
 Procedia Computer Science 46 (2015) 644 – 651

1877-0509 © 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Peer-review under responsibility of organizing committee of the International Conference on Information and Communication Technologies (ICICT 2014)

doi: 10.1016/j.procs.2015.02.115

ScienceDirect

Available online at www.sciencedirect.com

International Conference on Information and Communication Technologies (ICICT 2014)

Improvised apriori algorithm using frequent pattern tree for real

time applications in data mining

Akshita Bhandari
a
, Ashutosh Gupta

a
, Debasis Das

a,
*

a
Department of Computer Science and Engineering,Niit University,NH-8 Delhi-Jaipur National Highway,Neemrana,,Rajasthan,301705,India

Abstract

Apriori Algorithm is one of the most important algorithm which is used to extract frequent itemsets from large database and get

the association rule for discovering the knowledge. It basically requires two important things: minimum support and minimum

confidence. First, we check whether the items are greater than or equal to the minimum support and we find the frequent itemsets

respectively. Secondly, the minimum confidence constraint is used to form association rules. Based on this algorithm, this paper

indicates the limitation of the original Apriori algorithm of wasting time and space for scanning the whole database searching on

the frequent itemsets, and present an improvement on Apriori.

© 2014 The Authors. Published by Elsevier B.V.

Peer-review under responsibility of organizing committee of the International Conference on Information and Communication

Technologies (ICICT 2014).

Keywords: Apriori; Improvised Apriori; Minimum Support; Minimum Confidence; Itemsets; Frequent itemsets; Candidate itemsets; Frequent

Pattern tree; Conditional patterns; Time and Space Complexity

1. Introduction

Apriori Algorithm is one of the most popular algorithm in data mining for learning the concept of association

rules. It is being used by so many people specifically for transaction operations and also it can be used in real time

applications (for instance, grocery shop, general store, library etc.) by collecting the items bought by customers over

the time so that frequent itemsets can be generated. Frequent itemsets (itemsets with frequency greater than or equal

to a user specified minimum support) can be found very easily because of its combinatorial explosion. Once they are

* Corresponding author. Tel.: +0-779-084-4892; fax: +0-149-430-2418.

E-mail address: debasis.das@niituniversity.in

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Peer-review under responsibility of organizing committee of the International Conference on Information and Communication

Technologies (ICICT 2014)

645 Akshita Bhandari et al. / Procedia Computer Science 46 (2015) 644 – 651

obtained, it is simply easy to generate association rules with confidence greater than or equal to a user specified

minimum confidence.1 With the invent in technology of information and the need for extracting useful information

of business people from dataset,2 data mining and its techniques is appeared to achieve the above goal. As large

amount of data is stored in data warehouses, on line analytical process, databases and other repositories of

information. If a person tries to search for the information, it can be done manually which may take

huge(exponential) amount of time. This is not at all optimum and efficient, so data mining approach is the best way

by which this problem can be solved very easily. It is the process in which hidden and kind of interesting patterns are

generated from huge amount of data which certainly limits the running time. This data may reach to more than

terabytes. In some places Data mining can be termed as knowledge discovery in databases as it generates hidden and

interesting patterns, and it also comprises of the amalgamation of methodologies from various disciplines such as

statistics, neural networks, database technology, machine learning and information retrieval, etc. Interesting patterns

are extracted at reasonable time by using the techniques of knowledge discovery in databases(KDD). Frequent

itemsets can be found in various ways: using hash-based technique, partitioning, sampling and using vertical data

format since it reduces the running time of the algorithm as it finds the itemsets concurrently. The most outstanding

improvement over Apriori would be a method called FP-growh (Frequent-Pattern growth) which succeeded in

deleting candidate generation. The architecture of data mining system has the following main components: data

warehouse, database or other repositories of information, a server that fetches the relevant data from repositories

based on the user’s request,3 knowledge base is used as guide of search according to defined some constraint, data

mining engine includes set of essential modules, such as characterization, classification, clustering, association,

regression and analysis of evolution. Pattern evaluation module interacts with the modules of data mining for

generating interested patterns. Finally, graphical user interfaces (GUI) which allow the user to interact and

communicate with the data mining system. This algorithm is basically used to extract useful information from

massive amount of data present in repositories and warehouse. For instance, a customer who purchases a pack of

bread from the grocery shop also tends to buy the butter from the same shop simultaneously.

