
ar
X

iv
:1

20
5.

27
47

v2
  [

qu
an

t-
ph

] 
 2

3 
M

ar
 2

01
7

Laplacian matrices of weighted digraphs represented as

quantum states∗
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Abstract

Graph representation of quantum states is becoming an increasingly important area
of research to investigate combinatorial properties of quantum states which are nontrivial
to comprehend in standard linear algebraic density matrix based approach of quantum
states. In this paper, we propose a general weighted directed graph framework for inves-
tigating properties of a large class of quantum states which are defined by three types of
Laplacian matrices associated with such graphs. We generalize the standard framework
of defining density matrices from simple connected graphs to density matrices using both
combinatorial and signless Laplacian matrices associated with weighted directed graphs
with complex edge weights and with/without loops. We also introduce a new notion of
Laplacian matrix which we call signed Laplacian matrix associated with such graphs.
We produce necessary and/or sufficient conditions for such graphs to represent pure and
mixed quantum states. Using these criteria we finally determine the graphs whose cor-
responding density matrices represent entangled pure states which are well-known and
important for quantum computation applications. It is important to observe that all
these entangled pure states share a common combinatorial structure.

Keywords: Combinatorial Laplacian, signless Laplacian, eigenvalues, pure and mixed
states, density matrix, quantum entanglement

1 Introduction

Quantum mechanics deals with states living in the Hilbert space, allowing for linear superpo-
sitions to be built up, a facility of immmense importance for harnessing the power of quantum
mechanics but at the same time making it computationally a formidable task. This can be
most easily appreciated by considering entanglement [1, 2] in higher dimensions as well as
in multi-partite systems [3], all mathematically and computationally very formidable tasks.
Any tool that would aid in this regard would be very welcome.

In combinatorics a graph is a collection of vertices and edges which link two vertices. A
digraph is a graph consisting directed edges. A loop is an edge that joins a vertex with itself.
A graph is said to be a weighted graph if each edge is assigned a nonzero number which
is called the weight of the corresponding edge. The theory of graphs is a well-developed
mathematical theory that has found many applications in diverse areas, such as the spectrum
of a discrete Schrödinger operator in a uniform, periodic magnetic field [4]. Graphs have,
by their very construction, the inherent feature of visualization. A pertinent question to
ask is whether graphical representation of quantum states can be made? This would enable
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the incorporation of the mathematical machinery of graphs into the problems of quantum
mechanics and at the same time bring in the attractive feature of visualization of quantum
states.

Attempts have been made to realize density matrix representation of a quantum state
by defining a matrix associated with a graph. In this case, the graph is called the graph
representation of a quantum state. This idea was first introduced in [5] by considering a com-
binatorial Laplacian matrix associated with an unweighted undirected graph (simple graph).
It was further extended in [6] for weighted graphs. A criteria of separability of multipartite
states represented by the combinatorial Laplacian matrices of simple graphs have also devel-
oped in [7]. Recently, local unitary transformations on a density matrix obtained by signless
Laplacian matrix associated with a simple graph has been established as a combinatorial
operation which is known as switching of a graph in [8]. A combinatorial operation has also
been introduced for density matrices defined by Laplacian matrices associated with simple
graphs in [9] that act as an entanglement generator for mixed states arising from partially
symmetric graphs.

In this paper, we use both combinatorial and signless Laplacian matrices to define density
matrices associated with a weighted digraph having complex edge weights and with or without
loops. We also introduce a matrix, which we call signed Laplacian matrix associated with a
weighted digraph having loops with both positive and negative weights. In order to relate the
topological structure of a weighted digraph and properties of the density matrices defined by
these Laplacian matrices, we investigate the zero eigenvalues of these matrices associated with
such graphs. This leads to a classification of graphs which always provide density matrices
representing pure quantum states, and those which determine mixed quantum states. Indeed,
since the number of mixed states are significantly larger than the number of pure states,
emphasis is given on identifying graphs which can produce important classes of pure states.
We also provide graphs which identify a number of well-known entangled pure states by
using the Laplacian matrices associated with such graphs. A state vector of an entangled
state cannot be expressed as a tensor product of other state vectors. These states play an
important role in different tasks of quantum information theory. We observe that in the graph
representation of entangled pure states, all the weighted edges are clustered in a subgraph
which forms a completely connected graph and the weight of the loops attached at each of
the vertices is −(m−2) where m is the number of vertices involved in the complete subgraph.
This should be of interest to the quantum information community.

The plan of the paper is as follows. In section 2, we define the required terminologies of
graph theory and in particular, we investigate the Laplacian matrices and Laplacian spectra
associated with a weighted digraph with or without loops. In section 3, we define the density
matrix associated with a weighted digraph and classify the graphs which represent pure and
mixed states. Finally, we provide graphs which define density matrices of entangled pure
states.

2 Weighted digraphs with/without loops and its Lapla-
cian spectra

Let G = (V,E) be a graph with the vertex set V = {1, 2, . . . , n} and edge set E ⊆ V × V. A
directed graph or digraph G is a graph with a function assigning to each edge an ordered pair
of vertices. The first vertex of the ordered pair is called the initial vertex of the edge, and the
second is the terminal vertex; together, they are the endpoints. Thus each edge of a digraph
is directed; and an undirected edge can be considered as both way directed. A weighted graph
G is a graph with a function w : E → C, defined by w(i, j) = wij , 1 ≤ i, j ≤ n, where C

is the set of all complex numbers. If |wij | = 1 for all (i, j) ∈ E, such a graph is called gain
graph [10]. The function w is called an edge-weight function and wij is called the weight of
(i, j) ∈ E. An unweighted graph can be considered as an edge-weighted graph with weight
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function wij = 1 if wij 6= 0. A weighted digraph is a graph which is both weighted and
directed. However, as mentioned, an unweighted undirected graph also can be considered as
weighted digraph with constant weight function with weight of any edge is 1 and the edges
are both way directed. Thus, from now onward a graph always is a weighted digraph unless
otherwise mentioned.

2.1 Weighted digraphs with or without loops having nonnegative
weights

First, we consider weighted digraphs having loops (at least one loop and maximum one loop
at a vertex) with nonnegative real weights. The adjacency matrix A(G) = (aij) associated
with G is defined as

aij =





wij , if (i, j) ∈ E;
wij , if (j, i) ∈ E;
ri, if (i, i) ∈ E;
0, otherwise

where 0 ≤ ri ∈ R is the weight of the loop at ith vertex and wij ∈ C. Note that ri = 0
if ith vertex does not have a loop. The weighted degree di of a vertex i ∈ V is given by
di =

∑n
j=1 |aij |. The Laplacian and the signless Laplacian matrices are defined by

L(G) = diag({di}ni=1)−A(G) and Q(G) = diag({di}ni=1) +A(G), (1)

respectively [11, 12, 13]. Notice that loops, even though apparent in the adjacency matrix
A(G), do not appear in the Laplacian matrix L(G). The above constructions of L(G) and
Q(G) will lead to diagonally dominant matrices, i.e., a matrix M where |Mi,i| ≥

∑
j 6=i |Mi,j |.

