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Presentation attacks on face recognition systems are classified into two categories: physical

and digital. While much research has focused on physical attacks such as photo, replay, and

mask attacks, digital attacks such as morphing have received limited attention. With the

advancements in deep learning and computer vision algorithms, several easy-to-use

applications are available where with few taps/clicks, an image can be easily and

seamlessly altered. Moreover, generation of synthetic images or modifying images/videos

(e.g. creating deepfakes) is relatively easy and highly effective due to the tremendous

improvement in generative machine learning models. Many of these techniques can be

used to attack the face recognition systems. To address this potential security risk, in this

research, we present a novel algorithm for digital presentation attack detection, termed as

MagNet, using a “Weighted Local Magnitude Pattern” (WLMP) feature descriptor. We also

present a database, termed as IDAgender, which consists of three different subsets of

swapping/morphing and neural face transformation. In contrast to existing research, which

utilizes sophisticated machine learning networks for attack generation, the databases in this

research are prepared using social media platforms that are readily available to everyone with

and without any malicious intent. Experiments on the proposed database, FaceForensic

database, GAN generated images, and real-world images/videos show the stimulating

performance of the proposed algorithm. Through the extensive experiments, it is observed

that the proposed algorithm not only yields lower error rates, but also provides computational

efficiency.
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1 INTRODUCTION

The high performance of modern face recognition algorithms and the convenience of capturing face

images have supported the applications to allow remote or unsupervised face images for
authentication (Majumdar et al., 2017). For instance, now, online banking can be performed via
face authentication. While this increases convenience and reduces fraudulent access, the security of
these recognition systems is also an important task. Its importance can be observed from the launch
of the Odin, IARPA project on biometric presentation attack detection1, which aims to protect the
integrity of these systems.
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Presentation Attacks are defined as “the attack on the system
which in any way can affect the decision of a biometric system”.
They can be broadly classified into two categories: digital and
physical. Physical attacks include physical methods of deceiving
the system, such as print and replay attack, 3D mask, and silicon
mask attack. Digital presentation attacks include attacks such as
morphing, swapping, and digital alterations. These attacks can be
performed for multiple reasons, avoiding recognition,
impersonating someone else’s identity, or multiple people
sharing an identity. Researchers are recently studying
adversarial attacks that are digital; however, they are targeted

towards fooling specific deep learning architectures and are
generally visually indistinguishable (Szegedy et al., 2013;
Goodfellow I. J. et al., 2014; Goswami et al., 2018, 2019;
Akhtar and Mian, 2018).

This paper focuses on detecting digital alterations in face
images. The effect of face morphing in enrollment was first
introduced by the International Organization for
Standardization ISO 19792. In 2014, Ferrara et al. (2014)
demonstrated the vulnerabilities of commercial face
recognition systems towards morphed images. They also
showed that these morphed images are challenging to be

detected by face recognition experts and automatic algorithms
(Ferrara et al., 2016). The popularity of face morphing
applications worldwide can be observed by the fact that
Facebook has acquired one of the famous morph applications
called MSQRD. Figure 1 shows samples of digital alterations
from multiple platforms. The first two columns show images of
different subjects, and the third column represents the morphed
image, which consists of similar facial features of both identities.
The morphed image in the first row is generated using the

Internet website called morphthing.com. The morphed images
in the second and third rows are generated using the swap/morph
feature of Snapchat application2. The gender swap image in the
last row is generated using another popular mobile application
called FaceApp3. Similarly, recently Instagram4 one of the most
used social platforms for story and information sharing with
more than one billion users, has launched face filters which can
alter the facial properties in real-time.

The similarity of source and target images in Figure 1 (left)
shows that digital attacks like morphing can be used to both elude
and create a duplicate identity. To experimentally visualize the

effect of morphing on face recognition, Figure 1 (right) shows the
source and morphed images and the recognition outcome of a
face recognition system. Using a commercial-off-the-shelf
(COTS) recognition system, this example shows that the
morphed image can successfully match its constituent source
images. Inspired by the effectiveness of face morphing
applications and the limitation of face recognition algorithms,
this research focuses on designing a novel algorithm to
differentiate between digitally attacked images and original/
non-tampered images. As shown in Figure 1, different kinds
of alterations introduce different effect on face images. The

availability of limited databases in the literature makes it
difficult to build a general digital manipulation detection
algorithm. Moreover, the existing databases are captured using
a limited number of subjects or neglected the significant social

FIGURE 1 | (A) Illustrating the effect of perceptible digital alterations on face images (left). (B) Illustrates the effect when enrolled templates are modified via

morphing. The bottom row shows that the two different identities can claim the same identity through enrolled morphed image. Experiments are performed using COTS

Face Recognition (FR) (right). Human identifiable images on the right side of the figure are taken from the Internet.

2https://store.snapchat.com/.
3https://faceapp.com/.
4https://www.instagram.com/?hl�en.
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media platforms, which are easy to use by any novice user with or
without malicious intent. Therefore, in this research, for the
first time, we have utilized multiple social media platforms for
the generation of altered face databases with various

manipulation techniques such as swapping of faces and
alteration of facial attributes such as age and gender.
Further, to protect the integrity of automatic face
recognition, we present a novel presentation attack
detection algorithm that incorporates a new feature
extraction algorithm. The contributions of this research can
be summarized as follows:

• We propose a novel and computationally efficient feature
descriptor, Weighted Local Magnitude Pattern (WLMP),
which aims to encode the imperceptible artefacts that are

embedded in the images after digital manipulation. It is our
hypothesis that for detecting these manipulations, careful
highlighting of the artefacts is necessary.

• We propose a novel MagNet algorithm for effectively
differentiating between digital presentation attacks and
original non-tampered videos/frames, using the proposed
WLMP feature descriptor;

• We present a new database termed as “IDAgender” -
Digital Attack Face Database. It comprises of three
different databases generated using three separate
techniques: 1) face swap/morph feature of Snapchat, 2)

Internet website http://www.morphthing.com/, and 3)
gender and age swap/morph feature of face
transformation application called FaceApp;

• The effectiveness of the proposed algorithm is demonstrated
using a series of experiments, including comparison with
state-of-the-art presentation attack detection algorithms
and results on existing databases developed using state-
of-the-art (SOTA) generative networks.

The structure of the paper is as follows: first, we present a
comprehensive survey of existing algorithms developed for face

morphing detection. Later, the proposed digital alteration
detection algorithm is presented, followed by proposed
database developed using multiple social media platforms.
Along with the experimental protocols, we also showcase
the impact of digital manipulation on face recognition
through several experiments utilizing face recognition
commercial software. Finally, results of manipulation
detection on the proposed and existing databases are
presented along with comparisons with existing state-of-
the-art algorithms based on hand-crafted features and deep
neural networks.

2 RELATED WORK

Existing digital alteration generation techniques can be broadly
divided based on the utilization of tools: 1) landmark-based
sophisticated computer graphics algorithms and 2) deep
generative networks. In this section, we first present an
overview of the attack generation algorithms. Thereafter, the

detection of these digitally altered images through existing
techniques are discussed.

2.1 Generation
Ferrara et al. (2014) showed the effectiveness of morphing attack
to gain illegal access to the system. Morphed images were
generated using genuine face images of two different
individuals. GNU image manipulation program V4.0
software was used for morphing. They selected the best-
morphed images based on the match scores provided by the
face recognition system. One major limitation of this research is
the size of the database and the number of subjects used for
evaluation. In 2016, Raghavendra et al. (2016) prepared a
relatively large database of morphed images using a process
similar to Ferrara et al. (2014). The database contains 450

morphed images generated by morphing two and three
different face images. Instead of choosing the best-morphed
image based on the score of the face recognition system, the
mean output image is used as the best-morphed image.
However, the database is not released to the research
community.

