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2), in B → Kµ+µ−. New physics in the
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2) whereas new
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2) only by
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I. INTRODUCTION

Flavor changing neutral interactions (FCNI) are forbidden at the tree level in the

standard model (SM). Therefore they have the potential to test higher order correc-

tions to the SM and also constrain many of its possible extensions. Among all FCNI,

rare B decays play an important role in searching new physics beyond the SM. The

quark level FCNI b → sµ+µ− is responsible for (i) the inclusive semileptonic decay

B → Xsµ
+µ−, (ii) the exclusive semileptonic decays B → (K,K∗)µ+µ−, and (iii)

the purely leptonic decay Bs → µ+µ−. Both the inclusive and exclusive semilep-

tonic decays have been observed experimentally [1, 2, 3, 4, 5, 6] with branching

ratios close to their SM predictions [7, 8, 9, 10].

In [11], the impact of these measurement on the new physics contribution to the

branching ratio B(Bs → µ+ µ−) was considered. It was shown that new physics

in the form of vector/axial-vector operators is severely constrained by the data on

B(B → Kµ+µ−) and B(B → K∗µ+µ−), so an order of magnitude enhancement in

the branching ratio of Bs → µ+µ− is ruled out. On the other hand, if new physics

is in the form of scalar/pseudoscalar operators, then B(B → K∗µ+µ−) does not put

any useful constraint on the new physics couplings and allows an order of magnitude

enhancement in the B(Bs → µ+ µ−). Therefore B(Bs → µ+µ−) is sensitive to an

extended Higgs sector. In [12], the constraints on scalar/pseudoscalar new physics

contribution to the B(B → Kµ+µ−) were studied. It was shown that a large

deviation in B(B → Kµ+ µ−) from its SM prediction is not possible.

In [13], the forward-backward (FB) asymmetry of leptons in semileptonic decays

of mesons was introduced as an observable sensitive to the physics beyond the SM.

In particular, the FB asymmetry of muons, AFB, in B → Kµ+ µ− is important

because its value is negligibly small in the SM [14]. This is due to the fact that

hadronic current for B → K transition does not have any axial vector contribution;

it can have a nonzero value only if it receives contribution from new physics. The

sensitivity of AFB for testing non-standard Higgs sector has been studied in literature

in detail [15, 16, 17, 18, 19]. However in [20], it was shown that the present upper

bound on the branching ratio of Bs → µ+µ− [21] restricts the average (or integrated)

FB asymmetry, 〈AFB〉, to about 1% as long as the only new physics is in the form
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of scalar/pseudoscalar operators. Such a small FB asymmetry is very difficult to be

measured in experiments and hence searching for new scalar/pseudoscalar physics

through 〈AFB〉 will be a futile exercise.

The forward-backward asymmetry can also get contributions from tensor oper-

ators. In the SM, the tensor operators in b → sµ+µ− arise at higher order in the

electroweak operator product expansion from finite external momenta in the match-

ing calculations, however their contribution is negligibly small and we shall not

consider them in this paper. However in models beyond the SM, tensor operators

may contribute significantly to the decay and to the asymmetry AFB. For example,

in the minimal supersymmetric standard model (MSSM), the tensor operators arise

from photino and zino box diagrams at the leading order operator product expansion

[22]. Tensor operators can also be induced by scalar operators under renormaliza-

tion group running [23, 24]. In leptoquark models, tensor operators are induced by

the interactions of leptoquarks with the SM Higgs field [25].

