A ferromagnetic shape memory alloy with nomial composition Ni52.5Mn24.5Ga23 (at%) was developed by a melt spinning technique. The as-spun ribbon showed dominant L21 austenitic (cubic) structure with a splitting of the primary peak in the X-ray diffractogram indicating the existence of a martensitic feature. The quenched-in martensitic plates were revealed in transmission electron microscopy. An increase of magnetization at low temperature indicated a martensite to austenite transformation and its reverse with a drop in magnetization during the cooling cycle. Higher magnetic fields propel martensite-austenite transformation spontaneously. © 2008 Elsevier B.V. All rights reserved.