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Abstract 

Apriori Algorithm is one of the most important algorithm which is used to extract frequent itemsets from large database and get 

the association rule for discovering the knowledge. It basically requires two important things: minimum support and minimum 

confidence. First, we check whether the items are greater than or equal to the minimum support and we find the frequent itemsets 

respectively. Secondly, the minimum confidence constraint is used to form association rules. Based on this algorithm, this paper 

indicates the limitation of the original Apriori algorithm of wasting time and space for scanning the whole database searching on 

the frequent itemsets, and present an improvement on Apriori. 
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1. Introduction 

Apriori Algorithm is one of the most popular algorithm in data mining for learning the concept of association 

rules. It is being used by so many people specifically for transaction operations and also it can be used in real time 

applications (for instance, grocery shop, general store, library etc.) by collecting the items bought by customers over 

the time so that frequent itemsets can be generated. Frequent itemsets (itemsets with frequency greater than or equal 

to a user specified minimum support) can be found very easily because of its combinatorial explosion. Once they are 
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obtained, it is simply easy to generate association rules with confidence greater than or equal to a user specified 

minimum confidence.1 With the invent in technology of information and the need for extracting useful information 

of business people from dataset,2 data mining and its techniques is appeared to achieve the above goal. As large 

amount of data is stored in data warehouses, on line analytical process, databases and other repositories of 

information. If a person tries to search for the information, it can be done manually which may take 

huge(exponential) amount of time. This is not at all optimum and efficient, so data mining approach is the best way 

by which this problem can be solved very easily. It is the process in which hidden and kind of interesting patterns are 

generated from huge amount of data which certainly limits the running time. This data may reach to more than 

terabytes. In some places Data mining can be termed as knowledge discovery in databases as it generates hidden and 

interesting patterns, and it also comprises of the amalgamation of methodologies from various disciplines such as 

statistics, neural networks, database technology, machine learning and information retrieval, etc. Interesting patterns 

are extracted at reasonable time by using the techniques of knowledge discovery in databases(KDD). Frequent 

itemsets can be found in various ways: using hash-based technique, partitioning, sampling and using vertical data 

format since it reduces the running time of the algorithm as it finds the itemsets concurrently. The most outstanding 

improvement over Apriori would be a method called FP-growh (Frequent-Pattern growth) which succeeded in 

deleting candidate generation. The architecture of data mining system has the following main components: data 

warehouse, database or other repositories of information, a server that fetches the relevant data from repositories 

based on the user’s request,3 knowledge base is used as guide of search according to defined some constraint, data 

mining engine includes set of essential modules, such as characterization, classification, clustering, association, 

regression and analysis of evolution. Pattern evaluation module interacts with the modules of data mining for 

generating interested patterns. Finally, graphical user interfaces (GUI) which allow the user to interact and 

communicate with the data  mining system. This algorithm is basically used to extract useful information from 

massive amount of data present in repositories and warehouse. For instance, a customer  who purchases a pack of 

bread from the grocery shop also tends to buy the butter from the same shop simultaneously.  

2. Related Work 

Mining of frequent itemsets is an important phase in association mining which discovers frequent itemsets in 

transactions database. It is essential in many tasks of data mining that try to find interesting patterns from datasets, 

such as association rules, episodes, classifier, clustering and correlation, etc.4 Over the time, many algorithms are 

proposed to find frequent itemsets, but all of them can be catalogued into two classes: candidate generation or 

pattern growth. Apriori5 is a representative of the candidate generation approach. It generates the candidate itemsets 

of length (k+1) based on the frequent itemsets of length (k). The itemset frequency can be defined by counting their 

occurrences in transactions. Frequent Pattern(FP) - growth, is proposed by Han in 2000, where he stated some useful 

facts about the FP tree. T.Tassa et al
6
 proposed secure mining of Association Rules which is based on the Fast 

Distributed Mining Algorithm and successfully implementd and developed  the techniques and methodologies to 

solve the problem of distributed association rule mining when items are ordered vertically,6 he also solved the 

problem of mining generalized association rules, and the problem of discovering subgroups in the horizontal setting. 