Gomez-Barrero et al. (2017) showed that when a morphed
image is used as the enrollment image in the recognition
system, even with higher thresholds on the match score, more
than one individual can share an identity. While the
e-passport and e-Pass renewal in countries such as

New Zealand use a digital copy of the face in its
application process, several other countries still use the
print of the face image and a scanned copy as part of
their application process. Inspired by this process,
Scherhag et al. (2017) prepared the morph attack database
where first the morph images are printed using two different
printers. Then two different kinds of scanners are used for
digitizing the printed morphed images. The database
consists of 693 morph images, out of which there are 231
digital attack images and 462 scan attack images. It was
shown that 100% recognition is achieved when digital attack

images match original images, while scan images yield more
than 95% Impostor Attack Presentation Match Rate
(IAPMR) using VeriLook SDK.

Robertson et al. (2017) performed a detailed study to
demonstrate that face morphing can be a threat to face
recognition systems. They performed three experiments; in
the first two experiments, human examiners were asked to
match two pairs of images. In the third experiment,
smartphone face recognition is attacked by morphed
images. The experiment showed that morph images that
contain 50% features of both the genuine users could be

matched with more than 68% acceptance rate. It implies
that two different individuals can share the passport. In the
third experiment, they performed face unlocking using three
different images. With a 100% morphing level, one person’s
identity is completely changed to a second identity, and a
91.8% acceptance rate was reported. With the 90% morph
level, no significant drop in the acceptance rate is reported.
Majumdar et al. (2019) have generated digitally altered faces by
morphing the individual parts of faces and showed that not
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only are the commercial systems and humans vulnerable to
morphing, but state-of-the-art CNN models are also
demonstrated to be sensitive. Apart from utilizing the
landmark-based computer graphics algorithms, recently, the

generative networks (GANs) have been used for manipulating
images. Rossler et al. (2019) have prepared the
FaceForensics++ database using four state-of-the-art
generative methods, namely, Face2Face, FaceSwap,
DeepFakes, and Neural Textures. Li et al. (2020) have
prepared the large-scale deepfake database to exhibit the
characteristics in the images generally floating over the
social networking sites. Korshunov and Marcel (2018) have
prepared the DeepFake database using GAN. The database is
prepared with two qualities of images: low and high. The
vulnerability of VGG and FaceNet is shown with 85.62%

and 95.00% false acceptance rates, respectively. Jiang et al.
(2020) presented one of the largest face swapping database via
a variational auto-encoder to enrich the quality of face
swapped images.

While both landmark-based and generative network-based
manipulation techniques effectively fool the face recognition
algorithms, both these techniques come with certain
limitations. The landmarks generation algorithm requires
specialized knowledge and human intervention both for
landmark selection and post-processing operations for effective
blending; otherwise artifacts can be visually perceived. At the

same time, generative networks are computationally expensive,
require extensive resources, sensitive to geometric distortions and
subject attributes such as gender and ethnicity. In this
research, contrast to these existing algorithms, we have utilized
the social media platforms, which neither require any
specialization in their operation nor is computationally
expensive. The proposed research also covers variety in terms
of manipulation platforms and consists of variations in
manipulation types.

2.2 Detection
The existing detection algorithms can be broadly divided into
hand-crafted image features and deep learning-based
algorithms. Scherhag et al. (2017) have performed morph
attack detection using multiple-image descriptors, binarized
statistical image features (BSIF), local phase quantization
(LPQ), local binary pattern (LBP), and 2D fast Fourier
transform (FFT), with support vector machine (SVM)
classification. Neubert (2017) applied multiple image
degradation on the images with the intuition that the
morphed images suffer serious edge degradation to detect
the attack. Similarly, for morph attack detection, Makrushin

et al. (2018) have computed DCT coefficients from the JPEG
compressed images and fit a logarithmic curve over the
Benford features. Seibold et al. (2017) have used three pre-
trained deep CNNs (AlexNet, GoogLeNet, and VGG19) to
detect the morph attack on face recognition systems. The
training of all three networks from scratch yields 4.4–7.4%
higher false reject rate (FRR) than the pre-trained networks.
Raghavendra et al. (2017b) performed feature fusion on the
first fully connected layers of AlexNet and VGG19 to detect the

morph attack. The proposed approach shows Bonafide
Presentation Classification Error Rate (BPCER) value of
14.38%, 41.78%, and 28.76% at 5% Attack Presentation
Classification Error Rate (APCER). Wandzik et al. (2017)

shows the vulnerability of deep CNN based face recognition
under morphing attacks. ResNet v1 shows 99.97% acceptance
rate on original images; the acceptance rate drops down to
34.66% on morphed images blended with 0.5% probability of
images. Raghavendra et al. (2017a) developed two versions
(print and digital) of the database by taking the average of two
face images and morphing them together. The detection of
morph attack is presented using LBP features in YCbCr and
HSV color space. Scherhag et al. (2018) have proposed
reference and no-reference image-based morph detection
using various texture descriptors such as LBP, BSIF,

Speeded Up Robust Feature (SURF), and Histogram of
Gradients (HoG). Nguyen et al. (2019a) proposed the multi-
task network to detect manipulated face images while cropping
out the manipulated region. In place of using a multi-task
network, Dang et al. (2020) have used the attention mechanism
to highlight the important region for forgery detection. Matern
et al. (2019), and Yang et al. (2019) have argued that several
visual features in the computer-generated images are found
missing at teeth, eyes, head pose, and facial contours. These
visual features can be effectively used for morphed image
detection. Nguyen et al. (2019b) have used the capsule

network on the extracted features of the VGG network for
various fake face detection. He et al. (2019) have used multiple
color spaces as input to CNN for useful feature extraction. de
Lima et al. (2020) and Mas Montserrat et al. (2020) have used
the combination of CNN and recurrent network to model the
inconsistencies presented in the forged videos at the frame
level. Liu et al. (2020) enhanced the global texture feature
extraction capability of CNN through the insertion of Gram
block. Li et al. (2018) have proposed a recurrent convolution
network to detect the fake images generated using generative
networks. They have analyzed the inconsistency in the eye

region to detect whether the videos are real or fake. Akhtar
et al. (2020) have performed the ablation study of various deep
networks to detect manipulation in images.

Overall, existing works have demonstrated, beyond doubt,
that “morphing” is a threat for face recognition systems.
Several survey papers have also highlighted the vulnerability
of face recognition algorithm against digital manipulation and
limitations of existing detection algorithms (Akhtar et al.,
2019; Scherhag et al., 2019; Singh et al., 2020; Tolosana
et al., 2020; Venkatesh et al., 2020). The survey papers
bring out the boundaries of existing detection algorithms

such as non-generalizability against manipulation types and
image resolution and computationally inefficiency. The results
on the proposed database (refer Table 5) also establish the
generalizability issue of existing image feature-based and deep
networks-based detection algorithms against multiple
manipulation types. Therefore, to advance digital attack
detection, a computationally efficient classification
algorithm is proposed and demonstrated to be efficient
against various manipulation types in this research. The
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proposed digital presentation attack detection algorithm can
surpass existing algorithms by a significant margin.

3 PROPOSED DIGITAL PRESENTATION
ATTACK DETECTION ALGORITHM

We assert that digital alterations generally perform smoothing
and blending to minimize the irregularities due to the differences
in the source (and target) frames. It reduces the difference in
neighboring pixel values in the resultant image. We hypothesize
that it will be easy to detect digital alterations if we can highlight
the irregularities between the neighborhood pixels and give

weight according to the absolute values. Based on this
hypothesis, we propose a novel feature encoding scheme for
detecting digital alterations. As shown in Figure 2, the
proposed algorithm is based on a novel feature encoding
method termed as Weighted Local Magnitude Patterns
(WLMP) for encoding digital alterations. The detailed
description of the proposed WLMP and its variants is
discussed below.