For a weighted edge from vertex i to j with weight wij ∈ C, we assume wij = rije
iθij , rij >

0, 0 ≤ θ ≤ π. We consider wij = rije
−iθij − π ≤ θij ≤ 0,

√
wij =

√
rije

iθij/2,
√
wij =

√
rije

−iθij/2. Thus, (
√
wij)

2 = wij and
√
wij

√
wij = rij .

Lemma 2.1 Let G = (V,E) be a weighted directed graph without loops. Then L(G) and
Q(G) are Hermitian and positive semidefinite matrices.

Proof: Assume that wij ∈ C is the weight of an edge (i, j). Then define

(M−)v,e =





√
wij , if wij ∈ C \ R and v is initial vertex of nonloop edge e

−
√
wij , if wij ∈ C \ R and v is terminal vertex of nonloop edge e√

|wij |, if 0 > wij ∈ R and v is initial or terminal vertex of nonloop edge e

−
√
|wij |, if 0 < wij ∈ R and v is initial vertex of nonloop edge e√

|wij |, if 0 < wij ∈ R and v is terminal vertex of nonloop edge e
0, otherwise

and

(M+)v,e =





√
wij , if wij ∈ C \ R and v is initial vertex of nonloop edge e√
wij , if wij ∈ C \ R and v is terminal vertex of nonloop edge e√
|wij |, if 0 < wij ∈ R and v is initial or terminal vertex of nonloop edge e

−
√
|wij |, if 0 > wij ∈ R and v is initial vertex of nonloop edge e√

|wij |, if 0 > wij ∈ R and v is terminal vertex of nonloop edge e
0, otherwise

for any v ∈ V and e ∈ E. Then it is easy to verify that L(G) = M−(M−)† and Q(G) =
M+(M+)† where † denotes conjugate transpose. Therefore, the result follows.
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From the construction of M+ and M− in Lemma 2.1, it follows that

x†L(G)x =
∑

i6=j,(i,j)∈E,0<wij∈R

|wij ||xi − xj |2 +
∑

i6=j,(i,j)∈E,0>wij∈R

|wij ||xi + xj |2

+
∑

i6=j,(i,j)∈E,wij∈C\R
|
√
wijxi −

√
wijxj |2 (2)

and

x†Q(G)x =
∑

i6=j,(i,j)∈E,0<wij∈R

|wij ||xi + xj |2 +
∑

i6=j,(i,j)∈E,0>wij∈R

|wij ||xi − xj |2

+
∑

i6=j,(i,j)∈E,wij∈C\R
|
√
wijxi +

√
wijxj |2 (3)

In the following theorem we provide a necessary and sufficient condition for a connected
loopless weighted digraph having a signless Laplacian eigenvalue zero. Recall that, a digraph
is said to be connected if it is connected without considering the directions of the edges.

Theorem 2.2 Let G be a connected weighted digraph without selfloops. The least eigenvalue
of the signless Laplacian matrix of a loopless connected weighted digraph is 0 if and only if

(−1)p++|P |
∏

(i,j)∈P,wij∈C\R

wij

|wij |
= (−1)p

′
++|P ′|

∏

(ij)∈P ′,wij∈C\R

wij

|wij |

holds for any two directed paths P and P ′ with numbers of links having positive real weights
are p+ and p′+ respectively between any fixed two vertices and |P | denotes the number of edges
having nonreal weights in P .

Proof: Assume that the least eigenvalue of the signless LaplacianQ(G) ofG has an eigenvalue
zero, that is, xHQ(G)x = 0 for some non-zero vector x. From (3), it is obvious that for such
x, xi = −xj if 0 < wij ∈ R; xi = xj if 0 > wij ∈ R; xi = − wij

|wij |xj if wij ∈ C \ R. Let

P ≡ (u = i1, i2, . . . , ik1
= v) and P ′ ≡ (u = i′1, i

′
2, i

′
3, . . . , i

′
k2

= v) be two distinct directed
paths from the vertex u to the vertex v. Then, for the path P,

xu = (−1)p++|P |
∏

(i,j)∈P,wij∈C\R

wij

|wij |
xv;

and for the path P ′,

xu = (−1)p
′
++|P ′|

∏

(ij)∈P ′,wij∈C\R

wij

|wij |
xv.

Further, xu 6= 0 and xv 6= 0 since otherwise x = 0 follows from (3) as the graph is connected.
Hence the desired result follows.

Conversely, if the given condition is true for any two different directed paths for any pair
of vertices in G, a vector x defined by xi = −xj if 0 < wij ∈ R; xi = xj if 0 > wij ∈ R;
xi = − wij

|wij |xj if wij ∈ C \ R will satisfy x†Q(G)x = 0. Hence the proof.

Corollary 2.3 The least eigenvalue of the signless Laplacian of a loopless connected weighted
digraph having complex unit weights is equal to 0 if and only if

W (P ) = (−1)p
′−pW (P ′)

holds for any two directed walks P, P ′ of lengths p and p′ respectively between any fixed two
vertices where W (P ) (resp. W (P ′)) is the product of the weights of the edges of P (resp. P ′).
In particular, 0 is a simple eigenvalue.
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Corollary 2.4 Let G be a weighted digraph without loops with n(> 2) vertices. Assume that
0 is a signless Laplacian eigenvalue of G. Then the multiplicity of 0 as a signless Laplacian
eigenvalue of G is k if and only if the graph is disconnected with k connected components.

It is shown in [13] that for a unweighted undirected connected graph G without loops, the
least eigenvalue of the signless Laplacian of G is equal to 0 if and only if the graph is bipartite
and 0 is a simple eigenvalue. We mention that the condition provided in Theorem 2.3 for
existence of zero eigenvalue of weighted directed graph is a generalized version of the condition
obtained for unweighted undirected graph in [13]. That is, the condition in Theorem 2.3 is
satisfied for an unweighted undirected connected graph if and only if the graph is bipartite.

The following corollary provides a necessary and sufficient condition for existence of zero
Laplacian eigenvalue of a weighted connected digraph.

