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Abstract: 

We studied the magnetic properties of bulk LaCrO3; a GdFeO3-type distorted perovskite, 

with a predominant antiferromagnetic phase transition at ~ 290 K. The bulk LaCrO3 exhibits 

intrinsic weak ferromagnetism at room temperature, which may arise due to the tilting of CrO6 

octahedra, resulting in a non-zero net magnetic moment, as confirmed from the magnetization 

measurements.  A broad magnetically-induced entropy change (-ΔS) is observed with the 

maximum at 290 K, close to room temperature in LaCrO3 system.  
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Introduction: 

Transition metal oxides have been studied for many decades because of their interesting 

and unusual electronic and magnetic properties arising from narrow 3d bands and on-site 

coulomb interactions [1]. A number of these complex oxides having perovskite, or distorted 

perovskite structures exhibit exotic electronic and magnetic properties such as BaTiO3 

(ferroelectric) and La1-xSrxMnO3 (colossal magnetoresistance)  with some systems, including 

TbMnO3, and BiFeO3 developing multiple ferroic orders simultaneously [2-5]. LaCrO3 has been 

studied for several decades due to its fundamental and technological interests. Some of the 

earliest work in mid 1950s by Jonker et. al and Koehler et. al on structural and magnetic 

properties of magnetic perovskite compounds including LaCrO3 [6,7]. Divalent ion substitution 

on La site of LaCrO3 gained a lot of interest due to its high refractory nature, and a good 

electrical conductivity is weakly temperature dependent over a very wide range of temperatures 

between room temperature and 2000 K, which was found to be suitable as an electrode in 

magnetohydrodynamic generators [8-10] and recently as an electrode material and interconnect 

for fuel cells [11]. Recently Zhou et. al has studied the detailed  temperature-pressure phase 

diagram for crystal and magnetic structures of LaCrO3 by in situ neutron diffraction under 

pressure [12]. LaCrO3 is a GdFeO3–type distorted perovskite material that crystallizes in an 

orthorhombic crystal structure with the space group Pnma [12, 13].  The distortion in LaCrO3 is 

due to the tilting of CrO6 octahedra in opposite directions (a-b+a- in Glazer notation) as the Cr-

O1-Cr bond angle (160o) is far from the 180o of an ideal perovskite. This distortion decreases the 

orbital overlap and width of the conduction band, leading to a non-collinear spin structure of the 

magnetic Cr3+ ions resulting in weak ferromagnetism. LaCrO3 exhibits antiferromagnetic 

ordering near room temperature [12], as confirmed in this current study. Considering the non-
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collinear arrangement of spins in LaCrO3 with spin-orbit coupling, we observed the non-zero 

magnetic moment is left out in its ground-state using density functional theory [14]. An intrinsic 

magneto-dielectric coupling in LaCrO3 has shown by temperature-dependent dielectric study in 

conjugation with an anomaly in optical phonon mode at antiferromagnetic ordering by Raman 

spectroscopy [15]. This suggests a strong spin-phonon coupling which in turns may lead to the 

large magnetically induced entropy change i.e. magnetocaloric effect which has magnetic 

refrigeration application [16]. Antiferromagnetic order, which lowers the overall symmetry 

cannot be created by a magnetic field from its high temperature paramagnetic phase in contrast 

to ferromagnetic order and the difference in symmetry between the two phases is maintained 

even in the presence of a magnetic-field [17]. Therefore, a higher entropy change is also 

expected pertaining to differences in symmetry above, and below the antiferromagnetic phase 

transitions and several efforts in recent times have been devoted to magnetocaloric effect study 

e.g.  antiferromagnetic to ferromagnetic transition in RMnO3 (R = Dy, Tb, Ho and Yb) 

compounds by  Midiya et. al [18], in multiferroic BiFeO3 by Ramachandran et. al [19], Ising 

antiferromagnet DySb by Hu et. al [20] and (Mn0.83Fe0.17)3.25Ge by Du et. al [21]. In the present 

work, we report on structural, compositional, and magnetic properties of LaCrO3 with emphasis 

on weak ferromagnetic properties near room temperature. 

