The Hf-40 wt pct Ti (Hf-Ti) alloy was developed for neutron poison application in the spent nuclear fuel reprocessing plant. The furnace-cooled Hf-Ti sample exhibited the microstructure comprising equiaxed-α, lamellar-α, and feathery-α. The water-quenched Hf-Ti sample confirmed the presence of lath and internally twinned martensite. In comparison to the furnace-cooled sample, low corrosion current density and passivation current density values obtained for the water-quenched Hf-Ti in 6 M HNO3 at 298 K (25 °C) indicated better passivation ability. The martensitic structure exhibited high hardness (660 HV) and negligible corrosion rate in 6 M nitric acid at 298 K (25 °C). X-ray photoelectron spectroscopic (XPS) analysis confirmed that passivation behavior of this alloy was due to the protective passive film composed of TiO2 and HfO2. © 2016, The Minerals, Metals & Materials Society and ASM International.