Kinematic modeling of a tree-type robotic system is presented in this chapter. In order to obtain kinematic constraints, a tree-type topology is first divided into a set of modules. The kinematic constraints are then obtained between these modules by introducing the concepts of module-twist, module-joint-rate, etc. This helps in obtaining the generic form of the Decoupled Natural Orthogonal Complement (DeNOC) matrices for a tree-type system with the help of module-to-module velocity transformations. Using the present derivation, link-to-link velocity transformation (Saha 1999a, b) turns out to be a special case of the module-to-module velocity transformation (Shah et al. 2012a) presented in this chapter. © 2013, Springer Science+Business Media Dordrecht.