3.1 Weighted Local Magnitude Patterns
The input image is first tessellated into multiple patches of size 3 ×
3. For each patch, the absolute difference between the center pixel

FIGURE 2 | Illustrating the components involved in the proposed Weighted Local Magnitude Pattern (WLMP) and WLMP with convolution of image using non

linearly learned filters (NL-WLMP) descriptor for digital attack detection.
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and its neighborhood pixels is calculated. Since there are eight
neighborhood pixels, there are eight difference values. The
difference values are sorted in ascending order. Instead of
binarizing the absolute differences, the sorted values are
multiplied with 2p, where p � 0, . . ., 7 for eight neighborhood

values. The motivation for sorting and multiplying is to give
higher weight to the pixel, which has a value similar to the center
pixel. The final output value is then mapped to a value in the
range of 0–255 (i.e., any value greater than 255 is set to 255).
Finally, a histogram feature vector is calculated based on the
weighted local magnitude patterns of the image. The output
images using the proposed feature descriptor are shown in
Figure 3 along with the corresponding output obtained by
LBP. It can be observed that the output images of the
proposed feature retain the high-frequency information while
reducing the low-frequency information. With images obtained

from Snapchat’s swapped/morphed feature, facial keypoint
regions such as eye, mouth, and nose are most affected, while
the central region is well blended. It is clearly highlighted in the
output images of the proposed feature extractor. Therefore, we
postulate that for morphing related attacks, the proposed feature
is better at detecting alterations than existing feature descriptors.

As shown in Figure 2A, we can visualize that the computation
of WLMP descriptor includes convolving with an identity filter
(i.e., convolving the patch with identity filter and then computing

WLMP values). Convolution with linear/non-linear filters, as a
pre-processing step, can help extract the features from the locally
connected regions that can better differentiate original with
altered images. For instance, morphing changes the local
features of the face so that certain landmarks of the face

exhibit the features of another person used for morphing.
Further, while performing morphing operation, different facial
structures undergo spatial changes to create an output image. A
convolution operation with a filter before computing WLMP
features can help highlight the subtle changes or artifacts in
altered local regions. In the literature, it has been shown that filter
based pre-processing/convolution helps in improved feature
extraction (Randen and Husoy, 1999; Kang et al., 2017;
Kuehlkamp et al., 2018). In this research, non-linearly learned
filters obtained from deep learning model, GoogLeNet (Szegedy
et al., 2015), are used for convolution/pre-processing.

3.2 WLMP with Non-linear Filter
Face morphing and digital alterations change the micro-texture
property of the face region. Hence, the convolution of the input
image with filters makes a strong case for encoding changes in the
texture. For instance, while the software used for morphing
blends two images nicely, some minute/micro-level artifacts
can be observed around essential facial landmarks such as eye
and mouth. Convolution with a learned filter can enhance these

FIGURE 3 | Illustrating the features obtained for real and altered samples from Snapchat database. In both real and altered samples, first column is the input

images, second column is the LBP features, and last column is proposed feature images, respectively.
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micro artifacts and help in computing representative WLMP

descriptors.
The non-linear filters used in this research are obtained from

GoogLeNet model (Szegedy et al., 2015). The filters at layer two,
which are of size 3× 3 are utilized from the pre-trainedmodel5. The
initial layer filter highlights the lower level features such as edges
(Zeiler and Fergus, 2014), which might be one of the most reliable
information in detecting digital alteration. Simultaneously,
convolution with non-linear filters can help boost the detection
of high-frequency information in the proposed WLMP descriptor.
The pre-trained model provides four filters each with dimension
3 × 3 × 64, and we have taken the average around the third

dimension to get the single filter of size 3 × 3. Therefore, four filters,
i.e., average filter response from each of the four outputs of the
model, are used in this research for convolution and feature
extraction. Figure 2B shows the WLMP feature descriptor
computation using a GoogLeNet filter and termed as Non-
Linear Weighted Local Magnitude Pattern (NL-WLMP).

Algorithm 1 shows the pseudo-code of the proposed feature
extraction algorithm for digital attack detection. In the case of
WLMP, the filter of ones with size 3 × 3 is used; which is the patch
of an image not convolved with any filter value. Whereas, in the
case of NL-WLMP, CNN filters are first used to convolve an

image patch. Each patch of an image is further used to magnify
the subtle artifacts developed due to morphing through the
weight assignment. A histogram feature vector is computed
from the artifacts magnified image and used for digital attack
detection.

3.3 MagNet: Proposed Algorithm for Digital
Presentation Attack Detection
WLMP and its variant, provides feature descriptor which can be
fed into a 2-class (i.e., original vs attacked) classifier such as

Support Vector Machine (SVM) (Cortes and Vapnik, 1995).
Figure 4 illustrates the steps involved in the proposed digital
presentation attack detection algorithm using WLMP. In the
proposed algorithm, termed as MagNet, WMLP and NL-
WLMP are individually used to compute the classification
scores, which are then combined using score fusion. The score

of each test frame is computed as the weighted score fusion of the

scores computed from two different SVM classifiers, i.e. WLMP +
SVM and NL-WMLP + SVM. Specifically,

• For each test image, WLMP feature descriptor is computed,
and a score value is computed using the WLMP trained
SVM classifier;

• Similarly, NL-WLMP feature descriptor is computed from
the test image followed by the score which is obtained
through NL-WLMP trained SVM classifier;

• Final score of a test image is computed using a weighted sum
of the above two scores. The weights for fusion are computed

over each database’s training/development set using a grid
search. The fusion can be mathematically described as:

Finalscore � w1 p
yr1
yp1

[ ] + w2 p
yr2
yp2

[ ] (1)

where, yri and ypi are the scores belonging to the real and
presentation attack class computed using the ith classifier,
respectively.

4 IDAGENDER!! PROPOSED DIGITAL

ATTACK DATABASES

The second contribution of this research is IDAgender, the

proposed digital presentation attack database. IDAgender6

contains different subsets corresponding to different digital
operations, and it is unique in terms of digital mediums,
number of subjects, and type of alterations. There are several
open-source algorithms and tools available for creating digitally
altered images. However, Snapchat and morphthing.com are
among the most popular and easily accessible tools for
morphing or swapping face images. FaceApp, a mobile
application, has recently become popular within a few months
of its development for morphing gender and age characteristics.
Since it is easy to navigate through these apps, non-technology

savvy users can also efficiently use it to create various altered
images. For example, a video where a woman swaps her face with

FIGURE 4 | Proposed MagNet algorithm using fusion of WLMP and NL-WLMP.

5http://www.vlfeat.org/matconvnet/pretrained/.

6This database will be made available to the research community via http://iab-

rubric.org/resources.html.
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Kardashians had been viewed more than 21,000 times in a week7.
The face swap feature effectively changes the properties of the
face, and by just looking at the altered face, it is difficult to
determine whether it is real or altered. The proposed IDAgender
database8 consists of three different subsets: morphing, swapping,
and FaceApp. The current literature ignores this aspect of readily
available digital alteration on social media applications that
neither requires sophisticated hardware nor knowledge to
operate. The proposed research addresses this limitation and
proposes an essential step towards securing face recognition
systems from fake data of different kinds. The details of the

three subsets are discussed in the following subsections.

4.1 Proposed Snapchat Face Swap
Database
The first subset of IDAgender is a video database and consists of
two parts: bonafide faces and morphed faces. Since morphing is
applicable in both images and videos, and the Snapchat feature is
more prevalent on mobile phones, the bonafide/genuine videos are
captured using mobile phones. For every user, at least one video of
around 6 s is captured using the front camera. In total, 129

bonafide videos are captured from 110 individuals over
2 months. These videos are captured in an unconstrained
environment such as a natural outdoor, hallway, and inside
office premises. Faces present in the videos are detected using
the Viola-Jones face detector and normalized to 296 × 296 pixels.
After face detection, the bonafide subset contains more than 30,000
face frames. Figure 5A shows sample images from the bonafide set
captured in different illumination and background conditions.

