertain system

1: Initialization: t ⇐ 0, x ⇐ x0 , x(tk) ⇐ x0.

2: Given value: A(p0), B, Fm, σ, η, θ
3: Compute ‖x‖, ‖e‖ and µ1 using (42)

4: if η(t) + θ(µ1‖x‖ − ‖e‖) ≤ 0 then

5: Transmit x(tk) from system end to controller end.

6: Solve algebraic Riccati equation (42) and compute controller gain K1

7: Compute u1(tk) = K1x(tk)
8: Update u1(tk) in (20)

9: else

10: u1(t) = u1(tk−1)
11: end if

12: Return to line 3

A. Guideline for a possible selection of design parameters

The parameters θ, σ and λ are used in (59)-(61). These parameters mainly affect the lower bound of inter-event time and

convergence rate of system state. This subsection introduces a possible selection guideline of such parameters. The convergence

of closed loop system (19) and (20) are directly associated with σ as seen in (61). As σ → 0 the convergence rate of (19) [or

(20)] equivalent to the ideal closed loop system (4). The generated event number can also be controlled by varying the value

of σ. similarly the parameter θ has contribution in the inter-event time τ . A possible selection procedure of parameter θ is

carried out by deriving a lower bound on τ . The results are stated in form of a theorem.

Theorem 5. ∀ σ ∈ (0, 1), η > 0 and θ > 0 the system (19), (60) with triggering law (59) has strictly positive lower bound

of inter-event time τ > 0 and it is expressed as

τ =

∫ µ1

0

dΓ
L1

µ1

+ (L2 + λ)Γ + ( 1
θ
+ L2µ1)Γ2

(62)

where L1 = ‖(A(p0) +Bφ(p) +BK)‖, L2 = ‖BK‖ and 0 < θ ≤ 1
L1−λ

.

Proof. The proof of this theorem is inspired by [11] and included in Appendix A. �

Remark 5. The existence of positive inter-event time is guaranteed in the range of 0 < θ ≤ 1
L1−λ

and it helps to select the

other parameter λ. The value of λ must satisfy λ ≤ L1 to make θ positive.

Remark 6. The expression of τ in (62) is derived for 0 < θ ≤ 1
L1−λ

. Similarly, an analytical bound on τ can also be derived

for θ > 1
L1−λ

. Note that the value of scalar L1 depends on uncertainty φ(p). Hence, it is difficult to say the exact value of

θ for which event-triggering law (59) have larger lower-bound τ . But it is possible to compute τ as the uncertain region is

known apriori.

Remark 7. The analytical expression of τ for mismatched system is not addressed here. But it can be derived using similar

approach with different L1, L2 and L3. The existence of larger average inter-event time of dynamic event-triggering rule over

the static one is shown numerically in the next section.

V. SIMULATION RESULTS AND COMPARISONS

This section explains two separate numerical examples to validate the theoretical results for both matched and unmatched

event-triggered systems.

A. Example 1

A second order linear system with matched uncertainty is shown below:
[

ẋ1

ẋ2

]

=

[

0 1
1 + p p

] [

x1

x2

]

+

[

0
1

]

u1
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Table I: Comparative results of event-triggered and conventional continuous robust control approach

Control mechanism τmax τmin τavg utotal

Without event-triggered control 0.001 0.001 0.001 3001

Static event-triggered control
0.06M 0.001M 0.05M 86M

0.14U 0.01U 0.07U 43U

Dynamic event-triggered control
0.10M 0.06M 0.08M 55M

0.44U 0.05U 0.16U 19U

Here A(p) =

[

0 1
1 + p p

]

, B =

[

0
1

]

and the uncertain vector p ∈ [−2, 2]. Event-triggered based closed loop system is given

by
[

ẋ1

ẋ2

]

= A(p)

[

x1

x2

]

+B(K1x+K1e)

To solve (25), matrices Q, R, Fm are selected as Q =

[

10 0
0 10

]

, R = 2 and φ(p)TRφ(p) =

[

p
p

]

R
[

p p
]

≤

[

8 8
8 8

]

= Fm

Using the above matrices, the solution of (25) is obtained as S =

[

16.89 6.89
6.89 6.89

]

. The optimal controller gain K1 is calculated

as K1 = −R−1BTS =
[

−4.1623 −4.1623
]

. The scalar λmin(Q1) = 10 is calculated from (40) using maximum upper

bound of the uncertain parameter p = 2. To compute tk, the design parameters are selected as σ = 0.98, θ = 0.1 and k = 0.6.