In [22], the effect of these operators to 〈AFB〉 was studied, where it was shown that

〈AFB〉 can be as high as 3% at 90% C.L. if new physics is only in the form of tensor

operators, whereas it can rise to 15% if both scalar/pseudoscalar and tensor new

physics operators are present. The integrated asymmetry 〈AFB〉 has been measured

by BaBar [4] and Belle [26, 27] to be

〈AFB〉 = (0.15+0.21
−0.23 ± 0.08) (BaBar) , (1)

〈AFB〉 = (0.10± 0.14± 0.01) (Belle). (2)

These measurements are consistent with zero. However, they can be as high as

∼ 40% within 2σ error bars. Future experiments like a Super-B factory or the LHC

will increase the statistics by more than two orders of magnitude. For example at

ATLAS, the number of expected B → Kµ+ µ− events even after analysis cuts is

expected to be ∼ 4000 with 30 fb−1 data [28], which will be collected within the

first three years. Thus, 〈AFB〉 can soon be probed to values as low as 5%.

With higher statistics, one will be able to determine even the distribution of

AFB as a function of the invariant dilepton mass squared q2, which can provide a

stronger handle on this quantity than just its average value 〈AFB〉. Moreover, since

the theoretical predictions for the rate of B → Kµ+ µ− are rather uncertain in the
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intermediate q2 region (7 GeV2 < q2 < 12 GeV2) owing to the vicinity of charmed

resonances, it is important to look at the quantity AFB(q
2) in the complete q2 range

so that its robust features may be identified. Indeed, it turns out that with the new

physics considered in this paper, AFB(q
2) is high near the high-q2 end point.

In this paper we study AFB(q
2) in the complete q2 region and explore the possi-

bility of large FB asymmetry in some specific regions of the dilepton invariant mass

spectrum. This paper is organized as follows. In section II, we present the theoretical

expressions for the FB asymmetry of B → Kµ+ µ− considering new physics in the

form of scalar/pseudoscalar and tensor operators. In section III we study AFB(q
2)

due to new physics only in the form of scalar/pseudoscalar operators whereas in

section IV we consider AFB(q
2) due to new physics only in the form of tensor opera-

tors. In section V, we calculate AFB(q
2) when both the scalar/pseudoscalar we well

as tensor operators are present. Finally in section VI, we present the conclusions.

II. FORWARD-BACKWARD ASYMMETRY OF MUONS IN B → Kµ+ µ−

We consider new physics in the form of scalar/pseudoscalar and tensor operators.

The effective Lagrangian for the quark level transition b → sµ+µ− can be written

as

L(b → sµ+µ−) = LSM + LSP + LT , (3)

where

LSM =
αGF√
2π

VtbV
⋆
ts

{

Ceff
9 (s̄γµPLb) µ̄γµµ+ C10(s̄γµPLb) µ̄γµγ5µ

−2
Ceff

7

q2
mb (s̄iσµνq

νPRb) µ̄γµµ

}

, (4)

LSP =
αGF√
2π

VtbV
⋆
ts

{

RS s̄PRb µ̄µ+RP s̄PRb µ̄γ5µ

}

, (5)

LT =
αGF√
2π

VtbV
⋆
ts

{

CT s̄σµνb µ̄σ
µνµ+ iCTE s̄σµνb µ̄σαβµ ǫµναβ

}

. (6)

Here PL,R = (1∓ γ5)/2 and qµ is the sum of 4-momenta of µ+ and µ−. RS and RP

are new physics scalar/pseudoscalar couplings whereas CT and CTE are new physics

tensor couplings.
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Within the SM, the Wilson coefficients in eq. (4) have the following values:

Ceff
7 = −0.310 , Ceff

9 = +4.138 + Y (q2) , C10 = −4.221 , (7)

where the function Y (q2) is given by [29, 30]

Y (q2) = g(mc, q
2)(3C1 + C2 + 3C3 + C4 + 3C5 + C6)−

1

2
g(0, q2)(C3 + 3C4)

− 1

2
g(mb, q

2)(4C3 + 4C4 + 3C5 + C6) +
2

9
(3C3 + C4 + 3c5 + C6) . (8)

Here we take the values of the relevant Wilson coefficients to be

C1 = −0.249, C2 = 1.107, C3 = 0.011,

C4 = −0.025, C5 = 0.007, C6 = −0.031, (9)

all of which are computed at the scale µ = mb = 5 GeV. The function g is given by

g(mi, q
2) = −8

9
ln(mi/m

pole

b ) +
8

27
+

4

9
yi −

2

9
(2 + yi)

√

|1− yi|

×
{

Θ(1− yi)

[

ln

(

1 +
√
1− yi

1−√
1− yi

)

− iπ

]

+Θ(yi − 1) 2 tan−1

(

1√
yi − 1

)}

,(10)

with yi ≡ 4m2
i /q

2.