2. Related Work

Mining of frequent itemsets is an important phase in association mining which discovers frequent itemsets in

transactions database. It is essential in many tasks of data mining that try to find interesting patterns from datasets,

such as association rules, episodes, classifier, clustering and correlation, etc.4 Over the time, many algorithms are

proposed to find frequent itemsets, but all of them can be catalogued into two classes: candidate generation or

pattern growth. Apriori5 is a representative of the candidate generation approach. It generates the candidate itemsets

of length (k+1) based on the frequent itemsets of length (k). The itemset frequency can be defined by counting their

occurrences in transactions. Frequent Pattern(FP) - growth, is proposed by Han in 2000, where he stated some useful

facts about the FP tree. T.Tassa et al
6
 proposed secure mining of Association Rules which is based on the Fast

Distributed Mining Algorithm and successfully implementd and developed the techniques and methodologies to

solve the problem of distributed association rule mining when items are ordered vertically,6 he also solved the

problem of mining generalized association rules, and the problem of discovering subgroups in the horizontal setting.

Mahesh Balaji and G Subrahmanya VRK Rao et al7 in their paper for IEEE proposed Adaptive Implementation Of

Apriori Algorithm for Retail Scenario in Cloud Environment which solves the time consuming problem for retail

transactional databases. It aims to reduce the response time significantly by using the approach of mining the

frequent itemsets. Yanbin Ye, Chia Chu Chiang et al8 in their paper proposed A Parallel Apriori Algorithm for

Frequent Itemsets Mining. They modified Bodon’s implementation and converted it into a parallel approach where

the input transactions can be read by a parallel computer. The immediate outcome of a parallel computer on this

modified implementation is very well presented. Quiang Yang, Yanhong Hu et al9 in their paper Applications of

Improved Apriori Algorithm on Educational Information identified the main problems in the applications and

introduced an improved algorithm. Then this algorithm was used for the data education mining. Ketan Shah, Sunita

Mahajan et al10 in their paper Maximizing the efficiency of Parallel Apriori Algorithm suggested how to maximize

the efficiency of the parallel Apriori Algorithm. The paper records and observe the performance of the algorithm

over different datasets and over n processors on a commodity cluster of machines. The experiments conducted

showed that the parallel algorithm scaled well to the number of processes and also improved the efficiency by

646 Akshita Bhandari et al. / Procedia Computer Science 46 (2015) 644 – 651

effective load balancing. Feng Wang, Yong-Hua Li et al11 in their paper An Improved Apriori Algorithm Based on

the Matrix suggested an improved apriori algorithm based on the matrix. It used the matrix effectively indicating the

operations in the database and used the "AND operation" to deal with the matrix to generate the largest frequent

itemsets. It doesn’t need to scan the database again and again to perform operations and therefore takes less time,

and it also reduced the number of candidates of frequent itemsets greatly.

3. Limitations of apriori algorithm

Apriori algorithm suffers from some weaknesses in spite of being clear and simple. The main limitation is costly

wasting of time to hold vast number of candidate sets with much frequent itemsets, low minimum support or large

itemsets. For instance, if there are 104 frequent 1- itemsets, it may need to generate more than 107 candidates into 2-

length which in turn will be tested and accumulated.4 Furthermore, to detect frequent pattern of size 1000 (e.g.) V1,

V2...V1000, it will have to generate 21000 candidate itemsets1 that yields costly wasting of time in candidate generation

as it checks for many more sets from candidate itemsets, also it will scan database many times repeatedly for finding

candidate itemsets. Apriori will be very low and inefficient when memory capacity is limited with large number of

transactions. The proposed approach in this paper reduces the time spent for searching in the database and

performing transactions for frequent itemsets and also reduces the memory space with large number of transactions

using partitioning and selecting which is described in detail in the proposed model.