Corollary 2.5 The least eigenvalue of the combinatorial Laplacian matrix of a loopless con-
nected weighted digraph is equal to 0 if and only if

(−1)p−

∏

(i,j)∈P,wij∈C\R

wij

|wij |
= (−1)p

′
−

∏

(ij)∈P ′,wij∈C\R

wij

|wij |

holds for any two directed walks P, P ′ with number of links with negative real weights ares p−
and p′− respectively between any fixed two vertices.

Proof: The proof is similar to the proof of Theorem 2.2.

Corollary 2.6 The least eigenvalue of the cominatorial Laplacian of a loopless connected
weighted digraph having complex unit weights is equal to 0 if and only if

W (P ) =W (P ′)

holds for any two walks P, P ′ between any two vertices where W (P ) (resp. W (P ′)) is the
product of the weights of the edges of P (resp. P ′). In particular, 0 is a simple eigenvalue.

An alternative proof of the above corollary also can be found in [12].

Corollary 2.7 Let G be a weighted digraph without loops with n(> 2) vertices. Assume that
0 is a combinatorial Laplacian eigenvalue of G. Then the multiplicity of 0 as a combinatorial
Laplacian eigenvalue of G is k if and only if the graph is disconnected with k connected
components.

As we mentioned above, loops with nonnegative weights have no effect on the combinatorial
Laplacian matrix. Thus, we only consider signless Laplacian matrix when an weighted digraph
contains at least one loop with positive real weight. It is easy to verify that, given an weighted
digraph G with at least one loop having positive real weight, we have

x†Q(G)x = x†Q(Ĝ)x+
∑

(i,i)∈E

ri|xi|2 (4)

where Ĝ is the subgraph of G without considering loops. This also shows that Q(G) is
Hermitian and positive semidefinite.

Lemma 2.8 0 can never be a signless Laplacian eigenvalue of a connected weighted digraph
G with loops (at least one vertex contains a loop) having positive weights.

Proof: Consider a connected weighted digraph G with loops (at least one vertex contains a
loop) having positive weights. If 0 is a signless Laplacian eigenvalue of G, from (4) we know
that, there exists an 0 6= x ∈ Cn such that

x†Q(G)x = x†Q(Ĝ)x +
∑

(i,i)∈E

ri|xi|2 = 0

5



where Ĝ is the subgraph of G without loops. Assume that the k-th vertex contains the loop.
For x†QGx to be zero, xk has to be zero since rk is positive. Further, since the graph is
connected, kth vertex is linked with m (say) vertices k1, k2, . . . , km for some m which implies
xkj

= 0 for j = 1, . . . ,m which further implies that xj = 0 for all j = 1, . . . , n since kj vertices

are linked with other vertices and x†Q(Ĝ)x = 0 for all (i, j) ∈ E.

2.2 Weighted digraphs with loops having at least one loop with neg-
ative weight

Recall the definitions of Laplacian and signless Laplacian matrices associated with a weighted
digraph. Observe that loops, even though apparent in the adjacency matrix A(G) do not
reflect in Laplacian matrix when the loops are having positive weights, and in signless Lapla-
cian matrices when the loops are having negative weights. Thus, for weighted digraphs with
both nonnegative and negative weighted loops (at least one of the loops has negative weight),
we introduce a new matrix, which we call signed Laplacian, denoted by L−(G) and L±(G)
when G has all the loops with nonpositive weights, and when G contains loops with positive
weights as well as negative weights, respectively by

L−(G) = R−(G) +Q(Ĝ) and L±(G) = R±(G) +Q(Ĝ) (5)

where R−(G) = R±(G) = diag{r1, r2, . . . , rn}, rj ∈ R denotes the weight of the loop at jth

vertex, j = 1, . . . , n and Q(Ĝ) is the signless Laplacian matrix of the graph Ĝ constructed
from G without considering the loops. Obviously, L−(G) and L±(G) are Hermitian matrices.
In order to simplify the notation we denote R(G) = R−(G) = R±(G).

Lemma 2.9 Given a weighted digraph G with nonpositive loops, L−(G) is semi-definite if

max
i

|ri| ≤ λminQ(Ĝ)

where ri ≤ 0, i = 1 : n are the weights of the loops present in the graph and λminQ(Ĝ) denotes

the minimum eigenvalue of Q(Ĝ).

Proof: For any unit vector 0 6= x ∈ Cn, we have

− x†R(G)x ≤ max
i

|ri| and x†Q(Ĝ)x ≥ λmin(Q(Ĝ)). (6)

In order to show that L−(G) is positive semi-definite, for any non-zero unit vector x ∈ Cn,

we must have x†L−(G)x = x†R(G)x + x†Q(Ĝ)x ≥ 0. If the given condition is satisfied, the
proof follows from (6).

Given a weighted digraph, the lemma declares that if the maximum of the modulus of
weights of the loops do not exceed the minimum signless Laplacian eigenvalue of the graph
without considering the loops, then the signed Laplacian corresponding to the given graph
will be positive semi-definite.

Example 2.10 1. Consider the graph given in Figure 1. The signed Laplacian matrix
with negative loops associated with G is given by

L−(G) =




1 1 1 −1
1 1 1 −1
1 1 1 −1
−1 −1 −1 1




=




−2 0 0 0
0 −2 0 0
0 0 −2 0
0 0 0 −2


+




3 1 1 −1
1 3 1 −1
1 1 3 −1
−1 −1 −1 3




= R(G) +Q(Ĝ).
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Note that, eigenvalues of Q(Ĝ) are 2, 2, 2, 6.

1−2 ::
1

1
1

❃❃
❃❃

❃❃
❃❃

2 −2dd

−1

3−2
$$

−1

−1

��������
4 −2
zz

Figure 1: Graph with negative weighted loops

2. Consider the weighted digraph given in Figure 2 The eigenvalues of L−(G) are given by

1−0.2 ::
i //

i

��

2 −0.2dd

3−0.2
$$

i

@@��������

Figure 2: Graph with negative weighted loops

0.0679, 1.8000, 3.5321.

Proposition 2.11 Let G be a weighted digraph with loops having nonpositive weights. If the
subgraph Ĝ obtained from G by removing the loops has signless Laplacian eigenvalue zero then
L−(G) is not positive semi-definite.

Proof: Let x be the unit eigenvector corresponding to the zero Laplacian eigenvalue of Ĝ.
Then x†L−(G)x = x†R(G)x < 0 since R contains at least one loop with negative weight.

Theorem 2.12 Let G be a connected weighted digraph with nonpositive loop weights and n
number of vertices. Let λ be a signless Laplacian eigenvalue of Ĝ of algebraic multiplicity k.
Then the number of zero eigenvalues of L−(G) is k if |ri| = λ for all i ∈ V (G).