Experimental:    

LaCrO3 was synthesized using La2O3 (99.99 %) and Cr2O3 (99.9%) as starting materials 

by a conventional solid-state reaction method. The mixture was preheated at 600 oC for 6 h prior 

to the calcinations. The sample was calcined twice with intermediate grinding at 850 oC for about 

24 h. The sample was not heated above 850 oC to conserve the stoichiometry of the compound, 

as in this case the color of sample has been found to turn yellowish brown from the intrinsic 
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green color, possibly due to the creation of La and O deficiencies in the lattice [22]. The powder 

x-ray diffraction (XRD) data of the calcined sample was collected using a PANalytical X’Pert 

Pro x-ray diffractometer with Cu Kα radiation under ambient conditions. Crystal structure 

refinements were carried out using General Structure Analysis System (GSAS) [23]. The 

elemental analysis of LaCrO3 was done using a Perkin-Elmer X-ray photoelectron spectroscopy 

(XPS) system, equipped with cylindrical analyzer and a highly monochromatic Al Kα (1486.6 

eV) X-ray source. The compact pellet of LaCrO3 was made using hydraulic press at high 

pressure and mounted on sample holder using double sided carbon tape. The working pressure of 

the chamber was maintained at ~ 10-9 torr during the experiment. The observed binding energies 

of each element were identified with the standard Perkin-Elmer database [24]. The temperature 

and field dependent magnetic properties were measured using a physical property measurement 

system (PPMS, Quantum Design, USA).  

Results and discussion:  

 The Rietveld refinement of LaCrO3 X-ray powder diffraction data is shown in figure 

1(a). The refinement was carried out using GSAS software for the orthorhombic crystal structure 

with the space group Pnma (# 62). The difference-profile (Diff.) between the observed (Obs.) 

and calculated (Calc.) diffraction pattern, as shown at the bottom of the plot. A good fit was 

obtained with R factors, wRp = 8.9 %, Rp = 4.3 %, and χ2 = 1.27. The lattice constants and 

volume of the unit cell are found to be a = 5.479(1) Å, b = 7.759(2) Å and c = 5.516(1) Å and V 

= 234.9 Å3 respectively which is in good agreement with earliar repoted values [12]. The inset in 

figure 1(a) shows the chemical unit cell of LaCrO3 which has a total of 20 atoms (4 La, 4 Cr and 

12 O) per unit cell. Each chemical unit cell of LaCrO3 has corner-linked octahedra CrO6  from 

the centers occupied by centrosymmetric Cr ions (blue) at Wyckoff position 4b (0, 0, 1/2). The 
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corner atoms of the octahedra are oxygen ions (red) with two inequivalent positions, the apex 

oxygen (O1 ion) at 4c (0.498, 0.25, -0.043) and planar oxygen (O2 ion) at 8d (0.262, 0.032, -

0.282). Lanthanum ions (brown) occupy the space between the octahedra at 4c (0.019, 0.25, 

0.007). The distortion from ideal perovskite structure happens because of the geometric tolerance 

factor of 0.903 as well as antiphase tilt of adjacent octahedra which in turn lead to Cr-O1-Cr 

bond angle ~ 160o. The XPS chemical binding energies of La, Cr, and O elements are shown in 

figure 1(b) and 1(c). The 3+ oxidation states of La with binding energies 3d5/2 ~ 835.2 eV and 

3d3/2 ~ 851.8 eV which is due to spin-orbit coupling of La 3d states together with satellite peaks 

~ 846 eV, confirms the phase purity of these LaCrO3 samples [25]. A clear doublet in both La 

3d5/2 and 3d3/2 is due to Coulomb energy between 3d core hole and 4f electron. The inset of 

figure 2(b) shows the O 1s binding energy at ~ 530.5 eV with a small feature at higher binding 

energies (532.5 eV) indicating the covalent nature of the bonding [26]. The 2p3/2 and 2p1/2 spin-

orbit doublet components of the Cr 2p photoelectron were found at binding energies ~ 576.8 eV 

and ~ 586.6 eV, respectively [27]. The observed binding energies of La and Cr in LaCrO3 system 

confirm the 3+ valence states of these elements. 

Zero field cooled (ZFC), and field cooled (FC) magnetization curves of the 

polycrystalline LaCrO3 sample were measured at a magnetic field of 1 kOe over the temperature 

range 10 – 380 K, as shown in of figure 2a. Curie-Weiss fit suggests a dominant 

antiferromagnetic ordering with very large Weiss temperature (1230 K) suggesting considerably 

important next neighbor interaction among Cr3+ magnetic moments. A phase transition from 

high temperature paramagnetic to low temperature antiferromagnetic order near TN ~ 290 K is 

observed as a sharp jump in magnetization. Similar but low temperature (140 K) weak 

ferromagnetic behavior is also observed for YCrO3 and heavy rare earth chromites [28, 29]. The 
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sharp increase in magnetization near the Néel temperature is a characteristic of weak 

ferromagnetism [30]. The remanent magnetization (Mr) and coercive field (Hc) of LaCrO3 at 

different temperatures were estimated as shown in figure 2b from magnetization (M) vs applied 

magnetic field (H) curves measured at different temperatures (for clarity few M-H curves are 

shown), inset of figure 2b. Below the Néel temperature, the magnetization curves show weak 

ferromagnetism and there is no indication of magnetic saturation to an applied magnetic field of 

50 kOe, consistent with the antiferromagnetic ordering. Abrupt jumps in the coercive field (Hc) 

and remanent magnetization (Mr) below the Néel temperature reflect contributions from 

uncompensated magnetic moments, providing support for the presence of weak ferromagnetism 

in LaCrO3[1, 14, 15, 30].    