4. Problem formulation

Apriori Algorithm takes a lot of memory space and response time since it has exponential complexity eg; if there

are 100 transactions then it will have 2100 itemsets and it also does mining twice. We can somehow reduce the

itemsets by frequent itemsets mining (FIM) then it will significantly reduce the time taken but it will take a lot of

space, and it will be very inefficient for real time applications eg; if a grocery seller wants to know about the most

frequent items purchased or if a person wants to know about the books which are read most frequently in the library,

they will have to format their systems again and again as it takes a huge memory space for storing candidate and

frequent itemsets. So what can be the solution to minimize it? Also can we minimize the running time of the

Algorithm further by using a different approach? How? Explain the approach.

5. Proposed model

This section will address the improved Apriori ideas, the improved Apriori, an example of the improved Apriori,

the analysis and evaluation of the improved Apriori and the experiments. In the process of Apriori, the following

definitions are needed:

6.1 Definition 1 : SupposeT = {T1,T2,…, Tm}, (m, 1) is a set of transactions, Ti = {I1, I2 ,…, In}, (n, 1) is the set

of items, and k- itemset = {i1, i2 ,…, ik}, (k, 1) is also the set of k items,and k-itemset I.

6.1 Definition 2 : Suppose (itemset) is the support count of itemset or the frequency of occurrence of an itemset in

transactions.

6.1 Definition 3 : Suppose Ck is the candidate itemset of size k, and Fk is the frequent itemset of size k.

6. Algorithm for Ck generation

Step1: Scan all transactions to generate F1 table. F1 (items, support, transaction ids)

 Step2: Construct by self-join.

 Step3: Use F1 to identify the target transactions for .

 Step4: Scan the target transactions to generate.

In our proposed approach, we enhance the Apriori algorithm14 to reduce the time consuming for candidate

itemset generation. We first scan all the transactions to generate F1 which contains the items, their support count and

647 Akshita Bhandari et al. / Procedia Computer Science 46 (2015) 644 – 651

Transaction IDs where the items are found. And then we use F1 as a helper to generate F2, F3 …., Fk. When we want to

generate C2, we make a self-join F1 * F1 to construct 2-itemset C (x, y), where x and y are the items of C2. Before

scanning all the transaction records to count the support count of each candidate, use F1 to get the transaction IDs of

the minimum support count between x and y, and thus scan for C2 only in these specific transactions. The same

thing applies for C3, construct 3- itemset C(x, y, z), where x, y and z are the items of C3 and use F1 to get the

transaction IDs of the minimum support count between x, y and z and then scan for C3 only in these specific

transactions and repeat these steps until no new frequent itemsets are identified. Now to reduce the memory space

when large transactions are there a simple rule can be followed: Let n be the number of nodes in the FP- tree and k

be the color of the clusters of the transactions in the database. Now, certainly n > k. If this is the case then k is at

most n - 1. Suppose we have 1000 transactions then k will be at most 999. There are so many possibilities of colors

and all the colors will be chosen by us. Well, clearly that leads to a bad choice. Now, let n k as this can also be

possible then k will be at most n but still the rule applies as n cannot be less than k because then at each level nodes

will have the same color. It must be same if the tree is fully dependent. Since it takes exponential memory space, the

possibilities of colors getting generated should be minimized. This can be done by using another mathematical

formula for comparing the number of nodes and colors i.e. n > 2k. In this case colors will be minimized drastically

eg; if n = 1000 now then k will be approximately log2(1000) = 10. The base 2 signifies that the cluster is getting

partitioned into 2 parts and selecting means out of the two only 1 is getting selected. This can be any number of

partitions depending on user’s choice. User will be having the choice of deciding the base. The value of the base is

equal to the number of partitions of the cluster. Using this approach very less memory space is consumed at a time

and items can be mines in a lesser amount of time. Hence, it serves the purpose.