Proof: Consider L−(G) = R(G) + Q(Ĝ). We know that 0 is an eigenvalue of L−(G) if an
only if there exists a unit vector x ∈ Cn such that x†L−(G)x = 0, which implies x†R(G)x =

x†Q(Ĝ)x. Assume that λ is an eigenvalue of Q(Ĝ) with algebraic multiplicity k. Since Q(Ĝ)

is Hermitian, there exists unit orthogonal vectors x1, x2, . . . , xk such that x†iQ(Ĝ)xi = λ, i =

1, . . . , k. Set R(G) = −λIn, where In is the identity matrix of order n. Then x†iL−(G)xi = 0
for all i. Since xis are orthonormal vectors, algebraic multiplicity of eigenvalue 0 of L−(G) is
k.

Remark 2.13 Note that, a connected weighted digraph with all negative weighted loops can
have zero signed Laplacian eigenvalues of multiplicity more than one. In particular, consider
any connected weighted complete digraph G where all the loops are present having weights
equal to one of the eigenvalues of Q(Ĝ). For example, consider Figure 1.

Now we consider weighted digraphs with loops having both positive and negative weights.
Then we have the following lemma.

Lemma 2.14 Let G be a weighted digraph with loops having at least one negative and at
least one positive weighted loops. Assume that G has n vertices, k are having positive loop
weights, l are having negative loop weights such that k + l ≤ n. Let r+1 , . . . , r

+
k be the positive

weights and r−k+1, . . . , r
−
l the negative weights such that r±j = rj − dj , for some rj ∈ R,
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j = 1, . . . , k, k + 1, . . . , l, . . . , n where dj is the degree of jth vertex of Ĝ. Then L±(G) is
positive semi-definite if and only if

diag{r1, r2, . . . , rn}+A(Ĝ)

is positive semi-definite.

Proof: Without loss of generality, assume that the first k vertices are having loops with
positive weights, second l vertices are having loops with negative weights, and the remaining
(if any) vertices have no loops. For any nonzero x ∈ Cn,

x†L±(G)x = x†



R+ 0 0
0 R− 0
0 0 R0


x+ x†Q(Ĝ)x

= x†(diag{r1, r2, . . . , rn}+A(Ĝ))x

where R+ = diag{r+1 , . . . , r+k }, R− = diag{r−1 , . . . , r−l } and R0 = diag{rl+1, . . . , rn}. Hence,
the result follows.

Theorem 2.15 Let G be a weighted digraph with loops having both positive and negative
weighted loops. The number of zero eigenvalues of L±(G) is equal to the number of zero

eigenvalues of diag{r1, r2, . . . , rn} + A(Ĝ) where r±j = rj − dj , j = 1, . . . , n and r±j is the
weight of the loop at jth vertex.

Proof: The proof follows by Lemma 2.14.

Example 2.16 Consider the weighted digraph in Figure 3. The signed Laplacian is

1−1 ::

−2
,,2 3 4 2dd

rr

Figure 3: Graph G with negative and positive weighted loops

L±(G) =




1 0 0 −2
0 0 0 0
0 0 0 0
−2 0 0 4


 =




−1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 2


+




2 0 0 −2
0 0 0 0
0 0 0 0
−2 0 0 2


 .

3 Graph structure for pure and mixed states

The approach of identifying the density matrix representations of quantum states by den-
sity matrices of unweighted undirected graphs was introduced in [5] and extended in [6] for
weighted graphs. However, the recent development of signless Laplacian matrix associated
with a graph has not been gainfully used in both [5] and [6] to define density matrix associated
with the graph. Thus, the results in [6] could not capture interesting connections between the
properties of density matrices defined by a graph and topology of the graph. In this section,
we use the Laplacian matrices defined in the last section to define density matrix associated
with a weighted digraph. Further, we describe how the topological structure of the graph
dictates whether the corresponding density matrices represent pure or mixed states.
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3.1 Pure States and Mixed States

Recall that density matrix representation of a quantum state is a Hermitian positive semi-
definite matrix with unit trace. The density matrix σ corresponding to a state is called pure
if Tr(σ2) = 1 and mixed if Tr(σ2) < 1. A quantum state, in general, can also be represented
as

σ =
∑

i

pi|ψi〉〈ψi|, (7)

where 0 6= |ψi〉 ∈ C2 with norm one and
∑

i pi = 1, 0 ≤ pi ≤ 1. Thus σ is a convex combination
of rank one matrices, in particular, rank one projections. If σ is just a projection with rank
one then σ is a pure state, otherwise, a mixed state.

We define density matrices associated with a weighted digraph. We denote an weighted
complete bipartite digraph without loops of order n by Kn.

Definition 3.1 The density matrix σG associated with an weighted digraph G are given by

σG :=
1

Tr(K(G))
K(G) (8)

where

• K(G) = L(G) when G is without a loop

• K(G) = Q(G) when either G is without a loop or having loops with nonnegative weights

• K(G) = L−(G) when G is with loops having nonpositive weights and L−(G) is positive
semi-definite

• K(G) = L±(G) when G contains loops with positive weights, negative weights and L±(G)
is positive semi-definite.

Theorem 3.2 The density matrix defined by Laplacian or signless Laplacian matrix of a
weighted digraph G without loops has rank one if and only if the graph is K2 or K̂2 :=
K2 ⊔ v1 ⊔ v2 ⊔ . . . vn−2., where v1, v2, . . ., vn−2 are isolated vertices.

Proof: Assume that σG has rank one and G contains n vertices. Then σG has eigenvalue 1
with multiplicity one (since trace of σG = 1) and 0 is an eigenvalue of multiplicity n − 1. If
n = 2 then obviously G = K2. If n 6= 2 then by Corollary 2.7, G contains n − 1 connected
components. Thus G = K̂2.

Conversely, suppose G = K2 or K̂2. Then the eigenvalues of σG are 0 with multiplicity
n − 1 for G = K̂2 and multiplicity 1 for G = K2, and 1 with multiplicity one. Hence the
result follows.

Remark 3.3 We mention that the same result has been obtained in [5] for unweighted undi-
rected graphs.

Corollary 3.4 Let G be a weighted digraph without loops isomorphic to K2 or K̂2. Then σG
constructed by L(G) or Q(G) represents a pure state.

Proof: The density matrix σG has a simple eigenvalue 1 and other eigenvalues are zeros.
Since trace of any matrix is sum of the eigenvalues of the matrix, we have Tr(σG) = 1 and
Tr(σ2

G) = 1. Thus the result follows.