To generate morphed faces, the face-swapping feature of
Snapchat9, a popular social messaging app, is used. The steps
involved in the process are as follows: first, the face is detected

using the Viola-Jones face detector (Viola and Jones, 2004). To
make the change more accurate and precise, key point location of
the facial features such as eyes, mouth, and face boundary are

detected using Active Shape Model (ASM) (Cootes et al., 1995). Once
the facial keypoints are detected, a 3Dmesh is generated, which fits the
face properly and can move in real-time with changes in the face. The
facial keypoints are detected from both the faces, and the central
region is morphed from one image to the other. The boundary is then
seamlessly blended to create the new morphed face image.

To prepare the morphed videos using Snapchat, two good
quality frontal face images of 84 subjects (different from the
bonafide faces) are captured in a semi-controlled environment.
Samples of these images are shown in Figure 5B. These images
are termed as the input gallery for face swapping/morphing.

To create a morphed video, the Snapchat application requires
the users to select the host video/image and an image they want
to perform the face swap/morph. Using host videos from 31
subjects and input images from 84 subjects, 612 presentation
(face swap) attack videos are prepared. Samples of morphed
faces are shown in Figure 5C. Similar to bonafide faces, the
detected morphed faces are normalized to size 296 × 296.

4.2 Proposed IdentityMorphing Face Swap
Database
The second subset is prepared using the morphthing.com website
by morphing several face images together. The morphing tool
requires users to select the number of face images to be morphed
together. It has the ability of morphing a maximum of four face
images together. The face images in this database are captured in
an unconstrained environment and have varying image quality.
The real photos used in preparing the morph images are publicly
available images of celebrities on this website.

Table 1 shows comparing the proposed IdentityMorphing
database with the existing morph databases. The proposed
database has 1,200 morph images, out of which 500 images are

generated by morphing two faces, 450 images by morphing three
faces, and 250 images are generated through the morphing of four
faces together. The proposed database is at least three times larger
than existing databases in terms of the number of subjects and
images. Sample images generated by morphing two to four faces
together are shown in Figure 6. Figure 6A shows the morphed
output images while Figure 6B shows the input real and output
morph/swap images. The output morph faces have both visual and
facial specific characteristics of all the faces used in its generation.

FIGURE 5 | Sample images from the proposed Snapchat face swap database. (A) Sample bonafide images set (left 3 columns), (B) sample images used for face

swap (middle 3 columns), and (C) morphed images from Snapchat (right 3 columns).

7https://tinyurl.com/k6nfly9.
8Written informed consent was obtained from the individual(s) to publish any

potentially identifiable images or data included in this article.
9https://www.snapchat.com/.
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4.3 Proposed FaceApp Database
The third subset of the proposed digitally morphed database is
prepared using a mobile application, “FaceApp”10. FaceApp
provides filters for gender morphing and age addition or
subtraction. In this research, the database is prepared by

morphing the gender of the person, adding the age to look
older, and subtracting age to look younger.

To the best of our knowledge, this is the first work that presents a
database having face images with altered age or gender. First, to
create the digitally morphed images, good quality frontal face images
of 125 subjects are captured in controlled illumination. To create the
morph images, each user’s face image is given to FaceApp, and the
image is morphed as per a given chosen filter. The filter represents
the operation that will be performed on the input images; the process
can be gender morphing and age addition/subtraction. The
proposed database contains 375 digitally morphed face images.

5 EXPERIMENTAL PROTOCOL AND
PERFORMANCE METRICS

We also define a benchmark protocol that can be used to report
and compare results on IDAgender. In place of one particular
train and test set, multiple fold cross-validation is performed to

evaluate the performance of the algorithms.

5.1 Protocol for Snapchat Database
As explained earlier, the bonafide (real) subset of the Snapchat
database contains 129 videos from 110 subjects, and the
presentation attack subset contains a total of 612 videos from
31 subjects. Out of these videos, the real subset is divided into

three random folds, where two folds contain 40 videos from 40
subjects each. The third fold contains 49 videos from 30 subjects.
In the attack subset, the number of videos is large, and hence it is
divided into 10 folds. Each fold of the attack subset contains 60
videos corresponding to three subjects except the last fold, which
contains 72 videos from four subjects. Unlike three-fold cross-
validation, where two folds are used for training and one for
testing, one fold is used for training on this database, and the
remaining folds are used for testing. The training set is reduced to
evaluate the performance with limited training samples.

5.2 Protocol for IdentityMorphing Database
IdentityMorphing database contains 574 bonafide images and
1,200 morphed images. Out of these images, the real (bonafide)
images are divided into three folds, and morphed images are
divided into six random folds. Similar to the Snapchat database,
one fold at a time is used for training while the remaining folds
comprise the testing set.

5.3 Protocol for FaceApp Database
FaceApp database contains 250 bonafide images and 375 age and
gender morph images. 375morphed images are divided into three
folds where each fold contains 125 images, and 250 bonafide
images are divided into two folds with 125 images in each fold.

TABLE 1 | Characteristics of the proposed and existing morph databases related to this research.

Database Subjects Faces morphed Morphed images

Raghavendra et al. (2016) 110 2 and 3 450

Scherhag et al. (2017) – 2 231

Proposed IdentityMorphing 545 2, 3, 4 1,200

FIGURE 6 | (A) Sample images from the proposed IdentityMorphing face swap database (left). (B) Sample images showing age and gender swap using FaceApp

(right). Human identifiable images on the left side of the figure are taken from the Internet.

10https://play.google.com/store/apps/details?id�io.faceapp&hl�en.
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Similar to the previous two databases, one fold is used for training,
and the results are reported with remaining as the test set. The
protocol of each of the proposed database is listed in Table 2. Real
and attack subsets are divided so that equal samples
(approximately) from both the classes can be used for training.
For example, the IdentityMorphing database contains 545 real
images divided into three folds, where each fold contains 180
images. Similarly, the attack set is divided into six folds, with
each fold containing 180 samples (approximately). FaceApp

database is divided into two real folds and three attack folds,
where both types of folds include 125 samples of two classes.

5.4 Performance Metrics
Using the test set of the databases, the performance of
presentation attack detection is reported in terms of the Equal
Error Rate (EER) and Average Classification Error Rate (ACER).
EER is defined as the point where the Bonafide Presentation
Classification Error Rate (BPCER) is equal to the Attack
Presentation Classification Error Rate (APCER). BPCER is the
percentage of bonafide faces incorrectly classified as attack/

altered faces, while APCER is the percentage of attack faces
incorrectly classified as bonafide faces. To calculate the BPCER
and APCER on the test set, a threshold value is selected based on
the EER of the development set. In this research, half of the
training set is used as the development set. ACER (%) is then
computed as the average of BPCER and APCER.

ACER(%) �
BPCER + APCER

2
p 100 (2)

6 EFFECTOFSWAPPINGATTACKONFACE
RECOGNITION

To evaluate the effectiveness of the face swap feature as an attack on
the face recognition system, we have performed two different
experiments: 1) Various iOS devices are now equipped with the

face unlock feature. Thus, the first experiment is face unlocking on
iPhone/Android, and 2) face identification using a Commercial-
Off-The-Shelf System (COTS), FaceVACS11. In the first
experiment to unlock the iPhone/Android, a video of the
morphed face prepared using an image of the genuine person
enrolled in the mobile device is displayed in front of the mobile
camera. It is interesting to observe that the face recognition
algorithm in the iPhone cannot detect the attack and hence gets

unlocked every time. It shows the vulnerability of face recognition
inmobile devices towards digital attacks. In the second experiment,
face identification is performed using a COTS system on all three
databases, and the results are summarized in the next subsection.