7. The improvised apriori algorithm

The improvement of the algorithm can be described as follows:

Step1: //Partition the cluster into groups let this term be n and k be the colors so the loop will be set //for k times.

Now, select clusters one at a time.

 Step2: //Generate items, their items’ support, transaction ids.

 Step3: F1 = find_frequent_1_itemsets (T);

 Step4: For (k = 2; Fk-1 ≠ ɸ; k++) {

 Step5: //Generate the Ck from the Fk-1

 Step6: Ck = candidates generated from Fk-1;

 Step7: //get the item Iw with minimum support in Ck using F1, (1 ≤ w ≤ k).

 Step8: x = Get _ item_ min_ sup (Ck, F1);

 Step9: // get the target transaction IDs that contain item x.

 Step10: Target = get_ Transaction_ ID(x);

 Step11: For each transaction t in Target Do

 Step12: Increment the count of all items in Ck that are found in Target;

 Step13: Fk = items in Ck min_ support;

 End; }

8. An example of improvised apriori

Assume that a large supermarket tracks sales data by stock- keeping unit (SKU) for each item, such as “butter”,

“bread”, ”jam”, ”coffee”, ”cheese”, ”milk” is identified by a numerical SKU. The supermarket has a database of

transactions where each transaction is a set of SKUs that were bought together.2,12,13 Let the database of transactions

consist of following itemsets:
The transaction set as shown in Table 1. firstly, scan all transactions to get frequent 1-itemset l1 which contains

the items and their support count and the transactions ids that contain these items, and then eliminate the

candidates that are infrequent or their support are less than the min_ sup as shown in table 2. The frequent

648 Akshita Bhandari et al. / Procedia Computer Science 46 (2015) 644 – 651

1-itemset is shown in table 3. The sets which are in bold will be deleted in frequent 2_itemset as shown in

table 4. The sets which are in bold will be deleted in frequent 3_itemsets as shown in table 5.

9.1 Tables

Table 1. The transactions.

 Table 2. The candidate 1- itemset.

 Table 3. The frequent 1- itemset. Table 4. The frequent 2- itemset.

 Table 5. The frequent 3- itemset.

The next step is to generate candidate 2-itemset from L1 split each itemset in 2-itemset into two elements then use l1

table to determine the transactions where you can find the itemset in, rather than searching for them in all
transactions. For example, let’s take the first item in table.4 (Milk, Cheese), in the original Apriori we scan all 7

transactions to find the item (Milk, Cheese); but in our proposed improved algorithm we will split the item (Milk,

Cheese), into Milk and Cheese and get the minimum support between them using L1 has the smallest minimum

support. After that we search for itemset (Milk, Cheese) only in the transactions T1 the minimum confidence, and

then generate all candidate association rules.In the previous example, if we count the number of scanned

transactions to get (1, 2, 3)-itemset using the original Apriori and our improved Apriori, we will observe the obvious

difference between number of scanned transactions with our improved Apriori and the original Apriori. From the

table 6, number of transactions in1-itemset is the same in both of sides, and whenever the k of k-itemset increase,

the gap between our improved Apriori and the original Apriori increase from view of time consumed, and hence this

will reduce the time consumed to generate candidate support count. To get support count for every itemset, here