Mahesh Balaji and G Subrahmanya VRK Rao et al7 in their paper for IEEE proposed Adaptive Implementation Of 

Apriori Algorithm for Retail Scenario in Cloud Environment which solves the time consuming problem for retail 

transactional databases. It aims to reduce the response time significantly by using the approach of mining the 

frequent itemsets. Yanbin Ye, Chia Chu Chiang et al8 in their paper proposed A Parallel Apriori Algorithm for 

Frequent Itemsets Mining. They modified Bodon’s implementation and converted it into a parallel approach where 

the input transactions can be read by a parallel computer. The immediate outcome of a parallel computer on this 

modified implementation is very well presented. Quiang Yang, Yanhong Hu et al9 in their paper Applications of 

Improved Apriori Algorithm on Educational Information identified the main problems in the applications and 

introduced an improved algorithm. Then this algorithm was used for the data education mining. Ketan Shah, Sunita 

Mahajan et al10 in their paper Maximizing the efficiency of Parallel Apriori Algorithm suggested how  to maximize 

the efficiency of the parallel Apriori Algorithm. The paper records and observe the performance of the algorithm 

over different datasets and over n processors on a commodity cluster of machines. The experiments conducted 

showed that the parallel algorithm scaled well to the number of processes and also improved the efficiency by 
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effective load balancing. Feng Wang, Yong-Hua Li et al11 in their paper An Improved Apriori Algorithm Based on 

the Matrix suggested an improved apriori algorithm based on the matrix. It used the matrix effectively indicating the 

operations in the database and used the "AND operation" to deal with the matrix to generate the largest frequent 

itemsets. It doesn’t need to scan the database again and again to perform operations and therefore takes less time, 

and it also reduced the number of candidates of frequent itemsets greatly. 

3. Limitations of apriori algorithm 

Apriori algorithm suffers from some weaknesses in spite of being clear and simple. The main limitation is costly 

wasting of time to hold vast number of candidate sets with much frequent itemsets, low minimum support or large 

itemsets. For instance, if there are 104 frequent 1- itemsets, it may need to generate more than 107 candidates into 2- 

length which in turn will be tested and accumulated.4 Furthermore, to detect frequent pattern of size 1000 (e.g.) V1, 

V2...V1000, it will have to generate 21000 candidate itemsets1 that yields costly wasting of time in candidate generation 

as it checks for many more sets from candidate itemsets, also it will scan database many times repeatedly for finding 

candidate itemsets. Apriori will be very low and inefficient when memory capacity is limited with large number of 

transactions. The proposed approach in this paper reduces the time spent for searching in the database  and 

performing transactions for frequent itemsets and also reduces the memory space with large number of transactions 

using partitioning and selecting which is described in detail in the proposed model. 

4. Problem formulation 

Apriori Algorithm takes a lot of memory space and response time since it has exponential complexity eg; if there 

are 100 transactions then it will have 2100 itemsets and it also does mining twice. We can somehow reduce the 

itemsets by frequent itemsets mining (FIM) then it will significantly reduce the time taken but it will take a lot of 

space, and it will be very inefficient for real time applications eg; if a grocery seller wants to know about the most 

frequent items purchased or if a person wants to know about the books which are read most frequently in the library, 

they will have to format their systems again and again as it takes a huge memory space for storing candidate and 

frequent itemsets. So what can be the solution to minimize it? Also can we minimize the running time of the 

Algorithm further by using a different approach? How? Explain the approach.  

5. Proposed model 

This section will address the improved Apriori ideas, the improved Apriori, an example of the improved Apriori, 

the analysis and evaluation of the improved Apriori and the experiments. In the process of Apriori, the following 

definitions are needed: 

6.1 Definition 1 : SupposeT = {T1,T2,…, Tm}, (m, 1) is a set of transactions, Ti = {I1, I2 ,…, In}, (n, 1) is the set 

of items, and k- itemset = {i1, i2 ,…, ik}, (k, 1) is also the set of k items,and k-itemset I. 

6.1 Definition 2 : Suppose (itemset) is the support count of itemset or the frequency of occurrence of an itemset in 

transactions. 

6.1 Definition 3 : Suppose Ck is the candidate itemset of size k, and Fk is the frequent itemset of size k. 

6. Algorithm for Ck generation 

Step1: Scan all transactions to generate F1 table. F1 (items, support, transaction ids) 

     Step2: Construct by self-join. 

     Step3: Use F1 to identify the target transactions for . 

     Step4: Scan the target transactions to generate. 