We estimate the magnetic field-induced entropy change near the antiferromagnetic 

phase transition in LaCrO3 using the relationship [16],    

 

Where  is the permeability of free space. (considered zero in the present case) and  are 

the initial and final applied magnetic fields respectively. The magnetic entropy change was 

estimated from the first quadrant magnetization isotherms between 310 K and 250 K in steps of 5 

K (Figure 3 inset). The magnetic entropy change plotted against temperature is shown in figure 

3. The maxima in isothermal magnetic entropy change versus temperature T for different 

applied magnetic fields H, are peaked close to 290 K, which marks the onset of 

antiferromagnetic phase transition. It is interesting to note that upon antiferromagnetic ordering, 

under small applied magnetic field which don’t disturb the ground state of LaCrO3 shows a very 

small but positive entropy change which also indicates the weak ferromagnetic nature due to 
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anisotropy in the system [31]. The maximum entropy change  ~ 0.11 J kg-1K-1 was 

observed at an applied magnetic field of 80 kOe.  While this change is almost two orders of 

magnitude smaller than that observed in some other magnetocaloric materials, including Gd 

metal [16], understanding the mechanisms producing the MCE in LaCrO3 may lead to better 

materials in the future. Because the magnitude of the MCE depends strongly on the sample 

magnetization, increasing the weak ferromagnetic moment by tuning the Cr-O1-Cr bond angle is 

expected to increase the change of entropy in the system. However, modifying this bond angle 

may also reduce the magnetic transition temperature to well below room temperature, which is 

detrimental to many applications.  This interplay of the transition temperature and magnitude of 

the MCE will require careful control of bond angles in LaCrO3, possibly doping with Y, to 

optimize the properties of the system for magnetocaloric applications. 

Conclusion: 

In conclusion, we have synthesized polycrystalline LaCrO3 and confirmed an 

orthorhombic structure with the Pnma space group using structure refinement. Magnetization 

measurements reveal an antiferromagnetic transition with weak ferromagnetism at TN ~ 290 K. 

We observed a magnetocaloric effect near room temperature by measuring the isothermal 

magnetic entropy change , which shows a maximum of 0.11 J kg-1K-1 at a field of 80 

kOe.   LaCrO3 a model antiferromagnetic system with weak ferromagnetism near room 

temperature may provide the rich physics by complex coupling among different degree of 

freedoms and their applications.  

 

 



8 

 

Acknowledgement: 

This work was supported by the Jane and Frank Warchol Foundation together with a Career 

Development Chair from Wayne State University. B Tiwari and M S R Rao would to 

acknowledge Department of Science and Technology (DST) of India for the financial support 

(grant No. SR/NM/NAT-02/2005).   

References: 

[1] J.B. Goodenough, Magnetism and the Chemical Bond: Robert E. Krieger Publishing Co. 

Huntington, New York (1976). 

[2] J.F. Scott, Rev. Mod. Phys. 46 (1974) 83 

[3] A. Urushibara, Y. Moritomo, T. Arima, A. Asamitsu, G. Kido and Y. Tokura, Phys. Rev. B 

51 (1995) 14103. 

[4] T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima and Y. Tokura, Nature 426 (2003) 55. 

[5] J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. 

Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A Spaldin, K.M. Rabe, M. Wutting and R. 

Ramesh  Science 299 (2003) 1719.  

[6] G.H. Jonker, Physica 22 (1956) 707.  

[7] W.C. Koehler and E.O. Wollan, J. Phys. Chem. Solids 2 (1957) 100.  

[8] D.P. Karim and A.T. Aldred, Phys. Rev. B 20 (1979) 2255. 

[9] C.P. Khattak and D.E. Cox, Mat. Res. Bull. 12 (1977) 463.  



9 

 

[10] N. Sakai, H. Fjellvag and B.C. Hauback, J. Solid State Chem. 121 (1996) 202. 

[11] J.W. Fergus, Solid State Ionics 171 (2004) 1.  

[12] J. –S. Zhou, J.A. Alonso, A. Muonz, M.T. Fernandez-Dıaz and J.B. Goodenough, Phys. 

Rev. Lett. 106 (2011) 057201. 

[13] J.J Neumeier and H. Terashita, Phys. Rev. B 70 (2004) 214435. 