TransactionID

 Itemsets

T1 Milk, Cheese

T2 Milk, Coffee, Butter

T3 Jam, Bread

T4 Bread, Butter, Cheese

T5 Coffee, Milk

T6 Milk, Bread, Butter, Jam

T7 Milk, Bread, Butter, Jam, Cheese

Items Support

Milk

5

Cheese 3

Coffee 2

 Bread 4

Butter 4

Jam 3

Items Support Min Found in

Milk,Cheese 2 Cheese T1,T7

Milk, Bread 2 Bread T6,T7

Milk, Butter 3 Butter T2,T6,T7

Milk, Jam 2 Jam T6,T7

Cheese,Bread 2 Bread T4,T7

Cheese,Butter 2 Cheese T4,T7

Cheese, Jam 1 Cheese T7

Bread, Butter 3 Bread T4,T6,T7

Bread, Jam 3 Bread T3,T6,T7

Butter, Jam 2 Jam T6,T7

Items Support T_ID

Milk 5 T1,T2,T5,T6,T7
Cheese 3 T1,T4,T7

Coffee 2 T2,T5
Bread 4 T3,T4,T6,T7
Butter 4 T2,T4,T6,T7

Jam 3 T3,T6,T7

Items

Support

Min

Found in

Milk, Butter,Bread

2

Bread

T6,T7

Milk, Butter, Jam 2 Jam T6,T7

Bread, Butter, Jam 2 Bread T6,T7

649 Akshita Bhandari et al. / Procedia Computer Science 46 (2015) 644 – 651

Cheese, and T7. For a given frequent itemset LK, T4, find all non-empty subsets that satisfy the minimum

confidence, and then generate all candidate association rules.In the previous example, if we count the number of
scanned transactions to get (1, 2, 3)-itemset using the original Apriori and our improved Apriori, we will observe the

obvious difference between number of scanned transactions with our improved Apriori and the original Apriori.

From the table 6, number of transactions in1-itemset is the same in both of sides, and whenever the k of k-itemset

increase, the gap between our improved Apriori and the original Apriori increase from view of time consumed, and

hence this will reduce the time consumed to generate candidate support count.

9.2 Graph1 : The FP-tree of the itemsets

The final output of the FP-Tree is as shown in Graph:1. And the minimum support count is 3. Now we will find the

frequent patterns from the FP-Tree.It’s trivial.The items of the database and their frequency of occurrences is

shown in Table:2 for each item.First and foremost, we need to prioritize all the itemsets according to their

frequency of occurrences and then we will see each item one by one from bottom to top.The items can be listed as:

Then we see Jam. First we need to find the conditional pattern base for Jam:3. If you wonder how 3 comes, it is due
to frequency of occurrence of Jam. Now go to Graph 1 and check the Jams. There are 3 Jams and one occurrence for

each. Now traverse bottom to top and get the branches which have Jams with the occurrence of Jam. We got 3

branches and they are MBTC: 1, B: 1, MBT: 1.To ensure that you correctly got all the occurrences of Jam in

FP-Tree add occurrences of each branch and compare with the occurrences listed above.For Jam you get 1+1+1 = 3

so we got it correct. Then we consider Cheese.And this way we can ensure the correctness for all.Also we can

generate conditional pattern bases by rewriting the occurrences for all the branches and finding which item occurs

most frequently and then we can delete all other branches except that and only that branch will remain in the

FP-Tree which we can draw again for Jam and likewise for all other items.

9. The analysis and evaluation of the improved apriori

Apriori Algorithm used to scan the database twice but this paper presents an improvement on it by using parallel

algorithm and the concept of partitioning. It presents a mathematical formula for selecting the cluster as there are

many clusters. The code is implemented in java and the platform used is eclipse. The architecture used is mac os x

for calculating the running time of the algorithm. The data structure which is introduced in the paper is frequent –

pattern tree which is used for finding out the frequent itemsets and also used for generating the conditional patterns.

The analysis shows that the time consumed in improved Apriori in each group of transaction is less than the original

Apriori, and the difference increases more and more as the number of transactions increases. With the increase in the

number of transactions the rate also increases. The average of reducing time rate in the improved Apriori is 67.87%.

Apriori is 71.28%. The memory space is reduced by using the partitioning approach which partitions the clusters

initially and select one particular cluster out of this. It is an improvement as earlier the algorithm took exponential

space but now it is reduced greatly. The mathematical formula for calculating the value of k is shown above.

