Header menu link for other important links
Image Annotation by Propagating Labels from Semantic Neighbourhoods
, C.V. Jawahar
Published in Springer New York LLC
Volume: 121
Issue: 1
Pages: 126 - 148
Automatic image annotation aims at predicting a set of semantic labels for an image. Because of large annotation vocabulary, there exist large variations in the number of images corresponding to different labels (“class-imbalance”). Additionally, due to the limitations of human annotation, several images are not annotated with all the relevant labels (“incomplete-labelling”). These two issues affect the performance of most of the existing image annotation models. In this work, we propose 2-pass k-nearest neighbour (2PKNN) algorithm. It is a two-step variant of the classical k-nearest neighbour algorithm, that tries to address these issues in the image annotation task. The first step of 2PKNN uses “image-to-label” similarities, while the second step uses “image-to-image” similarities, thus combining the benefits of both. We also propose a metric learning framework over 2PKNN. This is done in a large margin set-up by generalizing a well-known (single-label) classification metric learning algorithm for multi-label data. In addition to the features provided by Guillaumin et al. (2009) that are used by almost all the recent image annotation methods, we benchmark using new features that include features extracted from a generic convolutional neural network model and those computed using modern encoding techniques. We also learn linear and kernelized cross-modal embeddings over different feature combinations to reduce semantic gap between visual features and textual labels. Extensive evaluations on four image annotation datasets (Corel-5K, ESP-Game, IAPR-TC12 and MIRFlickr-25K) demonstrate that our method achieves promising results, and establishes a new state-of-the-art on the prevailing image annotation datasets. © 2016, Springer Science+Business Media New York.
About the journal
JournalData powered by TypesetInternational Journal of Computer Vision
PublisherData powered by TypesetSpringer New York LLC