The normalized FB asymmetry is defined as

AFB(z) =

∫ 1

0
dcosθ d2Γ

dz dcosθ
−

∫ 0

−1
dcosθ d2Γ

dz dcosθ
∫ 1

0
dcosθ d2Γ

dz dcosθ
+
∫ 0

−1
dcosθ d2Γ

dz d cos θ

. (11)

with z ≡ q2/m2
B. In order to calculate the FB asymmetry, we first need to calculate

the differential decay width. The decay amplitude for B(p1) → K(p2)µ
+(p+)µ

−(p−)

is given by

M (B → Kµ+µ−) =
αGF

2
√
2π

VtbV
⋆
ts

×
[

〈K(p2) |s̄γµb|B(p1)〉
{

Ceff
9 ū(p−)γµv(p+) + C10ū(p−)γµγ5v(p+)

}

−2
Ceff

7

q2
mb 〈K(p2) |s̄iσµνq

νb|B(p1)〉 ū(p−)γµv(p+)

+ 〈K(p2) |s̄b|B(p1)〉 {RSū(p−)v(p+) +RP ū(p−)γ5v(p+)}

+2CT 〈K(p2) |s̄σµνb|B(p1)〉 ū(p−)σ
µνv(p+)

+2iCTEǫ
µναβ 〈K(p2) |s̄σµνb|B(p1)〉 ū(p−)σαβv(p+)

]

, (12)
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where qµ = (p1 − p2)µ = (p+ + p−)µ. The relevant matrix elements are

〈K(p2) |s̄γµb|B(p1)〉 = (2p1 − q)µf+(z) + (
1− k2

z
) qµ[f0(z)− f+(z)] , (13)

〈K(p1) |s̄iσµνq
νb|B(p1)〉 =

[

(2p1 − q)µq
2 − (m2

B −m2
K)qµ

] fT (z)

mB +mK
, (14)

〈K(p2) |s̄b|B(p1)〉 =
mB(1− k2)

m̂b
f0(z) , (15)

〈K(p2) |s̄σµνb|B(p1)〉 = −i
[

(2p1 − q)µqν − (2p1 − q)νqµ

] fT
mB +mK

, (16)

where k ≡ mK/mB and m̂b ≡ mb/mB.

Using the above matrix elements, the double differential decay widths can be

calculated as

d2Γ

dzdcosθ
=

G2
Fα

2

211π5
|VtbV

∗
ts|2m5

B φ1/2

×
[

z

{

m̂µ

mB
Re(CE∗) +

1

4m2
B

(|E|2 + β2
µ|D|2)

}

+φ

{

1

4
(|A|2 + |B|2) + 2m̂µmB Re(AF ∗)

}

+(1− k2)

{

2m̂2
µRe(BC∗) +

m̂µ

mB
Re(BE∗)

}

+m̂2
µ

{

(2 + 2k2 − z)|B|2 + z|C|2
}

+ φ z m2
B (1− β2

µ)|F |2

+φβ2
µ

{

z m2
B(|F |2 + 4|G|2)− 1

4
(|A|2 + |B|2)

}

cos2 θ

−φ1/2βµ

{

m̂µ

mB
Re(AD∗) + 4mµ(1− k2)Re(BG∗) + 4zm̂µmBRe(CG∗)

+ 2zRe(GE∗) +
z

4
Re(DF ∗)

}

cos θ

]