6.1 Face Recognition with SnapChat and
FaceApp Databases
To perform the Face Recognition (FR) experiment, another set of

frontal images is collected from the individual whose images are
used for creating the morphed videos. These images comprise the
gallery for face identification. From each of the attack videos in
the Snapchat database, 30 random frames are used as the probe
set for the face identification experiment. Figure 7A shows the
cumulative match characteristics (CMC) curve obtained for this
experiment. It can be observed that 90% of the time, attack
images are matched to enrolled gallery images at rank-1.
Similarly, from the FaceApp database, one frontal image of
each person, over which the gender and age morphing has been
performed, is used as the gallery image. All the morphed images

in the FaceApp database are used as the probe images. Figure 7B
shows the effect of gender and age morph on face identification.
When real images are matched to the gallery images, COTS shows
more than 99% identification accuracywhilemorph images suffer a
drop of 2–3% accuracy at rank-1. For the gender morph and age
morph experiment, the digitally altered images corresponding to
that particular subset are used as a probe. Figure 7 (right) shows
the identification score of the probe images with respect to the
gallery image of that subject. On matching real images without
morphing, the highest score value of 0.999 is recorded, while with
age and gender morphed images, the score reduces to 0.187 and

0.397, respectively. The low matching scores show the successful
identity evasion using a digital attack.

6.2 Face Recognition on the
IdentityMorphing Database
Like the Snapchat and FaceApp databases, the IdentityMorphing
database contains the morph images of two, three, and four
different identities that can be utilized for identity fraud. In this
case, identity fraud can be described as the scenario where one

probe image can be matched with different gallery images, or
multiple individuals can share an identity in the gallery database.
To perform this experiment, real photos of two individuals are
used as gallery images, and morphed images generated using
images of those individuals are used as the probe image. All the
probe images shown in the figure yield a high match score value
of 0.999 to both the gallery images.

TABLE 2 | Experimental protocol of each of the proposed databases.

Database Videos/Images Real folds Attack folds Iterations Metrics

Snapchat 129 Real and 612 Attack 3 10 30 (i.e. 3 × 10)

ACER and EERIdentity Morphing 545 Real and 1,200 Attack 3 6 18 (i.e. 3 × 6)

FaceApp 250 Real and 375 Attack 2 3 6 (i.e. 2 × 3)

11http://www.cognitec.com.
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7 DIGITAL PRESENTATION ATTACK
DETECTION RESULTS

The performance of the proposed algorithm is demonstrated on
the IDAgender digital attack face database. In the literature, face
presentation attack detection (Galbally et al., 2014) using texture
features has shown state-of-the-art performance (discussed in
Section 2). Therefore, we have compared the performance of
the proposed algorithm with the following state-of-the-art
texture feature based algorithms along with CNN model.

• Local Binary Pattern (LBP) (Määttä et al., 2011)
• Rotation Invariant Uniform LBP (RIULBP) (Ojala et al.,
2002),

• Complete LBP (CLBP) (Guo et al., 2010),
• Uniform LBP (ULBP),
• Local Phase Quantization (LPQ) (Ojansivu and Heikkilä,
2008),

• Binarized Statistical Image Features (BSIF) (Kannala and
Rahtu, 2012), and

• Haralick + Redundant Discrete Wavelet Transform
(RDWT) (Agarwal et al., 2016),

• Agarwal et al. (2017).
• Pre-trained VGG-16 Convolutional Neural Network
(CNN) (Simonyan and Zisserman, 2015),

• Fine-tuned GoogLeNet CNN (Szegedy et al., 2015),
• XceptionNet (Rossler et al., 2019),
• ResNet-18 (Kumar et al., 2020),
• Sharp multiple instance learning (S-MIL) (Li X. et al., 2020).

CNN models are used in three settings: 1) ImageNet (Deng
et al., 2009) pre-trained model is used as a feature extractor and
binary SVM classifier is trained for digital morph attack
detection, 2) CNN architectures used in recent studies such as
ResNet-18 (Kumar et al., 2020), XceptionNet (Rossler et al.,
2019), S-MIL (Li X. et al., 2020), and 3) ImageNet pre-trained
models are fine-tuned using Adam optimizer for binary class

classification. For fine-tuning batch size is set to 32 and initial
learning rate of value 0.001 is used for training.

7.1 Results and Analysis on Snapchat
Database
The protocol defined in Section 5 is used for experiments on the
Snapchat swap database. Since the proposed database contains
videos, the results can be measured in terms of video classification
and frame classification. In the case of videos, the entire video is
classified as bonafide or attack, whereas for frame-based, every

frame is classified as bonafide or attack. The classification score of
the video is calculated as the average of all the scores
corresponding to frames of that video.

First, the performance of the proposed MagNet algorithm is
evaluated on the Snapchat database and compared with state-of-
the-art algorithms in literature (Scherhag et al., 2019). Figure 4
shows the proposed algorithm with the combination of micro-
texture encoding using GoogLeNet filters and local magnitude
pattern. On the Snapchat database, the fusion of WLMP and
NL-WLMP yields the average EER of 13.2% and 18.0% for video
and frame-based detection, respectively. However, the combination

of WLMP and L-WLMP yields the EER of 14.3% and 21.0% for
video and frame-based detection, respectively. Table 3 show the
results of the proposed and existing features for digital presentation
attack detection by face-swapping. The results are shown in Table 3,
and the analysis is summarized below:

• The proposed MagNet algorithm which is a combination of
WLMP and NL-WLMP shows an improvement of 34% in
terms of EER from the second best-performing feature,
i.e., LBP (i.e., hand-crafted filter-based algorithm) for
video-based attack detection;

• The performance of L-WLMP in detecting digital attacks is
similar without filtering (WLMP) and with linear filtering;

• The lower bit linear filters yield lower detection
performance. One possible reason lies in the length of
the feature vector. The feature vector of the n bit linear
filter is 2n. Hence, the higher bit filters have a large feature
dimension;

• The non-linear filters which are learned using the deep
CNN model, i.e., GoogLeNet, performs better than linear

FIGURE 7 | CMC plot for face identification. (A) Using Snapchat database (left), (B) Using FaceApp database (middle), and (C) Gallery and probe images with

corresponding match scores obtained using COTS on the images from FaceApp database. The first row contains sample gallery images and the second row contains

the corresponding age/gender morph probe image of that subject (right).
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filters. The primary reason might be the richness of edge

features preserved in the initial layers of the CNN model;
• We observe, from the experimental results, that the filtered
WLMP versions yield better results than the original
WLMP. Among the three variants, NL-WLMP
outperforms WLMP and L-WLMP by at least 2.2% (in
terms of EER). After score fusion of WLMP and NL-
WLMP, the EER further reduces by over 2%;

• It is interesting to observe that the combination of Haralick
+ RDWT (Agarwal et al., 2016), which yields low EER on
physical spoofing databases, provides the highest EER value
of 25.6% in video-based digital attack detection. In the case
of frame-based attack detection, the BSIF feature (linear

filtering based algorithm) yields the lowest performance;
• The proposed WLMP feature histogram incorporates
sorting in ascending order. However, when the difference
values are sorted in descending order (i.e., higher weight to
the least discriminant neighbor, the reverse of the WLMP),
the EER increases from 18.2% to 25.5% and 24.5% to 29.3%
for video and frame-based detection, respectively.

• We observe that the alterations performed via Snapchat are
seamless, and therefore, it is a challenging task to
differentiate between the bonafide and attack data.