Corollary 3.5 Let G be a weighted digraph without loops of order n that is not isomorphic
to K2 and K̂2. Then σG constructed by L(G) or Q(G) represents a mixed state.
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Proof: Let the eigenvalues of σ(G) be λ1 ≤ λ2 ≤ . . . ≤ λn. By the definition of σG we
have Tr(σG) = 1 as

∑n
i=1

λi

d(G) = 1 where d(G) =
∑n

i=1 λi. Then the eigenvalues of σ2
G are

λ2
1

d(G)2 ,
λ2
2

d(G)2 , . . . ,
λ2
n

d(G)2 . Thus

Tr(σ2
G) =

∑n
i=1 λ

2
i

d(G)2
=
d(G)2 − 2

∑n
i6=j,i,j=1 λiλj

d(G)2
< 1.

Hence G represents a mixed state.

Example 3.6 1. Consider the graph in Figure 4 which represents a pure state.

1 2 3
w34 // 4 5 6

Figure 4: Pure state given by K2 along with 4 isolated nodes

2. Consider the graph in Figure 5 which represents a mixed state.

1 2
w23 // 3 4w43

oo 5 6

Figure 5: Mixed state with 6 vertices

The digraph O1 denotes a digraph with one vertex and the vertex contains a directed
weighted loop.

Theorem 3.7 The density matrix of order n defined by signless Laplacian matrix associated
with a weighted digraph G with loops having nonnegative weights has rank one if and only if
the graph is Ô1 := O1 ⊔ v1 ⊔ v2 ⊔ . . . vn−1, where v1, v2, . . ., vn−1 are isolated vertices without
loops.

Proof: Assume that the density matrix σG of G constructed by the signless Laplacian of the
graph and G contains n vertices with at least one vertex contains a directed loop. Obviously,
the matrix σG has rank 1 if and only if any submatrix of σG of order ≥ 2 is singular. Without
loss of generality assume that the first vertex v1 is attached with a directed loop. Then the
following cases arise.

Case-I: The vertex v1 is linked by a directed edge with another vertex say the second vertex
v2. In this case, if we consider the 2 × 2 submatrix of σG constructed by the intersection of
the 1st row, 2nd row, 1st column and 2nd column of σG then this is a matrix with nonzero
determinant. Hence rank of σG is at least 2.

Case-II: Any two vertices without loops say vi and vj are linked by a directed edge. In this
case, if we consider the 2× 2 submatrix of σG constructed by the intersection of the 1st row,
ith row, 1st column and ith column of σG then this is a matrix with nonzero determinant.
Hence rank of σG is at least 2.

Case-III: All the vertices are isolated without loops except two vertices say the 1st and the
2nd vertex. Then, if we consider the 2× 2 submatrix of σG constructed by the intersection of
the 1st row, 2nd row, 1st column and 2nd column of σG then this is a matrix with nonzero
determinant. Hence rank of σG is at least 2.

Case-IV: All the vertices are isolated without loops except the 1st vertex. Then the density
matrix σG is of rank 1.

Hence the desired result follows.

Corollary 3.8 Let G be a weighted digraph with loops having nonnegative weights and is
isomorphic to Ô1. Then σG defined by the signless Laplacian of G represents a pure state.
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Corollary 3.9 Let G be a weighted digraph with loops having nonnegative weights of order
n that is not isomorphic to Ô1. Then σG defined by the signless Laplacian of G represents a
mixed state.

Example 3.10 1. Consider the graph in Figure 6 which represents a pure state.

1 2 3r3 :: 4 5 6

Figure 6: Pure state given by O1 along with a single loop

2. Consider the graph in Figure 7 which represents a mixed state.

1r1 :: 2
w23 // 3

w34 // 4 5 6

Figure 7: Mixed state with 6 vertices

Remark 3.11 Realization of 1-qubit by weighted digraph: Consider the graph G = K2 for a
pure state with edge weight w ∈ S

+
1 . Then the corresponding density matrix with respect to the

Laplacian matrix is given by

σG =
1

2
L(G) =

1

2

[
1 −w

−w 1

]
,

where w = eiφ, 0 ≤ φ ≤ 2π. The eigenvalues of σG are 0 and 1 corresponding to eigenvectors

|ψ1〉 = 1√
2|z1|

[
z1
wz1

]
and |ψ2〉 = 1√

2|z2|

[
z2

−wz2

]
respectively, where 0 6= z1, z2 ∈ C. Thus the

pure state is given by σ = |ψ2〉〈ψ2|. Setting z2 = reiθ, |z2| = r > 0, 0 ≤ θ ≤ 2π, the vector
representation of the pure state is given by

|ψ〉 = eiθ(
1√
2
|0〉 − 1√

2
e−iφ|1〉),

≡ 1√
2
|0〉 − 1√

2
e−iφ|1〉

where |0〉 =
[
1
0

]
and |1〉 =

[
0
1

]
.

Further, the density matrix with respect to the signless Laplacian matrix is given by

σG =
1

2
Q(G) =

1

2

[
1 w
w 1

]
.

Following a similar approach, as above, the corresponding vector representation of the pure
state is given by

|ψ〉 ≡ 1√
2
|0〉+ 1√

2
e−iφ|1〉, 0 ≤ φ ≤ 2π.

Now we consider weighted graphs with loops having nonpositive weights. We denote
Sn, n ≥ 2, a star graph with n vertices.

Theorem 3.12 Consider a weighted digraph G consisting of a weighted digraph Ĝ without
loops having n number of vertices and loops at each vertex of Ĝ with equal weights −λ where λ
is a signless Laplacian eigenvalue of Ĝ with multiplicity n− 1. Then σ(G) = 1

Tr(L−(G))L−(G)
represents a pure state.

11



Proof: By Lemma 2.9, σ(G) is positive semi-definite. However, n− 1 number of eigenvalues

of L−(G) are zero since λ is an eigenvalue of Q(Ĝ) of algebraic multiplicity n− 1. Therefore,
rank of σ(G) is one. Hence the result follows.

Corollary 3.13 Consider a weighted digraph G consists of a weighted digraph Ĝ without loops
having n number of vertices and loops at each vertex of Ĝ with equal weights −λ where λ is a
signless Laplacian eigenvalue of Ĝ with multiplicity k < n− 1. Then σ(G) = 1

Tr(L−(G))L−(G)

represents a mixed state.

Example 3.14 1. Consider G = Kn along with loops at each vertex of equal weights
−n/(n− 1). Then σ(G) = 1

Tr(L−(G))L−(G) represents a pure state. For instance, con-

sider n = 3 in Figure 8.

1−1.5 ::
1

1

2 −1.5dd

3−1.5
$$

1

��������

Figure 8: Pure state given by K3 along with negative weighted loops

2. Consider G = Sn along with loops at each vertex of equal weights −1. Then σ(G) =
1

Tr(L−(G))L−(G) represents a mixed state. For example, consider n = 4 in Figure 9.

