Header menu link for other important links
X
Modal analysis of dielectric barrier discharge-based argon cold plasma jet
G. Divya Deepak, N.K. Joshi,
Published in Cambridge University Press
2020
Volume: 38
   
Issue: 4
Pages: 229 - 238
Abstract
In this study, an atmospheric pressure dielectric barrier discharge-based argon plasma jet has been modeled using COMSOL Multiphysics, which is based on the finite element method. The fluid dynamics and plasma modules of COMSOL Multiphysics code have been used for the modeling of the plasma jet. The plasma parameters, such as electron density, electron temperature, and electrical potential, have been examined by varying the electrical parameters, that is, supply voltage and supply frequency for both cases of static and with the flow of argon gas. The argon gas flow rate was fixed at 1 l/min. Ring electrode arrangement is subjected to a range of supply frequencies (10-25 kHz) and supply voltages (3.5-6 kV). The experimental results of the ring electrode configuration have been compared with the simulation analysis results. These results help in establishing an optimized operating range of the dielectric barrier discharge-based cold plasma jet in the glow discharge regime without arcing phenomenon. For the applied voltage and supply frequency parameters examined in this work, the discharge was found to be consistently homogeneous and displayed the characteristics of atmospheric pressure glow discharge. Copyright © The Author(s) 2020. Published by Cambridge University Press.
About the journal
JournalData powered by TypesetLaser and Particle Beams
PublisherData powered by TypesetCambridge University Press
ISSN02630346