Instead of using a handcrafted filter (or identity filter) and
non-linear filters in the originalWLMP (described in Section 3.1)
and NL-WLMP respectively, a set of linear filters learned on
patches of natural images are used. In this research, BSIF filters
(Kannala and Rahtu, 2012) of size 3 × 3 are adopted for
convolution. The reason for selecting the BSIF filters over
other linear filters is the effectiveness in texture feature extraction.
Linear filters used in this research are trained on 50,000 natural image
patches (Hyvärinen et al., 2009). The learning of BSIF filters has two
major steps: 1) whitening and dimensionality reduction using PCA
(Wold et al., 1987), referred to as canonical preprocessing and 2)

selection of independent statistical component of the filters by

Independent Component Analysis (ICA) (Comon, 1994). The
L-WLMP algorithm uses a different number of filters concerning
bit sizes; therefore, the first experiment is performed to analyze the
effect of bit length on the classification performance. Multi-bit BSIF
magnitude patterns are extracted by concatenating the individual
patterns obtained from each filter. The analysis in terms of multi-bit
magnitude pattern is reported in Table 4.

We observe that higher multi-bit filters yield lower EER and
ACER for both video and frame-based countermeasures. Feature
fusion of two higher bit filters such as bits 7 and 8, yields the EER
value of 17.6% and 24.6% for video and frame-based attack detection,

TABLE 3 | Performance (%) of the proposed and existing algorithm for video and frame based presentation attack detection on the proposed SnapChat database. The

results are reported in terms of the average equal error rate and classification error rates along with standard deviation (±).

Input Features EER ACER APCER BPCER

Video LBP (Määttä et al., 2011) 21.7 ± 6.1 21.3 ± 5.9 16.51 ± 5.7 26.28 ± 6.1

ULBP (Ojala et al., 2002) 24.5 ± 6.0 22.7 ± 5.8 12.17 ± 6.0 33.45 ± 5.9

RIULBP Ojala et al. (2002) 24.7 ± 4.9 23.5 ± 4.7 16.12 ± 6.2 32.62 ± 3.2

CLBP (Guo et al., 2010) 24.5 ± 6.1 24.8 ± 5.9 12.60 ± 5.2 37.16 ± 6.6

Haralick + RDWT (Agarwal et al., 2016) 25.6 ± 7.2 24.5 ± 7.3 13.99 ± 8.5 35.24 ± 6.1

BSIF (Kannala and Rahtu, 2012) 25.2 ± 9.1 24.9 ± 9.3 29.96 ± 13.0 20.07 ± 5.6

LPQ Ojansivu and Heikkilä (2008) 22.9 ± 5.2 23.9 ± 5.0 33.33 ± 5.4 14.58 ± 4.6

Agarwal et al. (2017) 18.2 ± 5.6 18.1 ± 5.5 6.71 ± 5.9 29.51 ± 5.1

Proposed (MagNet) 13.2 ± 3.4 12.9 ± 3.2 5.62 ± 2.8 20.15 ± 3.6

Frame LBP (Määttä et al., 2011) 27.1 ± 4.3 27.3 ± 4.1 21.83 ± 5.7 32.80 ± 2.5

ULBP (Ojala et al., 2002) 29.0 ± 3.4 28.6 ± 3.3 17.68 ± 4.2 39.70 ± 2.4

RIULBP (Ojala et al., 2002) 28.7 ± 3.7 28.7 ± 3.9 20.94 ± 5.1 37.06 ± 2.7

CLBP (Guo et al., 2010) 28.7 ± 3.8 28.8 ± 3.6 18.88 ± 4.7 38.80 ± 2.5

Haralick + RDWT (Agarwal et al., 2016) 28.9 ± 4.8 28.4 ± 4.6 21.82 ± 4.3 35.08 ± 4.9

BSIF (Kannala and Rahtu, 2012) 30.2 ± 7.0 30.2 ± 6.9 31.45 ± 8.8 29.19 ± 5.0

LPQ (Ojansivu and Heikkilä, 2008) 28.7 ± 4.0 30.4 ± 3.8 40.30 ± 3.6 20.50 ± 4.0

Agarwal et al. (2017) 24.5 ± 5.1 25.4 ± 4.9 10.60 ± 5.9 40.26 ± 3.9

Proposed (MagNet) 18.0 ± 0.4 17.6 ± 0.3 8.72 ± 0.4 26.47 ± 0.2

Result of the best performing algorithm is highlighted in bold.

TABLE 4 | Classification performance of the proposed L-WLMP algorithm for

video and frame based presentation attack detection on the proposed

Snapchat database. The results are reported in terms of the equal error rate and

average classification accuracy (%).

Input BSIF filter bit EER ACER

Video 5 19.9 22.3

6 21.8 23.2

7 18.7 21.9

8 18.2 20.6

7 and 8 17.6 19.5

5, 7, and 8 17.9 19.6

5, 6, 7, and 8 18.0 20.0

5, 6, 7, and 8 + PCA 23.2 24.5

Frame 5 26.2 27.3

6 27.3 28.1

7 25.7 27.2

8 24.9 26.3

7 and 8 24.6 25.9

5, 7, and 8 24.7 26.0

5, 6, 7, and 8 24.7 26.0

5, 6, 7, and 8 + PCA 28.7 29.6

Result of the best performing algorithm is highlighted in bold.
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respectively. Based on the performance of higher bit filters and
combination experiments, we observed that fusion of features from
bit 7 and 8 yields the best results. The detection performance of
L-WLMP is 4–5% lower in comparison to the performance of NL-
WLMP. In place of GoogLeNet filters, when we have used VGG-Face
filters in NL-WLMP, the performance is 2–3% lower.

7.2 Results and Analysis on
IdentityMorphing Database
The IdentityMorphing database experiments are performed
based on the evaluation protocol provided in Section 5. The
performance of the proposed algorithm is compared with LBP, BSIF,
and LPQ, which were the top three features on the Snapchat
database and most popular in the literature of digital attack
detection. Table 5 shows the performance of the proposed and
top three existing algorithms. The trend in performance is similar to
the Snapchat database, and the observations are summarized below:

• The proposed algorithm yields an average EER value of 0.0%
for frame-based attack detection. While the bonafide
presentation classification error rate is 0.4%, which is the
least among all the algorithms, the attack presentation
classification error rate is 0.0%;

• The proposed features show an improvement of 78% in terms
of ACER from the second best-performing feature, i.e., LBP;

• The ACER of the proposed algorithm is 0.2%, whereas the
ACER of the CNN model is at least 9.7%;

• Microtexture features BSIF and LPQ, provide a high EER
value of 6.2% and 6.1% on the IdentityMorphing database.
BSIF shows the highest EER and ACER;

• Even at lower False Positive Rate (FPR), the proposed
algorithm yields high True Positive Rate (TPR). The TPR
of proposed, BSIF, and LPQ feature is 100%, 68%, and 1.1%
receptively at 1% FPR;

• Poor performance of existing texture features and the CNN
model shows the challenge in morph attack detection and
importance of the proposed algorithm.

Similar to the Snapchat database results, the results on Identity
Morphing also show that the features that yield high performance
on physical attacks might not necessarily be the best set of
features for digital attacks.

7.3 Results and Analysis on FaceApp
Database
The results on the FaceApp database using six fold cross
validation as defined in Section 5 are given in Table 5.

• The proposed algorithm yields an average EER of 0.4% for
frame/image-based attack detection. On the other hand, the
BSIF histogram feature provides the highest EER and ACER
values;

TABLE 5 | Results of the proposed MagNet and existing algorithms on the proposed IDAgender databases using frames/images as input.