1−1 ::

1

2−1 ::
1

1

3 −1dd

4−1
$$

Figure 9: Mixed state given by S4 along with negative weighted loops

Now we consider graphs with both positive and negative weighted loops.

Theorem 3.15 Let G be a weighted digraph with loops having at least one negative and
at least one positive weighted loops. Assume that G has n vertices, k are having positive
loop weights, l are having negative loop weights such that k + l ≤ n. Let r+1 , . . . , r

+
k be the

positive weights and r−k+1, . . . , r
−
l the negative weights such that r±j = rj −dj, j = 1, . . . , k, k+

1, . . . , l, . . . , n where dj is the degree of jth vertex of Ĝ. Then G represents a pure state if and
only if

diag{r1, r2, . . . , rn}+A(Ĝ)

has rank one.

Proof: The proof follows from the construction of L±(G) and Lemma 2.14.
However, we can construct a class of pure states by using the construction mentioned in

the following corollary.

Corollary 3.16 Consider a digraph Ĝ without loops having n vertices that represents a pure
state obtained by signless Laplacian matrix Q(Ĝ), that is, only two vertices of G, say ith and

jth of Ĝ = (V,E) are linked having edge weight wij ∈ C, rest of the vertices are isolated.
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Define r+i = r2i − |wij | and r−j = r2j − |wij | where ri, rj ∈ R+ such that r2i + r2j = 1 and

rirj = |wij |. Then the graph G constructed by Ĝ along with loops introduced at the ith and
jth vertices having weights r+i and r−j respectively, provides a pure state defined by L±(G).

Proof: Note that, all the entries of L±(G) = (lpq) are given by

(L±(G))pq =





r2i , if p = q = i
r2j , if p = q = j
wij , if p = j, q = j
wij , if p = j, q = i
0 otherwise.

Obviously, L±(G) is Hermitian, positive semi-definite and Tr(L±(G)) = 1. Further, rank of
L±(G) = 1. Therefore, G represents a pure state.

4 Graph structure of entangled pure states

In this section, we provide weighted digraphs whose density matrices represent entangled
pure states. Because of the potential applications offered by pure entangled states, they are
of immense importance in quantum information and computation. This forms the basis for
studying the properties of such states from a graph theoretic approach.

1. Bell States : For two-qubit systems, Bell states [1] are maximally entangled states rep-
resented as

|φ〉±12 =
1√
2
[ |00〉12 ± |11〉12 ] ,

|ψ〉±12 =
1√
2
[ |01〉12 ± |10〉12 ] . (9)

For example, consider the graphs with four vertices in Figure 10. The density matrices

1◦
1

,,2◦ 3◦ 4◦rr 1◦ 2◦
1

))
3◦uu

4◦

Figure 10: G1 and G2

are given by σ(Gi) =
K(Gi)

Tr(K(Gi))
; K(Gi) ∈ {L(Gi), Q(Gi)} where σ(G1) = |φ〉+12 〈φ|

+
12 and

σ(G2) = |ψ〉+12 〈ψ|
+
12. In order to produce the Bell states of the form 1√

2

[
|00〉+ eiδ|11〉

]

and 1√
2

[
|01〉+ eiδ|10〉

]
using G1 and G2, one has to replace the edge weights by a factor

eiδ and edge will be unidirectional.

2. General 2-qubit and 3-qubit entangled states : Consider the graph in Figure 11 for the

1◦|a|2−|ab| 88

ab
,,2◦ 3◦ 4◦ |b|2−|ab|ff

Figure 11: Graph G

general two-qubit state |Ψ〉 = a |00〉+b |11〉, where a, b ∈ C\{0} and |a|2+ |b|2 = 1. The

density matrix associated with G is given by σ(G) = L±(G)
Tr(L±(G)) = |Ψ〉 〈Ψ|. The graph

for a general 3-qubit state, |Φ〉 = a |000〉+ b |111〉, will follow similarly by considering 8
vertices where only the first and the last vertices will be linked.

13



3. Three-qubit GHZ and W States : Three qubit states can be separated into two inequiv-
alent classes, namely GHZ class and W class [15, 16]. These classes have distinct
properties and cannot be converted into one another by performing Stochastic Local
Operations and Classical Communication (SLOCC). We have already shown that the
graph of a general three-qubit GHZ state will be similar to Fig. (11). For specific cases
of a = b = 1√

2
, the eight orthogonal GHZ states are,

|ψ〉(1),(2)123 =
1√
2
[ |000〉 ± |111〉 ] ,

|ψ〉(3),(4)123 =
1√
2
[ |001〉 ± |110〉 ] ,

|ψ〉(5),(6)123 =
1√
2
[ |010〉 ± |101〉 ] ,

|ψ〉(3),(4)123 =
1√
2
[ |011〉 ± |100〉 ] ,

(10)

The graphs corresponding to Eq. (12) are given in Figures 12,13, 14, 15.

1◦
1

..2◦ 3◦ 4◦ 5◦ 6◦ 7◦ 8◦pp

Figure 12: G1

1◦ 2◦
1

--3◦ 4◦ 5◦ 6◦ 7◦qq 8◦

Figure 13: G2

1◦ 2◦ 3◦
1

,,4◦ 5◦ 6◦rr 7◦ 8◦

Figure 14: G3

1◦ 2◦ 3◦ 4◦
1

))
5◦uu

6◦ 7◦ 8◦

Figure 15: G4

and the density matrices associated with G1, G2, G3, G4 are given σ(Gi) = K(Gi)
Tr(K(Gi))

whereK(Gi) ∈ {L(Gi), Q(Gi)}, and σ(G1) = |ψ〉(1),(2)123 〈ψ|(1),(2)123 , σ(G2) = |ψ〉(3),(4)123 〈ψ|(3),(4)123 ,

σ(G3) = |ψ〉(5),(6)123 〈ψ|(5),(6)123 , σ(G4) = |ψ〉(7),(8)123 〈ψ|(7),(8)123 .

The general three-qubit W state is given as |ψ〉W123 = a|001〉 + b|010〉 + c|100〉 where

|a|2 + |b|2 + |c|2 = 1. The graph representation of |ψ〉W123 is given in Figure 16.