, (17)

where

m̂µ ≡ mµ/mB

φ ≡ 1 + k4 + z2 − 2(k2 + k2z + z) ,

βµ ≡
√

1−
4m̂2

µ

z
, (18)

and θ is the angle between the momenta of K meson and µ− in the dilepton centre

of mass frame. The parameters A,B,C,D,E, F,G are combinations of the Wilson
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coefficients and the form factors, given by

A ≡ 2Ceff
9 f+(z)− 4Ceff

7 m̂b
fT (z)

1 + k
,

B ≡ 2C10 f+(z) ,

C ≡ 2C10

1− k2

z

[

f0(z)− f+(z)
]

,

D ≡ 2RS
mB(1− k2)

m̂b
f0(z) ,

E ≡ 2RP
mB(1− k2)

m̂b
f0(z) ,

F ≡ −4CT
fT (z)

mB(1 + k)
,

G ≡ 4CTE
fT (z)

mB(1 + k)
. (19)

The kinematical variables in eq. (17) are bounded as

− 1 ≤ cos θ ≤ 1, 4m̂2
µ ≤ z ≤ (1− k)2 . (20)

The form factors f+, 0, T can be calculated in the light cone QCD approach. Their z

dependence is given by [14]

f(z) = f(0) exp(c1z + c2z
2 + c3z

3) , (21)

where the parameters f(0), c1, c2 and c3 for each form factor are given in Table I.

f(0) c1 c2 c3

f+ 0.319+0.052
−0.041 1.465 0.372 0.782

f0 0.319+0.052
−0.041 0.633 − 0.095 0.591

fT 0.355+0.016
−0.055 1.478 0.373 0.700

TABLE I: Form factors for the B → K transition [14].

The FB asymmetry arises from the cos θ term in the last two lines of eq. (17).

We get

AFB(z) =
2Γ0 βµ φN(z)

dΓ/dz
, (22)

where

Γ0 =
G2

Fα
2

212π5
|VtbV

∗
ts|2m5

B , (23)
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N(z) = −4mµ(1− k2)Re(BG∗)− m̂µ

mB
Re(AD∗)− 4zm̂µmBRe(CG∗)

−z

4
Re(DF ∗)− 2zRe(EG∗) , (24)

dΓ

dz
= Γ0 φ

1/2 ×
[

φ

(

1− 1

3
β2
µ

)

(|A|2 + |B|2) + 4 m̂2
µ |B|2 (2 + 2k2 − z) + 4 m̂2

µ z |C|2

+8 m̂2
µ (1− k2) Re(BC∗) + 8m̂µmBφRe(AF ∗) +

z

m2
B

(|E|2 + β2
µ |D|2)

+
4m̂µ

mB
(1− k2) Re(BE∗) +

4m̂µ

mB
zRe(CE∗)

+
4

3
φ z m2

B

{

3|F |2 + 2 β2
µ (2|G|2 − |F |2)

}

]

. (25)

In our analysis we assume that there are no additional CP phases apart from the

single Cabibbo-Kobayashi-Maskawa (CKM) phase. Under this assumption the new

physics couplings are all real.

III. AFB FROM NEW SCALAR/PSEUDOSCALAR OPERATORS

If new physics is only in the form of scalar/pseudoscalar operators, then AFB(z)

is obtained by putting CT = CTE = 0 in eq. (12). We get

AFB(z) =
βµ φ

1/2 aSM,S(z)RS

bSM(z) + bSM,S(z)RP + bS(z)(R2
S +R2

P )
, (26)

where

aSM,S(z) = −4m̂µ

m̂b

(1− k2) f0(z) Re(A) , (27)

bSM(z) = φ

(

1− 1

3
β2
µ

)

(|A|2 + |B|2) + 4 m̂2
µ |B|2 (2 + 2k2 − z)

+ 4 m̂2
µ z |C|2 + 8 m̂2

µ (1− k2) Re(BC∗) , (28)

bSM,S(z) =
16m̂µ

m̂b

(1− k2)2C10 f
2
0 (z) , (29)

bS(z) =
4 z

m̂2
b

(1− k2)2 f 2
0 (z) . (30)