Database Features EER (%) ACER (%)

Snapchat LBP Määttä et al. (2011) 27.1 ± 4.3 27.3 ± 4.1

LPQ Ojansivu and Heikkilä (2008) 28.7 ± 4.0 30.4 ± 3.8

BSIF Kannala and Rahtu (2012) 30.2 ± 7.0 30.2 ± 6.9

VGG-16 Simonyan and Zisserman (2015) 17.7 ± 2.4 18.4 ± 2.3

GoogLeNet Szegedy et al. (2015) 28.1 ± 5.1 29.1 ± 4.9

S-MIL Li et al. (2020a) 16.9 ± 3.6 18.2 ± 2.7

XceptionNet Rossler et al. (2019) 19.7 ± 4.7 23.6 ± 3.1

ResNet-18 Kumar et al. (2020) 30.0 ± 5.9 31.6 ± 5.7

Proposed (MagNet) 18.0 ± 0.4 17.6 ± 0.3

Identity Morphing LBP Määttä et al. (2011) 0.6 ± 0.2 0.9 ± 0.1

LPQ Ojansivu and Heikkilä (2008) 6.1 ± 0.3 6.2 ± 0.2

BSIF Kannala and Rahtu (2012) 6.2 ± 0.4 6.2 ± 0.2

VGG-16 Simonyan and Zisserman, (2015) 4.7 ± 1.1 9.7 ± 1.0

GoogLeNet Szegedy et al. (2015) 12.3 ± 2.1 11.5 ± 0.9

S-MIL Li et al. (2020a) 9.4 ± 1.2 11.7 ± 1.8

XceptionNet Rossler et al. (2019) 7.9 ± 2.4 9.1 ± 1.1

ResNet-18 Kumar et al. (2020) 8.5 ± 1.8 10.6 ± 1.2

Proposed (MagNet) 0.0 ± 0.0 0.2 ± 0.0

FaceApp LBP Määttä et al. (2011) 1.3 ± 0.8 2.7 ± 0.7

LPQ Ojansivu and Heikkilä (2008) 1.2 ± 0.4 1.3 ± 0.3

BSIF Kannala and Rahtu (2012) 30.3 ± 4.4 30.5 ± 4.5

VGG-16 Simonyan and Zisserman (2015) 18.3 ± 2.5 21.4 ± 2.3

GoogLeNet Szegedy et al. (2015) 23.7 ± 2.1 24.5 ± 2.7

S-MIL Li et al. (2020a) 8.6 ± 1.8 12.3 ± 1.2

XceptionNet Rossler et al. (2019) 10.2 ± 3.6 14.7 ± 1.8

ResNet-18 He et al. (2016) 16.2 ± 3.3 14.8 ± 1.6

Proposed (MagNet) 0.4 ± 0.7 2.5 ± 0.4

Result of the best performing algorithm is highlighted in bold.
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• The proposed algorithm shows the lowest APCER among all
the features used for comparison, which is highly required
in the high-security systems;

• The EER and ACER of the CNN model is at least 15.8% and

12.3% (absolute difference) higher thanMagNet, respectively;
• TPR of the proposed algorithm, LPQ, and BSIF features at
1% FPR is 99.8%, 98.8%, and 2.7%, respectively.

7.4 Findings From Each Subset of Proposed
Database
The results show that the detection of morphed images generated
using the Snapchat image is challenging compared to other social
media platforms, including morphthing.com and FaceApp. The
prime reason for comparably lower detection performance might
be attributed to the post smoothing performed by Snapchat to
make the morphed images look ready for upload on the social

media accounts. In contrast, morphthing.com does not bother
about any post-processing by itself. The images on the website
cover a broad spectrum of faces that differ in race and ethnicity; the
swapping of faces of different groups left the artifacts higher than
the same group’s morphing faces. On the other hand, FaceApp is a
neural transfer-based app used for facial attribute conversions such
as age and gender manipulation. That leads to the drastic change in
the facial appearance and, hence, through the proposed algorithm,
we aim to magnify these changes for better detection of
manipulated images. The existing algorithms, including deep
neural networks, do not aim to magnify such minute and facial

attribute conversion artifacts and therefore perform significantly
lower than the proposed “MagNet”.

7.5 Statistical Significance of Results
We next evaluate the statistical significance of results obtained using
WLMP, L-WLMP, and NL-WLMP.McNemar test (McNemar, 1947)
is performed on the test labels provided by the various descriptors
mentioned above, with the null hypothesis being the results are
statistically the same. The output of different descriptors can be
reported in terms of the confusion matrix, which is then used to
calculate theMcNemar test statistics. The test statistics are given below:

H0: Pb � Pc,H1: Pb ≠ Pc (3)

where, H0 is the null hypothesis, Pb and Pc are the probabilities of
error yields by two different classifiers. The McNemar test is
performed on four sets of descriptor pairs:

• WLMP and L-WLMP,
• WLMP and NL-WLMP,
• WLMP and Fusion of WLMP + L-WLMP, and

• WLMP and Fusion of WLMP + NL-WLMP

Using theMcNemar test, we observe that the accuracies provided
by these different descriptors are statistically significant by rejecting
the null hypothesis at a 5% significance level.

7.6 Cross-Database Experiments
We have also performed experiments under cross-database settings
utilizing the proposed databases. When the proposed “MagNet”

algorithm and VGG-16 model are trained on the Snapchat database
and tested on FaceApp, the EERs of 12.0% and 46.1% are observed,

respectively. The proposed algorithm also surpasses the CNNmodel
in terms of area under the curve (AUC) as well by a significant value.
It yields the AUC of 0.94, whereas VGG-16 CNN yields only 0.56.
Compared to image features such as LBP, BSIF, and RDWT +
Haralick (Agarwal et al., 2016), the AUC of the proposed algorithm
is at least 7.0% better. Figure 8 shows the ROC curve of the
experiment depicting the generalizability of the proposed
algorithm in the handling of unseen manipulations. Similar
higher performance has been observed when the proposed
algorithm and CNN models such as VGG-16 and ResNet-18 are
trained and tested on cross-database settings, including Snapchat vs

IdentityMorphing and IdentityMorphing vs FaceApp.
Besides utilizing the proposed databases for cross-database

evaluation, we have examined the robustness of the proposed
detection algorithm on the existing database. The DeepFake
(Korshunov and Marcel, 2018) database contains the face
morphed images generated using generative adversarial
networks (GANs). In total, the database contains 640
tampered videos in low and high quality. When the proposed
algorithm trained on the Snapchat database is tested on the
morphed images of Deepfake, presentation attack detection
error (APCER) of value 0.0% is achieved. In other words, on

both quality subsets, the proposed algorithm yields perfect
detection performance. The performance of the proposed
algorithm is 47.80% and 28.2% better than the deep neural
network namely VGG-Face (Parkhi et al., 2015) and recently
proposed PFTD algorithm (Majumdar et al., 2019).

7.6.1 Computational Efficiency
Finally, computationally, the proposed algorithm requires 0.2 s to
process an input image on a workstation with i7 processor and 16 GB

FIGURE 8 | ROC of the cross-database experiment where the

algorithms are trained on Snapchat and tested on FaceApp database. The

proposed algorithm shows generalizability in handling unseen distortion type

effectively.
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RAM (without any GPU and parallel processing), whereas CNN
based approach requires 3.0 s (using the same computing platform).

8 REAL WORLD EVALUATION

We have also evaluated the performance of the proposed
detection algorithm on artificially generated fake videos. The
state-of-the-art image and video generation technologies can be
efficiently used to create artificial images and videos (Goodfellow
et al., 2014). The popularity and easy availability of these tools,
such as DeepFakes and Fake APP12, have led to dramatic increase

in fake videos on the Internet. By pursuing the misuse or the dark
side of these practical algorithms, people have created fake porn
videos of not only famous celebrities13 but it is also being used for
harassment of women14. To evaluate the performance of the
proposed algorithm on this attack, we collected real and swapped
faces from online YouTube videos15. In total, 2,338 real and
deepfakes with swap faces are collected.