The simulation is executed for 4.5 second with initial condition [0.2,−0.35]T for static and [0.2,−0.35, 0.01]T for dynamic

event-triggered control. Here the parameter p varies sinusoidally according to the equation p = 2sin(t). Figures 2a, 2b show

the time evolution of control input and its update time instant for a conventional system which does not use the event-triggering

mechanism. It can be seen in Figures 3b and 4b that the error norm is bounded by a state dependent threshold. This signifies

that the closed loop system holds the ISS property. Figure 3a and 4a show the total number of events and their corresponding

positive inter-execution time for a matched system. From Table I, it is seen that the average inter-input computation time of

event-based control is 50 times larger than the conventional continuous one.

B. Example 2

We consider a second order unmatched uncertain system (20) where A(p) =

[

0 1 + p
1 0

]

, A(p0) =

[

0 1
1 0

]

, and B =

[

0
1

]

.

Here the uncertain parameter is p ∈ [−2, 2] and it varies sinusoidally. Using (7), (8) the matched and unmatched components

of uncertainty are calculated as BB+(A(p) − A(p0) =

[

0 0
0 0

]

, (I − BB+)(A(p) − A(p0)) =

[

p p
0 0

]

, Fu =

[

0 0
0 0

]

and

H =

[

4 4
4 4

]

. The parameters of (14) are selected as α = 1, ρ = 0.05 and β = 10. To solve (31), the algebraic Riccati equation

is rewritten as

ŜÃ+ ÃT Ŝ + Q̃− ŜB̃R̃−1B̃T Ŝ = 0

where Ã = A(p0) =

[

0 1
1 0

]

, B̃ =
[

B α(I −BB+)
]

=

[

0 1 0
1 0 0

]

, Q̃ = Fu + ρ2H + β2I =

[

104 4
4 104

]

and R̃ =
[

I 0
0 ρ2I

]

.

Using the positive definite solution of the Riccati equation Ŝ, the feedback control input u2 and v are computed as

[

u2

v

]

=





−9.9877 −11.1232
−4.9215 −0.4994

0 0





[

x1

x2

]

To compute the event-triggering conditions (49) and (59), parameters are selected as σ = 0.98, k = 0.6, λ = (1 − σ)k
and θ = 0.1. Here λmin(Q2) is calculated based on (48). The simulation is executed for 3.5 seconds with initial condition

[0.2, −0.35]T and [0.2, −0.35, 0.01]T for static and dynamic cases respectively.

Figure 5b and 6b show that the error norm is bounded by a state dependent threshold for the unmatched system. The total

number of events and their corresponding positive inter-execution time for unmatched system are shown in Figure 5a and 6a.

For the purpose of comparison, Table I shows the inter-execution time for both event-triggered and without event-triggered

control strategy. Here τmax, τmin, τavg are the maximum, minimum and average inter-event time respectively. The scalar utotal

represents the total number of time instants at which control input is updated during the simulation period. According to Table

I, the proposed event-triggered control strategy significantly reduces computation and transmission burden in the presence of

parametric uncertainty. It also establishes the efficiency of dynamic event-triggering approach, as the average inter-event time

is comparatively larger than the static one. The proposed event-based robust control law also ensures that the existence of

positive inter-event time.
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(a) Control input for without event-triggered control.
(b) The time instant at which the control input are
computated for without event-triggered robust control
(for first few miliseconds).

Figure 2: Robust control of matched system with continious control law.

(a) Number of event occurrence and time interval be-
tween two consecutive events for static event-triggered
control.

(b) Time evolution of ‖e‖ (which is always
within state state dependent threshold limit
µ1‖x‖ ) of static event-triggered control.

Figure 3: Static event-triggered control with matched uncertainty.

VI. CONCLUSION

This paper proposes a framework of event-triggered based robust control strategy for both matched unmatched uncertain

system. The proposed control law is valid for a wider class of linear systems in which event-triggering law is applicable.

To design the event-triggering law, both static and dynamic event-triggering mechanisms are adopted. The stability of closed

loop event-triggering system is proved to be ISS for bounded variation of parameters. An analytical expression of static

event-triggering mechanism ensure that the proposed method is free from the Zeno behaviour. The lower bound of inter-event

time for static event-triggered control is also derived. It is observed that the total number of control input computation and

information transmission are very less in an event-based mechanism over conventional system which do not use the event-

triggered approach.

The detailed analysis of design parameters, like θ, σ and k are not addressed in this paper. But theoretical analysis of these

(a) Number of event occurrence and time interval
between two consecutive events for dynamic event-
triggered control.