 

In our proposed approach, we enhance the Apriori algorithm14 to reduce the time consuming for candidate 

itemset generation. We first scan all the transactions to generate F1 which contains the items, their support count and 
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Transaction IDs where the items are found. And then we use F1 as a helper to generate F2, F3 …., Fk. When we want to 

generate C2, we make a self-join F1 * F1 to construct 2-itemset C (x, y), where x and y are the items of C2. Before 

scanning all the transaction records to count the support count of each candidate, use F1 to get the transaction IDs of 

the minimum support count between x and y, and thus scan for C2 only in these specific transactions. The same 

thing  applies for C3, construct 3- itemset C(x, y, z), where x, y and z are the items of C3 and use F1 to get the 

transaction IDs of the minimum support count between x, y and z and then scan for C3 only in these specific 

transactions and repeat these steps until no new frequent itemsets are identified. Now to reduce the memory space 

when large transactions are there a simple rule can be followed: Let n be the number of nodes in the FP- tree and k 

be the color of the clusters of the transactions in the database. Now, certainly n > k. If this is the case then k is at 

most n - 1. Suppose we have 1000 transactions then k will be at most 999. There are so many possibilities of colors 

and all the colors will be chosen by us. Well, clearly that leads to a bad choice. Now, let n  k as this can also be  

possible then k will be at most n but still the rule applies as n cannot be less than k because then at each level nodes 

will have the same color. It must be same if the tree is fully dependent. Since it takes exponential memory space, the 

possibilities of colors getting generated should be minimized. This can be done by using another mathematical 

formula for comparing the number of nodes and colors i.e. n > 2k. In this case colors will be minimized drastically 

eg; if n = 1000 now then k will be approximately log2(1000) = 10. The base 2 signifies that the cluster is getting 

partitioned into 2 parts and selecting means out of the two only 1 is getting selected. This can be any number of 

partitions depending on user’s choice. User will be having the choice of deciding the base. The value of the base is 

equal to the number of partitions of the cluster. Using this approach very less memory space is consumed at a time 

and items can be mines in a lesser amount of time. Hence, it serves the purpose. 

7. The improvised apriori algorithm 

The improvement of the algorithm can be described as follows: 

Step1: //Partition the cluster into groups let this term be n and k be the colors so the loop will be set //for k times.     

Now, select clusters one at a time. 

     Step2: //Generate items, their items’ support, transaction ids. 

     Step3: F1 = find_frequent_1_itemsets (T); 

     Step4: For (k = 2; Fk-1 ≠ ɸ; k++) { 

     Step5: //Generate the Ck from the Fk-1 

     Step6: Ck = candidates generated from Fk-1; 

     Step7: //get the item Iw with minimum support in Ck using F1, (1 ≤ w ≤  k). 

     Step8: x = Get _ item_ min_ sup (Ck, F1); 

     Step9: // get the target transaction IDs that contain item x. 

     Step10: Target = get_ Transaction_ ID(x); 

     Step11: For each transaction t in Target Do 

     Step12: Increment the count of all items in Ck that are found in Target; 

     Step13: Fk = items in Ck min_ support; 

     End; } 

 

8. An example of improvised apriori 

Assume that a large supermarket tracks sales data by stock- keeping unit (SKU) for each item, such as “butter”, 

“bread”, ”jam”, ”coffee”, ”cheese”, ”milk” is identified by a numerical SKU. The supermarket has a database of 

transactions where each transaction is a set of SKUs that were bought together.2,12,13 Let the database of transactions 

consist of following itemsets:  
The transaction set as shown in Table 1. firstly, scan all transactions to get frequent 1-itemset l1 which contains 

the items and their support count and the transactions ids that contain these items, and then eliminate the 

candidates that are infrequent or their support are less than the min_ sup as shown in table 2. The frequent 
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1-itemset is shown in table 3. The sets which are in bold will be deleted in frequent 2_itemset as shown in 

table 4. The sets which are in bold will be deleted in frequent 3_itemsets as shown in table 5. 

9.1 Tables  

 

Table 1. The transactions. 

  Table 2. The candidate 1-  itemset. 

 

 Table 3. The frequent 1- itemset.                                                                                Table 4. The frequent 2- itemset. 

 Table 5. The frequent 3-  itemset.                

 

 

The next step is to generate candidate 2-itemset from L1 split each itemset in 2-itemset into two elements then use l1 

table to determine the transactions where you can find the itemset in, rather than searching for them in all 
transactions. For example, let’s take the first item in table.4 (Milk, Cheese), in the original Apriori we scan all 7 

transactions to find the item (Milk, Cheese); but in our proposed improved algorithm we will split the item (Milk, 

Cheese), into Milk and Cheese and get the minimum support between them using L1 has the smallest minimum 

support. After that we search for itemset (Milk, Cheese) only in the transactions T1 the minimum confidence, and 

then generate all candidate association rules.In the previous example, if we count the number of scanned 

transactions to get (1, 2, 3)-itemset using the original Apriori and our improved Apriori, we will observe the obvious 

difference between number of scanned transactions with our improved Apriori and the original Apriori. From the 

table 6, number of transactions in1-itemset is the same in both of sides, and whenever the k of k-itemset increase, 

the gap between our improved Apriori and the original Apriori increase from view of time consumed, and hence this 

will reduce the time consumed to generate candidate support count. To get support count for every itemset, here 