Protocol and Result: 2,388 faces of each class are divided into
five random folds, where each time four folds are used for training
the classifier, and the images from the remaining one fold are used
for testing. The average EER value with standard deviation is

calculated to report the performance of the proposed algorithm.
The proposed algorithm yields 2.05 ± 0.49% EER on this new
online collected database. While most of the samples are correctly
classified, further analysis of misclassified samples shows that low
image quality is a covariate in attack detection. If the image is of
low quality, it becomes challenging to determine whether the
image is attacked or not. In comparison, the second-best EER of
6.89 ± 0.10% is achieved using CNN based digital presentation
attack detection.

8.1 Experiments on Existing Database
In the previous sections, the experiments are conducted on
either proposed databases collected in our lab or on the videos
collected from YouTube. However, the tremendous
improvement of the machine learning algorithms such as
generative adversarial networks (GANs) has made
the generation of synthetic images, transferring attributes
among faces, or morphing two faces together an easy task.
By utilizing these algorithms, several challenging digitally
tampered face databases are prepared in literature.
Therefore, to further show the strength of the proposed face
morphed detection algorithm, one of the challenging large-
scale morphed databases, namely FaceForensics (Rössler et al.,

2018) is also used along with the database prepared by Jain
et al. (2018). The FaceForensics database (Rössler et al., 2018)
contains half a million edited face images. This database
contains 704 and 150 training videos of real and morphed

classes each. For evaluation, subject independent real and

morphed videos of 150 subjects are used. For the collection
of morphed videos Face2Face reenactment technique (Thies
et al., 2016) is used.

The morphed image detection results of MagNet using the
pre-defined database protocol and existing algorithms range
from handcrafted features to deep CNN features reported in
Table 6. In Steganalysis + SVM, the co-occurrence features
from horizontal and vertical edge images are captured. This
technique won the first challenge of image forgery detection
(Cozzolino et al., 2014). Cozzolino et al. (2017) extracted
handcrafted features from a deep learning architecture to

detect morphed images. Bayar and Stamm (2016) have
proposed 18 layers of convolutional neural network for face
morphing detection. The network consists of a constrained
convolutional layer that is designed to suppress the high-level
information. Rahmouni et al. (2017) have extracted four
statistical features from the CNN architecture. The features
of the first fully connected layer of VGG-19 and AlexNet are
concatenated by Raghavendra et al. (2017b). The concatenated
elements are then passed to the Probabilistic Collaborative
Representation classifier for real and morphed image
classification. Zhou et al. (2017) have performed fusion of

the scores obtained from two CNNs: GoogLeNet Inception V3
and triplet CNN. The state-of-the-art Xception network is
fine-tuned for face morphing detection in a transfer learning
fashion. The results of existing algorithms are taken from
Rössler et al. (2018). The proposed algorithm either
outperforms existing algorithms, including CNN features,
statistics, and steganalysis features or performs comparable
to them. For instance, the algorithm by Raghavendra et al.
(2017b), which fuses the features from two CNNs, i.e., AlexNet
and VGG-19, has 2.3% lower detection accuracy than the
proposed MagNet. Further, on frame based evaluation:

where every single frame is classified as real or morphed,
the proposed MagNet algorithm yields 1.00%, 1.07%, and
0.93% ACER, BPCER, and APCER respectively. The
MagNet algorithm shows the EER value of 1.67% and 0.00%
for the frame and video-based evaluation on the FaceForensics
database, respectively.

TABLE 6 |Classification accuracy of the proposed and existing algorithm for video

based morphing attack detection on the FaceForensics database.

Algorithm/Network Accuracy %

Steganalysis Features + SVM Fridrich and Kodovsky, (2012) 99.40

Cozzolino et al. (2017) 99.60

Bayar and Stamm (2016) 99.53

Rahmouni et al. (2017) 98.60

Raghavendra et al. (2017b) 97.70

Zhou et al. (2017) 99.93

XceptionNet Chollet (2017) 99.93

MesoNet Afchar et al. (2018) 96.80

VGG-16 Simonyan and Zisserman (2015) 99.50

ResNet-50 He et al. (2016) 99.93

ResNet-152 He et al. (2016) 99.89

Multi-patch ResNet-18 Kumar et al. (2020) 99.96

Proposed (MagNet) 100.00

Result of the best performing algorithm is highlighted in bold.

12https://www.fakeapp.org/.
13https://tinyurl.com/y9ydm4yy/.
14https://indianlawwatch.com/latestnewsupdates/bombay-high-court-asks-

government-to-act-against-bot-that-turns-womens-photos-into-nudes/.
15https://www.youtube.com/watch?v�-QvIX3cY4lc.
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8.2 Experiments with GAN Generated
Images
Jain et al. (2018) have performed attribute transfer using
StarGAN (Choi et al., 2018) and generated 18,000 face images.
Nine different attributes, such as hair, age, and gender, are

transferred. For the classification of GAN vs real images, a
similar protocol mentioned by the authors is followed. The
database is divided into training, validation, and testing set.
The testing set contains random 1,500 real and 1,000 GAN
generated images, while the validation set contains 500 images
of both classes (i.e., real and GAN). The detection performance of
the proposed and existing algorithms is summarized in Table 7.
The proposed algorithm outperforms the existing state-of-the-art
algorithms by at least 0.3%. Other than the detection accuracy, the
EER, APCER, and BPCER of the proposed algorithm are 0.0%,
0.0%, and 0.4%, respectively.

The proposed algorithm is also evaluated on the images
prepared by Jain et al. (2020) using super-resolution GAN
(Ledig et al., 2017). Similar to StarGAN, nine facial attributes
are transferred on the CelebA database (Liu et al., 2018). The
detection performance is measured using a similar protocol
used for starGAN images. The database is divided into training
(27,500 images), validation (1,000 images), and testing images
(2,500 images), respectively. The proposed algorithm yields
99.88% detection accuracy with 0.08% EER, 0.06% BPCER,
and 0.20% APCER values.

8.3 Robustness to Unseen GAN Models
We have also evaluated the generalizability of the proposed
MagNet algorithm using images generated from unseen GAN
models. In this setting, the images generated using one type of
GAN are used for training, while testing is done on different GAN
images. When StarGAN images are used for training, and SRGAN
images are used for testing, the MagNet yields 95.32% detection
accuracy with 3.52% EER, 2.27% BPCER, 6.90% APCER, and
4.58% ACER values.

9 CONCLUSION

A rich literature on physical presentation attack detection shows the
maturity of algorithms in protecting the face recognition systems.

However, these systems are still vulnerable to digital attacks such as
morphing. As a first contribution, this paper extends the research
on digital attacks and presents the IDAgender database of morphed
faces using three sources of alterations, Snapchat, FaceApp, and

MorphThing.com. Next, to protect the integrity of face recognition
algorithms, a new computationally efficient digital presentation
attack detection algorithm is proposed using a novel descriptor,
termed as Weighted Local Magnitude Patterns. The proposed
algorithm achieves lower error rates compared to several existing
approaches on the proposed databases. The strength of the
proposed algorithm is also demonstrated on the face-swap
images created using generative adversarial networks. The
generalizability of the proposed algorithm in handling unseen
databases, attack types, and generative networks shows its merit
for real world deployment. We believe the performance of the

proposed algorithm can be improved under cross-database and
cross attack settings. Further, the NL-WLMP can utilize a learning
algorithm to obtain the specific filters that highlight the attack or
database-specific features. Finally, the approach can be easily
extended to other biometric modalities such as iris (Kohli et al.,
2016).
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TABLE 7 |Classification accuracy of the proposed and existing algorithm for GAN

generated images.

Algorithm Accuracy %

Bharati et al. (2016) (Unsupervised DBM) 81.90

Bharati et al. (2016) (Supervised DBM) 87.10

Jain et al. (2018) (Thresholding) 99.48

Jain et al. (2018) (SVM) 99.65

Proposed (MagNet) 99.96

Result of the best performing algorithm is highlighted in bold.
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