Therefore in order to estimate AFB(z) we need to know the scalar/pseudoscalar

couplings RS and RP .
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FIG. 1: RS − RP parameter space allowed by the present upper bound on the branching

ratio of Bs → µ+ µ−

We constrain RS and RP through the decay Bs → µ+ µ−. The branching ratio

of Bs → µ+ µ− due to LSM + LSP is given by [20]

B(Bs → µ+ µ−) =
G2

F α2m3
Bs

τBs

64π3
|VtbV

∗
ts|2 f 2

Bs
×

[

R2
S + (RP + 2m̂µ C10)

2
]

. (31)

The present upper bound on B(Bs → µ+ µ−) is [21]

B(Bs → µ+µ−) < 0.58× 10−7 (95% C.L.) , (32)

which is still more than an order of magnitude away from its SM prediction. There-

fore we will neglect the SM contribution while obtaining constraints on the RS−RP

parameter space. The allowed values of RS and RP at 2σ are shown in Fig. 1. The

input values of parameters, used throughout this paper, are given in Table II.

The maximum value of AFB(z) is obtained for RP = 0 and RS = ±0.84. At

these parameter values, AFB(z) is shown in Fig. 2 for the central and ±2σ values of

the form factors. As can be observed, the errors in the form factors have almost no

impact on the value of AFB(z) obtained. The peak value of AFB(z) is observed to

be ≈ 2%, whereas in most of the z range, AFB(z) < 1%. Measurement of AFB(z) in

the presence of only scalar/pseudoscalar operators will therefore be very challenging.
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GF = 1.166 × 10−5 GeV−2 mBs
= 5.366 GeV

α = 1.0/129.0 mB = 5.279 GeV

αs(mb) = 0.220 [31] Vtb = 1.0

τBs
= 1.45 × 10−12 s Vts = (40.6 ± 2.7)× 10−3

mµ = 0.105 GeV |VtbV
∗
ts/Vcb| = 0.967 ± 0.009 [32]

mK = 0.497 GeV mc/mb = 0.29 [7]

mb = 4.80 GeV [7] B(B → Xcℓν) = 0.1061 ± 0.0016 ± 0.0006 [33]

TABLE II: Numerical inputs used in our analysis. Unless explicitly specified, they are

taken from the Review of Particle Physics [34].

 0
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 0.014
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z

FIG. 2: The forward-backward asymmetry AFB(z = q2/m2
B) for the new physics only in

the form of scalar/pseudoscalar operators. The plot corresponds to RP = 0 and RS =

−0.84. The red (solid) curve corresponds to the central values of the the form factors

given in Table I whereas the green (dashed) and blue (dotted) curves correspond to their

values at +2σ and −2σ respectively. In this scenario, all the curves overlap, indicating

that the dependence on form factors is negligibly small.
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IV. AFB FROM NEW TENSOR OPERATORS

If new physics is only in the form of tensor operators then AFB(z) is obtained by

putting RS = RP = 0 in eq. (12). We get

AFB(z) =
βµ φ

1/2 aSM,T (z)CTE

bSM(z) + bSM,T (z)CT + bT (z)(CT + 4C2
TE)

, (33)

where

aSM,T (z) = −64 m̂µ (1− k)C10 fT (z) f0(z) , (34)

bSM,T (z) = − 32 m̂µ φRe(A) fT (z)

1 + k
, (35)

bT (z) =
64φ z f 2

T (z)

3 (1 + k)2
, (36)

and bSM(z) is given already in eq. (28).

In order to estimate AFB(z), we need to know the tensor couplings CT and CTE.