NULL

MILK

BREAD

BUTTER

CHEESE

JAM

JAM

BUTTER CHEESE

BREAD

BUTTER

CHEESE

JAM

Nomenclature
M Milk : 5
B Bread : 4

T Butter : 4

C Cheese : 3

J Jam : 3

650 Akshita Bhandari et al. / Procedia Computer Science 46 (2015) 644 – 651

Table 6. The Time Reducing Rate of Improved Apriori Table 7. Time Reducing Rate of Improved Apriori according to the value

according to the number of transactions. of minimum support.

T

 Original
Apriori(s)

 Improved
Apriori (s)

 Time reducing
rate(%)

T1 1.776 0.654 63.17%

T2 8.221 3.982 51.56%

T3 6.871 2.302 66.49%

T4 11.940 2.446 79.51%

T5 82.558 17.639 78.63%

a b

Fig. 1. (a) Graph between number of nodes and k; (b) Time consuming comparison for different groups of transactions.

We developed an implementation for original Apriori and our improved Apriori, and we collect 5 different

groups of transactions as the following:

 T1: 500 transactions.

 T2: 1000 transactions.

 T3: 1500 transactions.

 T4: 2000 transactions.

 T5: 2500 transactions. Fig. 2. Time consuming comparison for different values of minimum support.

The first experiment compares the time consumed of original Apriori, and our improved algorithm by applying

the five groups of transactions in the implementation. The result is shown in Figure 1(b). The second experiment

compares the time consumed of original Apriori, and our proposed algorithm by applying the one group of

transactions through various values for minimum support in the implementation. The result is shown in Figure 2. As

we observe in figure 1(b), that the time consuming in improved Apriori in each group of transactions is less than it

in the original Apriori, and the difference increases more and more as the number of transactions increases. Table 6

shows that the improved Apriori reduce the time consuming by 63.17% from the original Apriori in the first group

of transactions T1, and by 78.63% in T5. As the number of transactions increase the rate is increased also. The

average of reducing time rate in the improved Apriori is 67.87%. As we observe in figure 2, that the time consuming

in improved Apriori in each value of minimum support is less than it in the original Apriori, and the difference

increases more and more as the value of minimum support decreases. Table 7 shows that the improved Apriori

reduce the time consuming by 84.22% from the original Apriori where the minimum support is 0.02, and by 60.99%

in 0.10. As the value of minimum support increase the rate is decreased also. The average of reducing time rate in

the improved Apriori is 71.28%.

0

2000

4000

6000

8000

10000

12000

10 100 1000 10000

(k
)

Number Of Nodes(n)

I-Apriori

Apriori

0

20

40

60

80

100

120

140

500 1000 1500 2000 2500

T
im

e
(s

)

Number Of Transactions

Apriori

M-Apriori

I-Apriori

Min_Sup

Original
Apriori (s)

Improved
Apriori (s)

Time reducing
rate (%)

0.02 6.638 1.047 84.22%

0.04 1.855 0.398 78.54%

0.06 1.158 0.28 75.82%

0.08 0.424 0.183 56.83%

0.10 0.382 0.149 60.99%

0

2

4

6

8

10

0.02 0.04 0.06 0.08 0.1

T
im

e
(s

)

Minimum Support

Apriori

M-Apriori

I-Apriori

651 Akshita Bhandari et al. / Procedia Computer Science 46 (2015) 644 – 651

10. Conclusion

In this paper, the memory space is drastically reduced when large number of transactions are performed from the

data warehouses and repositories and an improvised Apriori is proposed by reducing the time consumed in

transactions scanning for candidate itemsets and also by reducing the number of transactions to be scanned.

Whenever the k of k-itemset increases, the gap between our improved Apriori and the original Apriori increases

from view of time consumed, and whenever the value of minimum support increases, the gap between our improved

Apriori and the original Apriori decreases from view of time consumed. The time consumed to generate candidate

support count in our improved Apriori is less than the time consumed in the original Apriori; our improved Apriori

reduces the time consuming by 67.87%. Hence, this approach is far more efficient than the original apriori algorithm

as it uses the approach of parallel algorithm and clustering method by which the memory space is reduced and it can

be successfully used in the real time applications especially in the library as it can save a lot of time by giving all the

information about those books which are frequently read.