 

TransactionID 

              

             Itemsets 

T1               Milk, Cheese 

T2              Milk, Coffee, Butter 

T3              Jam, Bread 

T4              Bread, Butter, Cheese 

 

T5              Coffee, Milk 

T6              Milk, Bread, Butter, Jam 

 

T7              Milk, Bread, Butter, Jam, Cheese 

Items Support 

 

Milk 

 

5 

 

Cheese 3 

 

Coffee 2 

 

 Bread 4 

 

Butter 4 

 

Jam 3 

Items Support  Min  Found in 

Milk,Cheese 2 Cheese T1,T7 

Milk, Bread 2 Bread T6,T7 

Milk, Butter 3 Butter T2,T6,T7 

Milk, Jam 2 Jam T6,T7 

Cheese,Bread 2 Bread T4,T7 

Cheese,Butter 2 Cheese T4,T7 

Cheese, Jam 1 Cheese T7 

 
Bread, Butter 3 Bread T4,T6,T7 

Bread, Jam 3 Bread T3,T6,T7 

Butter, Jam 2 Jam T6,T7 

Items Support T_ID 

Milk 5 T1,T2,T5,T6,T7 
Cheese 3 T1,T4,T7 

Coffee 2 T2,T5 
Bread 4 T3,T4,T6,T7 
Butter 4 T2,T4,T6,T7 

Jam 3 T3,T6,T7 

 

Items 

 

Support 

 

Min 

 

Found in 

 

Milk, Butter,Bread     

 

2 

 

Bread 

 

T6,T7 

Milk, Butter, Jam 2 Jam T6,T7 

Bread, Butter, Jam 2 Bread T6,T7 
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Cheese, and T7. For a given frequent itemset LK, T4, find all non-empty subsets that satisfy the minimum 

confidence, and then generate all candidate association rules.In the previous example, if we count the number of 
scanned transactions to get (1, 2, 3)-itemset using the original Apriori and our improved Apriori, we will observe the 

obvious difference between number of scanned transactions with our improved Apriori and the original Apriori. 

From the table 6, number of transactions in1-itemset is the same in both of sides, and whenever the k of k-itemset 

increase, the gap between our improved Apriori and the original Apriori increase from view of time consumed, and 

hence this will reduce the time consumed to generate candidate support count. 

 

 

9.2  Graph1 : The FP-tree of the itemsets 

 
 

The final output of the FP-Tree is as shown in Graph:1. And the minimum support count is 3. Now we will find the 

frequent patterns from the FP-Tree.It’s trivial.The items of the database and their frequency of occurrences is 

shown in Table:2 for each item.First and foremost, we need to prioritize all the itemsets according to their 

frequency of occurrences and then we will see each item one by one from bottom to top.The items can be listed as: 

Then we see Jam. First we need to find the conditional pattern base for Jam:3. If you wonder how 3 comes, it is due 
to frequency of occurrence of Jam. Now go to Graph 1 and check the Jams. There are 3 Jams and one occurrence for 

each. Now traverse bottom to top and get the branches which have Jams with the occurrence of Jam. We got 3 

branches and they are MBTC: 1, B: 1, MBT: 1.To ensure that you correctly got all the occurrences of Jam in 

FP-Tree add occurrences of each branch and compare with the occurrences listed above.For Jam you get 1+1+1 = 3 

so we got it correct. Then we consider Cheese.And this way we can ensure the correctness for all.Also we can 

generate conditional pattern bases by rewriting the occurrences for all the branches and finding which item occurs 

most frequently and then we can delete all other branches except that and only that branch will remain in the 

FP-Tree which we can draw again for Jam and likewise for all other items. 

9. The analysis and evaluation of the improved apriori 

Apriori Algorithm used to scan the database twice but this paper presents an improvement on it by using parallel 

algorithm and the concept of partitioning. It presents a mathematical formula for selecting the cluster as there are 

many clusters. The code is implemented in java and the platform used is eclipse. The architecture used is mac os x 

for calculating the running time of the algorithm. The data structure which is introduced in the paper is frequent – 

pattern tree which is used for finding out the frequent itemsets and also used for generating the conditional patterns. 

The analysis shows that the time consumed in improved Apriori in each group of transaction is less than the original 

Apriori, and the difference increases more and more as the number of transactions increases. With the increase in the 

number of transactions the rate also increases. The average of reducing time rate in the improved Apriori is 67.87%. 