In [35], it was shown that the the most stringent bound on tensor couplings comes

from the data on the branching ratio of the inclusive decay B → Xsµ
+ µ−. The

branching ratio of B → Xs(ps)µ
+(pµ+)µ−(pµ−) is given by [36]

B(B → Xsl
+l−) = B0

[

ISM + (C2
T + 4C2

TE)IT

]

, (37)

where

ISM =

∫

dz

[

8u(z)

z

{

1− z2 +
1

3
u(z)2

}

Ceff
7

−2 u(z)

{

z2 +
1

3
u(z)2 − 1

}

(Ceff
9

2
+ C2

10)

−16 u(z) (z − 1)Ceff
9 Ceff

7

]

, (38)

IT = 16

∫

dz u(z)

[

−2

3
u(z)2 − 2z + 2

]

, (39)

u(z) = (1− z) . (40)

Here z ≡ q2/m2
b = (pµ+ + pµ−)2/m2

b = (pb − ps)
2/m2

b . The limits of integration for z

are now

zmin = 4m2
µ/mb

2 , zmax = (1− ms

mb
)2 , (41)
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as opposed to the ones given in eq. (20) for the exclusive decay. The normalization

factor B0 is given by

B0 = B(B → Xceν)
3α2

16π2

|V ∗
tsVtb|2
|Vcb|2

1

f(m̂c)κ(m̂c)
, (42)

where the phase space factor f(m̂c = mc

mb

), and the O(αs) QCD correction factor

κ(m̂c) of b → ceν are given by [37]

f(m̂c) = 1− 8m̂c
2 + 8m̂c

6 − m̂c
8 − 24m̂c

4 ln m̂c , (43)

κ(m̂c) = 1− 2αs(mb)

3π

[

(π2 − 31

4
)(1− m̂c)

2 +
3

2

]

. (44)

Eq. (37) can be written as

B(B → Xsµ
+ µ−) = BSM(B → Xsµ

+ µ−) +BT (B → Xsµ
+ µ−) , (45)

where

BSM(B → Xsµ
+ µ−) = B0 ISM , (46)

BT (B → Xsµ
+ µ−) = B0 IT (C2

T + 4C2
TE) . (47)

The present world average for B(B → Xsµ
+ µ−) is [6]

BExp(B → Xsµ
+ µ−)q2>0.04GeV2 = (4.3+1.3

−1.2)× 10−6 . (48)

We keep the same invariant mass cut, q2 > 0.04 GeV2, in order to enable comparison

with the experimental data. With this range of q2, the SM branching ratio for

B → Xsµ
+ µ− in NNLO is [7]

BSM(B → Xsµ
+ µ−)q2>0.04GeV2 = (4.15± 0.71)× 10−6 , (49)

whereas B0IT = (1.47± 0.22)× 10−6. Using equations (45), (48) and (49), we get

C2
T + 4C2

TE = 0.10± 1.01 . (50)

The allowed parameter space for CT , CTE at 2σ is shown in Fig. 3.

The maximum value of AFB(z) is obtained for CT = 0 and CTE = ±0.69. For

these parameter values, AFB(z) is shown in Fig. 4 for the central and ±2σ values of

the form factors. In most of the z range, AFB(z) ∼< 3%, however its peak value at

the high-q2 end point is ∼ 40%. Thus there can be a large deviation from the SM

prediction in the high-q2 region.
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FIG. 3: (CT , CTE) parameter space at 2σ allowed by the measurement of branching ratio

of B → Xsµ
+ µ−

V. AFB FROM THE COMBINATION OF SCALAR/PSEUDOSCALAR

AND TENSOR OPERATORS

We now consider the scenario where new physics in the form of both

scalar/pseudoscalar and tensor operators are present. In this case the expression for

AFB(z) is given by eq. (12). Maximum values of AFB(z) as obtained forRS = CT = 0

and RP = −0.84, CTE = 0.69, which are shown in Fig. 5. The peak value of AFB(z)

is ∼ 40% at 2σ and is obtained at the high-q2 end point. Thus, there can be large

FB asymmetry in the high q2 region. Another reason to concentrate on the high-q2

region is that theoretical predictions of the decay rate B → Kµ+ µ− are more robust

there, owing to the non-interference of charmed resonances.