The density matrix for theW class of states can be expressed as σ(G) = L−(G)
Tr(L−(G)) . For a

specific case where a = b = c = 1√
3
, Figure 17 represents the graphical representation for

a standardW state. It is evident that the graphs for GHZ and W classes are completely
distinct from each other. Therefore, using our approach one can easily identify whether
a given three-qubit state belongs to a GHZ class or W class.
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2|a|(|a|−|b|−|c|) ::
ab //

ac

��

4 |b|(|b|−|a|−|c|)dd

5|c|(|c|−|a|−|b|)
$$ cb

??⑦⑦⑦⑦⑦⑦⑦⑦
1◦ 3◦ 6◦ 7◦ 8◦

Figure 16: G

2−1 ::
1

1

4 −dd 1◦ 3◦ 6◦ 7◦ 8◦

5−1
$$

1

��������

Figure 17: G

Similar toGi, i = 1, . . . , 4 graphs with 8 vertices, graphs with 16 vertices can be produced
which will provide the GHZ states with 4-qubits. By similar graphs, we mean graphs
with 16 nodes, one edge which connects the ith and (17 − i)th vertices, i = 1, . . . , 8
having edge weight 1. Similarly one can also obtain the graph for a four qubit W state.

4. Cluster and Chi states : The four qubit cluster [17] and Chi [18] states are given by
|ψ〉1234 = 1

2 (|0000〉)+|0101〉+|1010〉−|1111〉) and |φ〉1234 = 1
2 (|0000〉)+|0101〉+|1011〉−

|1110〉), respectively. The corresponding graphs for these two states are given in Figures
18 and 19, respectively. The two states are different as evident from the edge weights.

1◦−2 88
1

−1
1

❊❊
❊❊

❊❊
❊❊

6◦ −2ff

−1

2◦ 3◦ 4◦ 5◦ 7◦ 8◦

11◦−2

**

−1

−1

②②②②②②②②
16◦ −2

tt
9◦ 10◦ 12◦ 13◦ 14◦ 15◦

Figure 18: G

1◦−2 88
1

1
1

❊❊
❊❊

❊❊
❊❊

6◦ −2ff

−1

2◦ 3◦ 4◦ 5◦ 7◦ 8◦

12◦−2

**

−1

−1

②②②②②②②②
15◦ −2

tt
9◦ 10◦ 11◦ 13◦ 14◦ 16◦

Figure 19: G

Similarly, the density matrices corresponding to Cluster and Chi states are represented

by σ(Gi) =
L−(Gi)

Tr(L−(Gi))
where σ(G1) = |ψ〉1234 〈ψ|1234, and σ(G2) = |φ〉1234 〈φ|1234.

5. Brown State: Consider the graph G with 32 vertices given in Figure (20). The isolated
vertices are not shown in the graph and the weights of the edges and loops are as given
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below.

wij =





−1, i = 1, j = 4, 15
1, i = 1, j = 14, 21, 24, 26, 27
−1, i = 4, j = 14, 21, 24, 26, 27
1, i = 4, j = 15
−1, i = 14, j = 15
1, i = 14, j = 21, 24, 26, 27
−1, i = 15, j = 21, 24, 26, 27
1, i = 21, j = 24, 26, 27
1, i = 24, j = 26, 27
1, i = 26, j = 27
−6, i = j, i = 1, 4, 14, 15, 21, 24, 26, 27.

(11)

The graph in Figure (20) represents a five qubit Brown state [19], namely

|ψ〉12345 =
1

2
√
2
[|00000〉 − |00011〉+ |01101〉 − |01110〉+ |10100〉+ |10111〉+ |11001〉

+ |11010〉] (12)

In comparison to other non-equivalent classes of five-qubit entangled states, Brown
states are said to be more entangled. The reason is evident from the property that all
the bipartitions of Brown states are maximally mixed which is not the case with GHZ,
Cluster or Chi type of states.

The density matrix associated with the graph for Brown state is

σ(G) =
1

Tr(L−(G))
L−(G) = |ψ〉

12345
〈ψ|

12345
.

1◦++

②②
②②
②②
②②

❯❯❯❯
❯❯❯❯

❯❯❯❯
❯❯❯❯

❯❯❯❯
❯❯

☛☛
☛☛
☛☛
☛☛
☛☛
☛☛
☛☛
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✺✺
✺✺

✺✺
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✺✺
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✺✺
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✺✺
✺✺

✺✺
✺✺

▲▲
▲▲

▲▲
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▲▲

▲▲
▲▲

▲▲
▲▲

▲▲
▲▲

4◦ ss
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✐✐

✸✸
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✸✸
✸✸
✸✸
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✸✸
✸

✠✠
✠✠
✠✠
✠✠
✠✠
✠✠
✠✠
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✠✠
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✠✠
✠✠

14◦88

❳❳❳❳❳
❳❳❳❳❳

❳❳❳❳❳
❳❳❳❳❳

❳❳❳❳❳
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▲▲

▲▲
▲▲

▲▲
▲▲

▲▲
▲▲

▲▲
▲▲

▲▲
▲▲
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✸✸
✸✸
✸✸

✸✸
✸✸
✸✸
✸ 15◦ff

☛☛
☛☛
☛☛
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☛☛
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☛☛
☛

rr
rr
rr
rr
rr
rr
rr
rr
rr
rr
rr
rr

❢❢❢❢❢
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❢❢❢❢❢
❢❢❢❢❢

❢❢❢❢❢
❢❢❢❢❢

21◦88

❊❊
❊❊

❊❊
❊❊

❯❯❯❯
❯❯❯❯

❯❯❯❯
❯❯❯❯

❯❯❯❯
❯

rrrrrrrrrrrrrrrrrrrrrrrr
24◦ff

②②
②②
②②
②②

✐✐✐✐
✐✐✐✐

✐✐✐✐
✐✐✐✐

✐✐✐✐
✐

26◦55 27◦ ii

Figure 20: G

6. 5-qubit Chi state: The five-qubit Chi state [20] can be represented as

|φ〉12345 =
1

2
[|00000〉+ |00111〉+ |01010〉 − |01101〉 − |10011〉+ |10100〉+ |11001〉

+ |11110〉] . (13)

The graph and weights of edges for the five-qubit Chi state are given by Figure (21)
and Eq. (14), respectively.
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1◦++

②②
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26◦55 31◦ ii

Figure 21: G

wij =





−1, i = 1, j = 14, 20
1, i = 1, j = 8, 11, 21, 26, 31
−1, i = 8, j = 14, 20
1, i = 8, j = 11, 21, 26, 31
−1, i = 11, j = 14, 20
1, i = 11, j = 21, 26, 31
−1, i = 14, j = 21, 26, 31
1, i = 14, j = 20
−1, i = 20, j = 21, 26, 31
1, i = 26, j = 31
−6, i = j, i = 1, 4, 14, 15, 21, 24, 26, 27.

(14)

The density matrix, therefore, can be given as σ(G) = 1
Tr(L−(G))L−(G) = |φ〉12345 〈φ|12345.

