Header menu link for other important links
In Silico Approach for Designing Potent Neuroprotective Hexapeptide
P. Mondal, J. Khan, V. Gupta,
Published in American Chemical Society
PMID: 31117343
Volume: 10
Issue: 6
Pages: 3018 - 3030
Alzheimer's disease (AD) is a constantly recurring neurodegenerative disease that deteriorates over a period of time. In this pathology, connections between neurons become extremely damaged due to the deposition of senile plaques in the membrane region, which results in abnormal signal transduction processes. Also, the intracellular microtubule networks are disrupted in the hyperphosphorylated tau cascade of AD. Therefore, design and development of potent neuroprotective molecules that can instantaneously target multiple facets of AD pathogenesis are greatly needed to tackle this unmet medical need. Here, we have implemented a pharmacophore based in silico analysis of various neuroprotective peptides known for neurotherapeutic application in AD. Fascinatingly, we have identified an active core of these peptides and designed a library of hexapeptides. We observed that peptide "LETVNQ" (LE6) has shown significant protection ability against degeneration of neurons. Experimental evidence suggests that this peptide immensely reduced the aggregation rate of amyloid-β (Aβ) and helped in microtubule polymerization. Intriguingly, this newly designed peptide does not have any cytotoxicity toward differentiated PC12 neurons; rather it helps in neurite outgrowth. Further, LE6 helps to maintain the complex microtubule network in cells by promoting the polymerization rate of intracellular microtubules and mediates excellent protection of neurons even after removal of nerve growth factor (NGF). Finally, we observed that this LE6 peptide has substantial stability under physiological conditions and helps to retain healthy morphology of primary rat cortical neurons. This excellent piece of work identifies a potent hexapeptide, which has exceptional ability to protect neurons as well as microtubule from degeneration and may become potent therapeutics against AD pathogenesis in the future. © 2019 American Chemical Society.
About the journal
JournalData powered by TypesetACS Chemical Neuroscience
PublisherData powered by TypesetAmerican Chemical Society