[14] B. Tiwari, M.S.R Rao and A. Dixit Advanced Materials Research 585 (2012) 274-278 

[15] B. Tiwari, A. Dixit, R Naik, G Lawes and M.S.R Rao, Appl. Phys Lett. 103 (2013) 152906  

[16] A.M. Tishin and Y.I. Spichkin, The Magnetocaloric Effect and its Applications, London 

(2003) Institute of Physics. 

[17] L.D. Landau and E.M. Lifshitz, Electrodynamics of Continuous Media 2nd edition 

Butterworth-Heinemann An Imprint of Elsevier (2005) page-168. 

[18] A. Midya, S. Das, P. Mandal, S. Pandya  and V. Ganesan  Phys. Rev. B 84 (2011) 235127. 

[19] B. Ramachandran and M. S. Ramachandra Rao, Appl. Phys. Lett. 95 (2009) 142505. 

[20] W. J. Hu, J. Du, B. Li, Q. Zhang and Z. D. Zhang, Appl. Phys Lett. 92 (2008) 192505. 

[21] J. Du, W.B. Cui, Q. Zhang, S. Ma, D.K. Xiong, and Z.D. Zhang, Appl. Phys Lett. 90 (2007) 

042510. 

[22] K.P. Ong, P. Blaha and P. Wu, Phys. Rev B 77 (2008) 073102, 

[23] A.C. Larson and R.B. Von Dreele  Los Alamos National Laboratory Report No. LAUR 

(1994) page 86-748. 



10 

 

[24] J. Moulder, W.F. Stickle, P.E. Sobol and K.D. Bomben, Handbook of X-ray Photoelectron 

Spectroscopy (J. Chastain, editor) Perkin Elmer Corporation, Physical Electronics 2nd edition 

(1992). 

[25] E.A. Lambardo, K. Tanaka and I. Toyoshima, J. Catalysis 80 (1983) 340. 

[26] D.A Pawlak, M. Ito, M. Oku, K. Shimamura and T. Fukuda, J. Phys. Chem. B 106 (2002) 

504. 

[27] M. Hassel, I. Hemmerich, H. Kuhlenbeck and H.–J. Freund, Surf. Sci. Spectra 4 (1998) 246. 

[28] B. Tiwari, M. Krishna Surendra, M.S.R Rao, J. of Phys.: Cond. Matter. 25 (3013) 216004.  

[29] Jyoti Ranjan Sahu, Claudy Rayan Serrao, Nirat Ray Umesh V. Waghmare and C. N. R. Rao, 

J. Mater. Chem. 17 (2007), 42 

[30] T. Moriya, Phys. Rev. 120 (1960) 91. 

[31] S. Thota, Q. Zhang, F. Guillou, U. Lüders, N. Barrier, W. Prellier, A. Wahl, and 

P. Padhan, Appl. Phys. Lett. 97 (2010) 112506.  

 

 

 

 

 



11 

 

 

 

 

 

 

 

List of figures 

 



12 

 

Figure 1. (a) Rietveld refined powder XRD pattern of LaCrO3 sample using GSAS. Difference 

(Diff) between observed (Obs) and calculated (Calc) pattern is shown. Inset shows the chemical 

unit cell of LaCrO3 where corner atoms of octahedra are oxygen ions (red), with two 

inequivalent positions, the apex oxygen (O1 ion) at 4c (0.498, 0.25, -0.043) and planar oxygen 

(O2 ion) at 8d (0.262, 0.032, -0.282) while centers of octahedra are occupied by chromium ions 

at 4b (0, 0, 0.5). Lanthanum ions (brown) occupy the site 4c (0.019, 0.25, 0.007), space among 8 

octahedra. The X-ray photoelectron spectra as a function of binding energy (eV) of b) La 3d and 

O1s (inset) in LaCrO3 and c) the Cr 2p doublet 2p3/2 and 2p1/2. 

 

Figure 2. Temperature dependent magnetization measurements (a) zero field cooled (ZFC) and 

field cooled (FC) at an applied magnetic field of 1 kOe. (b) the variation of coercive field Hc 
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(solid circle, left axis) and remanent magnetization Mr  (open circle, right axis) of LaCrO3 which 

were estimated from magnetization (M) vs. applied magnetic field (M-H) measurements at 

different temperatures, as shown inset (for clarity all M-H curves are not shown).  

 

 

 

 

 

Figure 3. Temperature dependence magnetic entropy changes  at different magnetic fields 

(10 to 80 kOe) calculated from magnetization isotherms.  (The solid lines are guides to the eye). 

Inset shows the isothermal magnetization curves at different temperatures from 250 K to 310 K 

in step of 5 K. 

 