Although the difference between Brown and Chi states can be characterized from the
edge weights, for a meaningful classification of such states using a graph theoretical
approach, one needs to quantify a graph theoretic measure for entanglement. Such a
measure will classify quantum states in different classes and provide deeper physical
insight into the complex nature of multiqubit entanglement.

Remark 4.1 Observe that in the graph representation of entangled pure states mentioned
above, all the existing weighted edges are clustered in a completely connected subgraph of the
original graph. Further, the weight of the loops attached at each of the vertices of the subgraph
is −(m− 2) where m is the number of vertices involved in the complete subgraph.

5 Conclusion

We define combinatorial, signless and signed Laplacian matrices associated with a weighted
digraph having complex edge weights with or without loops. We determine the connection
between the existence of zero Laplacian eigenvalues of a weighted digraph and the topological
structure of the graph. Using these Laplacian matrices, we define density matrices corre-
sponding to a weighted digraph. We have classified graphs which represent pure and mixed
density matrices of quantum states by using the topological structure of the graphs. This
work initiates a number of directions to the combinatoric visualization of quantum mechani-
cal phenomena. Some of them are listed below.

1. A state is called separable if the density matrix,

ρ =
∑

i

piρ
(A)
i ⊗ ρ

(B)
i .
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Here, ρ
(A)
i and ρ

(B)
i denotes density matrix of subsystems A and B. We denote tensor

product of matrices by ⊗. The state is entangled otherwise. We have deduced the
graphs for several well-known entangled pure states. We have demonstrated that the
three-qubit entangled systems can be classified into GHZ and W class using a graph
theoretic approach. A criteria of separability states represented by the Laplacian of
simple graphs has been developed in [7]. A combinatorial operation has also been
introduced for density matrices defined by Laplacian matrices associated with simple
graphs in [9] that act as an entanglement generator for mixed states arising from partially
symmetric graphs. These works introduce new results for the separability of density
matrices corresponding to weighted digraphs.

2. In order to develop further insight into the entanglement properties of multiqubit sys-
tems, it would be interesting to define a graph theoretic measure for quantification and
classification of entanglement in such systems.

3. Recently, local unitary transformations on a density matrix obtained by signless Lapla-
cian matrix associated with a simple graph has been established as a combinatorial
operation which is known as switching of a graph in [8]. This work sheds further light
to the problem of unitary equivalence and state classification for the states related to
weighted digraphs.

This work is, we hope, a contribution towards a new direction in the field of quantum
information.

References

[1] A. Einstein, B. Podolsky, and N. Rosen, Can Quantum-Mechanical Description of Phys-
ical Reality Be Considered Complete?, Phys. Rev. 47, 777-780 (1935); ; J. S. Bell, On the
Einstein-Podolsky-Rosen paradox, Physics (Long Island City, N. Y.) 1, 195-200 (1964).

[2] W. K. Wootters, Entanglement of formation of an arbitrary state of two qubits, Phys.
Rev. Lett. 80 (1998) 2245-2248.

[3] A. Miyake, Classification of multipartite entangled states by multidimensional determi-
nants, Phys. Rev. A 67 (2003) 012108: 1-10.

[4] T. Sunada, A discrete analogue of periodic magnetic Schrödinger operators, Geometry of
the spectrum, Contemp. Math., Amer. Math. Soc., Providence, RI (Seattle, WA, 1993),
173 (1994) 283-299.

[5] S. L. Braunstein, S. Ghosh and S. Severini, The Laplacian of a graph as a density matrix:
a basic combinatorial approach to separability of mixed states, Annals of Combinatorics
10 (2006) 291-317.

[6] Hassan Ali, Saif M. and Pramod S. Joag. A combinatorial approach to multipartite quan-
tum systems: basic formulation, Journal of Physics A: Mathematical and Theoretical
40.33 (2007): 10251.

[7] Wu, Chai Wah, Multipartite separability of Laplacian matrices of graphs, Electronic jour-
nal of combinatorics 16.1 (2009): R61.

[8] Dutta, Supriyo, Bibhas Adhikari and Subhashish Banerjee, A graph theoretical approach
to states and unitary operations. Quantum Information Processing 15.5 (2016): 2193-
2212.

18



[9] Dutta, Supriyo, Bibhas Adhikari, Subhashish Banerjee and R. Srikanth, Bipartite sep-
arability and non-local quantum operations on graphs, arXiv preprint arXiv:1601.07704
(2016).

[10] Reff, Nathan, Spectral properties of complex unit gain graphs, Linear Algebra and its
Applications 436.9 (2012): 3165-3176.

[11] R. B. Bapat, Graphs and Matrices, Hindustan Book Agency, New Delhi, India, Ist
Edition (2011).

[12] R. B. Bapat, D. Kalita and S. Pati, On weighted directed graphs, Linear Algebra and its
Appl. 436.1 (2012): 99-111.

[13] Cvetkovic Drago, Peter Rowlinson, and Slobodan K. Simic, Signless Laplacians of finite
graphs, Linear algebra and its applications 423.1 (2007): 155-171.

[14] Wu, Chai Wah, Conditions for Separability in Generalized Laplacian Matrices and Diag-
onally Dominant Matrices as Density Matrices, IBM Research Report RC23758(W0508-
118)(Octobor 18, 2005).

[15] D. M. Greenberger, M. A. Horne., A. Shimony and A. Zeilinger, Bell’s theorem without
inequalities, A. J. Phys. 58, 1131-1143 (1990);

[16] W. Dur, G. Vidal and J. I. Cirac, Phys. Rev. A 62, 062314-062314(12) (2000).

[17] H.J. Briegel and R. Raussendorf, Persistent Entanglement in arrays of Interacting Par-
ticles, Phys. Rev. Lett. 86, 910-913 (2001).

[18] Y. Yeo and W. K. Chua, Teleportation and Dense Coding with Genuine Multipartite
Entanglement, Phys. Rev. Lett. 96, 060502(1)-060502(4) (2006).

[19] I. D. K. Brown, S. Stepney, A. Sudbery, and S. L. Braunstein, Searching for highly
entangled multi-qubit states, J. Phys. A 38, 1119-1131, (2005).

[20] Z. X. Man, Y. J. Xia, and N. Ba An, Genuine multiqubit entanglement and controlled
teleportation, Phys. Rev. A. 75, 05306(1)-05306(5) (2006)

19


	1 Introduction
	2 Weighted digraphs with/without loops and its Laplacian spectra
	2.1 Weighted digraphs with or without loops having nonnegative weights
	2.2 Weighted digraphs with loops having at least one loop with negative weight

	3 Graph structure for pure and mixed states
	3.1 Pure States and Mixed States

	4 Graph structure of entangled pure states
	5 Conclusion