(b) Time evolution of ‖e‖ (which is al-
ways within state state dependent thresh-
old limit {η/θ + µ1‖x‖} ) of dynamic
event-triggered control.

Figure 4: Dynamic event-triggered control with matched uncertainty.



12

(a) Number of event occurrence and time interval be-
tween two consecutive events for static event-triggered
control.

(b) Time evolution of ‖e‖ (which is always within state
state dependent threshold limit µ2‖x‖ ) for static event-
triggered control.

Figure 5: Static event-triggered control with unmatched uncertainty.

(a) Number of event occurrence and time interval
between two consecutive events for dynamic event-
triggered control.

(b) Time evolution of ‖e‖ (which is always within state
state dependent threshold limit {η/θ + µ2‖x‖}) for
dynamic event-triggered control.

Figure 6: Dynamic event-triggered control with unmatched uncertainty.

parameters are necessary to find out the optimal values and their effects on system performance. The numerical results show

that average inter-execution time of dynamic event-triggered system is larger than the static one. However there need an

exact mathematical expression of inter-event time for dynamic event-triggering law. Self-triggered approach [27]-[28] may be

considered to solve the robust control problem as a future work.

APPENDIX A

Proof of Lemma 1. The present approach translates the robust control problem stated in Section II to an equivalent optimal

control problem [16], [18]. The proof consists of two parts.

A. Stability proof for matched uncertain system

If V (x) is the Lyapunov function for (10), then the time derivative of V (x) along the state trajectory of (4) is

V̇ (x) = Vxẋ = V T
x (A(p0)x+BK1x) + V T

x Bφ(p)x

Using (22), (24) and by adding and subtracting xTφ(p)TRφ(p)x, the V̇ (x) reduces to

V̇ (x) = −xT ((Fm − φ(p)TRφ(p)) +Q+ (K1 + φ(p))TR(K1 + φ(p))x (63)

≤ −xTx (64)

Now V̇ (x) ≤ 0 for x 6= 0, which ensure asymptotic stability of the original uncertain matched system (4), (5).

B. Stability proof for unmatched uncertain system

Similarly for a Lyapunov function V (x), the
dV (x)

dt
along the state trajectory of (4) is simplified using (8)-(9) and (28)-(30)

as

V̇ (x) 6 −xT (Fu + ρ2H + β2I)x− ρ2xTLTLx+ xTFux+ ρ2xTLTLx+ ρ2xTHx+ 2ρ2xTLTLx

= −xT (β2I − 2ρ2LTL)x (65)
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Now V̇ (x) ≤ 0 for x 6= 0 if the inequality β2I − 2ρ2LTL > 0 holds. Therefore the closed loop system (4), (7) is

asymptotically stable for all p ∈ P .

From the above two proofs, the optimal control input u1 of (10) or u2 of (13) are the robust control input for (4) which

proves the Lemma1. �

Proof of Theorem 5. In dynamic event-triggered control the inter-event time depends on the evolution of Γ, where

Γ =
θ ‖e‖

η + θµ1 ‖x‖
(66)

The time derivative of Γ along the direction of (19), (60) is simplified as

Γ̇ ≤
θ(L1 ‖x‖+ L2 ‖e‖)

(η + θµ1 ‖x‖)
+

θ ‖e‖

(η + θ + µ1 ‖x‖)2

{

λη − µ1 ‖x‖+ ‖e‖+ θµ1L1 ‖x‖+ θµ1L2 ‖e‖

}

≤
L1

µ1
+ (L2 + λ)Γ + (

1

θ
+ L2µ1)Γ

2 +
θµ1 ‖x‖

(η + θµ1 ‖x‖)

(

− λ−
1

θ
+ L1

)

Γ (67)

Selecting θ = 1
L1−λ

, the final term in (67) reduces to zero. Adopting the similar steps as described in Section III, the lower

bound of inter-event time for dynamic event-triggering is

τ =

∫ µ1

0

dΓ
L1

µ1

+ (L2 + λ)Γ + ( 1
θ
+ L2µ1)Γ2

(68)

To prove the positiveness of τ consider the function

g(Γ) =
L1

µ1
+ (L2 + λ)Γ + (

1

θ
+ L2µ1)Γ

2 (69)

which has all positive coefficients. The function (69) is a positive function as
dg

dΓ
> 0, ∀ Γ > 0. The Γ is a positive variable

as η, θ, and µ1 all are positive. Therefore integration of (69) over any positive interval is always positive. The expression (68)

is also valid for 0 < θ < 1
L1−λ

. This ends the proof. �
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