11. Future work

The paper presents apriori algorithm using fp- tree(data structure) which leads to a lot of memory space

reduction by using parallel algorithm. In future further reduction in this algorithm’s complexity can be achieved by

an order and it can be used to implement mining tools and other data mining sequences and applications in health

care department, in libraries, in grocery shops and also it’s running time can be further minimized by using some

different approach. Since the world is moving towards cloud computing and information security, the possible

approach in the future would be to use that concept here. It may increase the efficiency for both time and space.

Acknowledgement

I am really grateful to all the people who directly or indirectly helped me in this research work and also I am

thankful to my parents who always helped in with all the ups and downs in my life.

References

1. Wu X, Kumar V, Ross Quinlan J, Ghosh J, Yang Q, Motoda H, McLachlan GJ, Ng A, Liu B, Yu PS, Zhou Z-H, Steinbach M, Hand

DJ and Steinberg D, Top 10 algorithms in data mining, Knowledge and Information Systems, vol. 14, no. 1, pp. 1–37, Dec. 2007.

2. Mohammed Al-Maolegi1, Bassam Arkok, Computer Science, Jordan University of Science and Technology, Irbid, Jordan.

3. International Journal on Natural Language Computing (IJNLC) Vol. 3, No.1, February 2014. Han J, Kamber M, Data Mining:

Concepts and Techniques, Morgan Kaufmann Publishers, Book, 2000.

4. Rao S, Gupta R, Implementing Improved Algorithm Over APRIORI Data Mining Association Rule Algorithm, International Journal

of Computer Science And Technology, pp. 489-493, Mar. 2012.

5. Srikant R, Fast algorithms for mining association rules and sequential patterns, University of Wisconsin, 1996.

6. Tassa T, Secure Mining of Association Rules in Horizontally Distributed Database, in IEEE Transactions on knowledge and data

Engineering, Vol. 26, No. 4, April 2014.

7. Balaji Mahesh, VRK Rao G Subrahmanya, An Adaptive Implementation Case Study of Apriori Algorithm for a Retail Scenario in a

Cloud Environment, ccgrid, pp.625-629, 2013 13th IEEE/ACM International Symposium on Cluster, Cloud, and Grid Computing,

2013.

8. Ye Yanbin, Chiang Chia-Chu, A Parallel Apriori Algorithm for Frequent Itemsets Mining, sera, pp.87-94, Fourth International

Conference on Software Engineering Research, Management and Applications (SERA'06), 2006.

9. Yang Qiang, Hu Yanhong, Application of Improved Apriori Algorithm on Educational Information, icgec, pp.330-332, 2011 Fifth

International Conference on Genetic and Evolutionary Computing, 2011.

10. Shah K, Mahajan , Maximizing the Efficiency of Parallel Apriori Algorithm, artcom, pp.107-109, 2009 International Conference on

Advances in Recent Technologies in Communication and Computing, 2009.

11. Wang Feng, Li Yong-hua, An Improved Apriori Algorithm Based on the Matrix, fbie, pp.152- 155, 2008 International Seminar on

Future BioMedical Information Engineering, 2008.

12. Das D, Misra R, Raj A, Approximating geographic routing using coverage tree heuristics for wireless network, Springer Wireless

Networks ,DOI: 10.1007/s11276-014-0837-4.

13. Das D and Misra R, Improvised k-hop Neighbourhood Knowledge Based Routing in Wireless Sensor Networks, 2nd International

Conference on Advanced Computing, Networking and Security (ADCONS), 2013, p. 136-141.

14. Agrawal R, Imieli ski T, and Swami A, “Mining association rules between sets of items in large databases,” in Acm Sig Mod Record,

vol. 22, pp. 207–216, 1993.