Apriori is 71.28%. The memory space is reduced by using the partitioning approach which partitions the clusters 

initially and select one particular cluster out of this. It is an improvement as earlier the algorithm took exponential 

space but now it is reduced greatly. The mathematical formula for calculating the value of k is shown above. 
 

NULL

MILK

BREAD

BUTTER

CHEESE

JAM

JAM

BUTTER CHEESE

BREAD

BUTTER

CHEESE

JAM

Nomenclature 
M Milk : 5 
B            Bread : 4 

T  Butter : 4 

C            Cheese : 3 

J Jam : 3 
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Table 6. The Time Reducing Rate of Improved Apriori                        Table 7. Time Reducing Rate of Improved Apriori according to the value  

according to the number of transactions.                                               of minimum support.                                                                     

 
T 

  Original 
Apriori(s) 

  Improved 
Apriori (s) 

  Time reducing 
rate(%) 

  
         

 
T1  1.776  0.654  63.17% 

  

 
T2  8.221  3.982  51.56% 

  

 
T3  6.871  2.302  66.49% 

  

 
T4  11.940  2.446  79.51% 

  

 
T5  82.558  17.639  78.63% 

  

a                                                                                   b 

 
Fig. 1. (a) Graph between number of nodes and k; (b) Time consuming comparison for different groups of transactions. 

We developed an implementation for original Apriori and our improved Apriori, and we collect 5 different 

groups of transactions as the following:                      

 

 T1: 500 transactions. 

 

 T2: 1000 transactions. 

 

 T3: 1500 transactions. 
 

 T4: 2000 transactions. 

 

 T5: 2500 transactions.                                    Fig. 2. Time consuming comparison for different values of minimum support. 

The first experiment compares the time consumed of original Apriori, and our improved algorithm by applying 

the five groups of transactions in the implementation. The result is shown in Figure 1(b). The second experiment 

compares the time consumed of original Apriori, and our proposed algorithm by applying the one group of 

transactions through various values for minimum support in the implementation. The result is shown in Figure 2. As 

we observe in figure 1(b), that the time consuming in improved Apriori in each group of transactions is less than it 

in the original Apriori, and the difference increases more and more as the number of transactions increases. Table 6 

shows that the improved Apriori reduce the time consuming by 63.17% from the original Apriori in the first group 

of transactions T1, and by 78.63% in T5. As the number of transactions increase the rate is increased also. The 

average of reducing time rate in the improved Apriori is 67.87%. As we observe in figure 2, that the time consuming 

in improved Apriori in each value of minimum support is less than it in the original Apriori, and the difference 

increases more and more as the value of minimum support decreases. Table 7 shows that the improved Apriori 

reduce the time consuming by 84.22% from the original Apriori where the minimum support is 0.02, and by 60.99% 

in 0.10. As the value of minimum support increase the rate is decreased also. The average of reducing time rate in 

the improved Apriori is 71.28%. 
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0.02  6.638  1.047  84.22%   

0.04  1.855  0.398  78.54%   

0.06  1.158  0.28  75.82%   

0.08  0.424  0.183  56.83%   

0.10  0.382  0.149  60.99%   
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10. Conclusion 

In this paper, the memory space is drastically reduced when large number of transactions are performed from the 

data warehouses and repositories and an improvised Apriori is proposed by reducing the time consumed in 

transactions scanning for candidate itemsets and also by reducing the number of transactions to be scanned. 

Whenever the k of k-itemset increases, the gap between our improved Apriori and the original Apriori increases 

from view of time consumed, and whenever the value of minimum support increases, the gap between our improved 

Apriori and the original Apriori decreases from view of time consumed. The time consumed to generate candidate 

support count in our improved Apriori is less than the time consumed in the original Apriori; our improved Apriori 

reduces the time consuming by 67.87%. Hence, this approach is far more efficient than the original apriori algorithm 

as it uses the approach of parallel algorithm and clustering method by which the memory space is reduced and it can 

be successfully used in the real time applications especially in the library as it can save a lot of time by giving all the 

information about those books which are frequently read. 

11. Future work 

The paper presents apriori algorithm using fp- tree(data structure) which leads to a lot of  memory space 

reduction by using parallel algorithm. In future further reduction in this algorithm’s complexity can be achieved  by 

an order and it can be used to implement mining tools and other data mining sequences and applications in health 

care department, in libraries, in grocery shops and also it’s running time can be further minimized by using some 

different approach. Since the world is moving towards cloud computing and information security, the possible 

approach in the future would be to use that concept here. It may increase the efficiency for both time and space. 
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