Let R be the high-q2 region, with q0 < q2 < q2max, where q2max is the endpoint.

The restriction to high-q2 would decrease the number of events selected, however

since the average AFB in this region, 〈AR
FB〉, is larger, it can still be observed. The

number of events of B → Kµ+ µ− required to determine this asymmetry to nσ is

NB→Kµ+ µ− ∼>
n2

〈AR
FB〉2fR

, (51)
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FIG. 4: The forward-backward asymmetry AFB(z = q2/m2
B) for the new physics only in

the form of tensor operators. The plot corresponds to CT = 0 and CTE = +0.69. The

red (solid) curve corresponds to the central values of the the form factors given in Table I

whereas the green (dashed) and blue (dotted) curves correspond to their values at +2σ

and −2σ respectively. The dependence on the form factors is clearly extremely small.

where fR is the fraction of total number of B → Kµ+ µ− events that lie in the

region R. When R corresponds to the whole q2 range available, then the expression

reduces to NB→Kµ+ µ− ∼> n2/〈AFB〉2, as expected.
Taking R to be the region q2 > 15 GeV2 and the values of parameters as shown

in Fig. 5, we find that about 600 total B → Kµ+ µ− events are required to observe

FB asymmetry at 2σ. For q2 > 19 GeV2, the required number of events for 2σ

detection of AFB is about 1600. These numbers are easily obtainable at a Super-B

factory as well as at the LHC, so the structure of the AFB(q
2) peak can be studied

at these experiments.

VI. CONCLUSIONS

In the standard model, the forward-backward asymmetry AFB of muons in B →
Kµ+µ− is negligible. New physics in the form of vector/axial vector operators also
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FIG. 5: The forward-backward asymmetry AFB(z = q2/m2
B) for new physics when both

scalar/pseudoscalar as well as tensor operators are present. The plot corresponds to

RS = CT = 0 and RP = −0.84, CTE = +0.69. The red (solid) curve corresponds to

the central values of the the form factors given in Table I whereas the green (dashed) and

blue (dotted) curves correspond to their values at +2σ and −2σ respectively.

cannot contribute to AFB. However, new physics in the form of scalar/pseudoscalar

or tensor operators can enhance AFB to per cent level or more, thus bringing it

within the reach of the LHC or a Super-B factory. In this paper, we concentrate on

the magnitude as well as q2 dependence of AFB with these kinds of new physics.

We find that if new physics is in the form of scalar/pseudoscalar operators only,

then the peak value of AFB(q
2) can only be ∼< 2%, and hence rather challenging

to detect. However if new physics is only in the form of tensor operators then the

peak value of AFB(q
2) can be as high as 40%. Such a high enhancement is obtained

only near the high-q2 end point, i.e. for q2 > 19 GeV2, below which AFB(q
2) ∼< 5%.

In the presence of both scalar/pseudoscalar and tensor operators, the interference

terms between them can boost AFB(q
2) to more than 15% for the whole region

q2 > 15 GeV2.

The measurement of the distribution of AFB as a function of q2 can not only reveal
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new physics, but also indicate its possible Lorentz structure. A large enhancement

in AFB by itself would confirm the presence of new physics tensor operators. If

the enhancement is only at large q2 values, the scalar/pseudoscalar new physics

operators probably play no major role. On the other hand, if the enhancement as a

function of q2 is significant at low q2 and increases gradually with increasing q2, the

presence of scalar/pseudoscalar new physics operators would be indicated.

The high-q2 region in the AFB(q
2) distribution is theoretically clean since the

charmed resonances in the intermediate q2 region do not interfere here. This region

also happens to be highly sensitive to new physics, especially in the form of tensor

operators, as we have shown here. Exploration of this region in the upcoming

experiments is therefore of crucial importance.
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