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Abstract

We perform measurements, numerical simulations, and quantitative comparisons with available

theory on solitary wave propagation in a linear chain of beads without static preconstrain. By

designing a nonintrusive force sensor to measure the impulse as it propagates along the chain,

we study the solitary wave reflection at a wall. We show that the main features of solitary wave

reflection depend on wall mechanical properties. Since previous studies on solitary waves have been

performed at walls without these considerations, our experiment provides a more reliable tool to

characterize solitary wave propagation. We find, for the first time, precise quantitative agreements.
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Solitons are widely studied in physics because of their ubiquity in systems exhibiting non-

linear propagation [1]. In a granular chain, theoretical and experimental evidence of solitons

was first reported by Nesterenko [2, 3, 4, 5, 6, 7]. Since Nesterenko’s pioneering work, most

of the experimental effort in the field has generally focused on the scaling laws for amplitude

and speed of the solitons, [8, 9]. It was recently reported [10] that identical and opposite

propagating solitons do not preserve themselves upon collision and hence these are solitary

waves rather than solitons. Several detailed numerical studies have been devoted to under-

stand the interactions of solitary waves with a perfectly reflecting wall [10, 11, 12, 13, 14]

and show that tiny secondary solitary waves are generated as a solitary wave is reflected

off a wall [10, 12]. However, due to experimental difficulties, no close comparison between

experiments and simulations has so far been established. Here inspired by Nesterenko’s

experiments [5, 6, 7], we developed an adapted impulse sensor to nonintrusively investi-

gate solitary wave propagation in a linear chain of identical elastic beads. We explored

the problem of solitary wave reflection by changing the elastic properties of the wall and

showed that the solitary wave detected at the wall differs from the actual solitary wave

propagating through the chain. Our measurements significantly improve upon previous ex-

perimental studies [3, 8] and allows excellent agreement with our numerical simulations and

Nesterenko’s analytical theory [7].

The physical behavior of solitary waves in bead chains can be described as follows. Under

elastic deformation, the energy stored at the contact between two elastic bodies submitted

to an axial compression corresponds to the Hertz potential [15] UH = (2/5)κδ5/2, where δ is

the overlap deformation between bodies, κ−1 = (θ+ θ′)(R−1+R′−1)1/2, θ = 3(1− ν2)/(4Y ),

and R and R′ are radii of curvature at the contact. Y and ν are Young’s Modulus and

Poisson’s ratio, respectively. Since the force felt at the interface is the derivative of the

potential with respect to δ, (FH = ∂δUH = κδ3/2), the dynamics of the chain of beads is

described by the following system of N coupled nonlinear equations,

m∂2ttun = κ
[

(un−1 − un)
3/2
+ − (un − un+1)

3/2
+

]

, (1)

where m is the mass, un is the position of the center of mass of bead n, un = 2nR at rest,

and the label + on the brackets indicates that the Hertz force is zero when the beads lose

contact. Under the long-wavelength approximation λ ≫ R (where λ is the characteristic

wavelength of the perturbation), the continuum limit of Eq. 1 can be obtained by replacing

2



the discrete function un±1(t) by the Taylor expansion of the continuous function u(x±2R, t).

Keeping terms of up to the fourth order spatial derivatives, Eq. 1 leads to the equation for

the strain ψ = −∂xu > 0,

∂2ttψ ≃ c2∂2xx[ψ
3/2 + (2/5)R2ψ1/4∂2xx(ψ

5/4)], (2)

where c = (2R)5/4(κ/m)1/2 [7]. Looking for progressive waves with speed v, in the

form ψ(ξ = x − vt), Eq. 2 admits an exact periodic solution in the form ψ = (5/4)2 ×

(v/c)4 cos4[ξ/(R
√
10)] [2, 3, 4, 5, 6]. Although this solution only satisfies the truncated

Eq. 1, there is quantitative analysis on how well one hump (−π/2 < ξ/(R
√
10) < π/2)

of this periodic function represents a soliton solution [2, 16]. Approximating the spatial

derivative, the strain in the chain reads ψ ≃ δ/(2R), and the force felt at beads contact,

F ≃ κ(2Rψ)3/2, and v become,

F ≃ Fm cos6
[

x− vt

R
√
10

]

; v ≃
(

6

5πρ

)
1

2
(

Fm

θ2R2

)

1

6

. (3)

In our experiment, we consider the chain of 21 identical beads of mass m, located on a

Plexiglas linear track as shown on top of Fig. 1. A piezoelectric dynamic impulse sensor

(PCB 208A11 with sensitivity 112.40 mV/N) located at the end of the chain provides the

force at the rigid end. This sensor has a flat cap made of the same material as the beads.

Beads are Tsubaki high carbon chrome hardened steel roll bearing (norm JIS SUJ2 equivalent

to AISI 52100). The radius of the beads is R = 13 mm (tolerance is ±125 µm on diameter),

and the density is ρ = 7780 kg/m3. The Young’s modulus is Y = 203± 4 GPa [17], and the

Poisson ratio is assumed to be ν = 0.3; our beads have thus a κ = 12 N/µm3/2. Moreover,

the deformation keeps elastic and below yield stress (σY = 2 GPa [17]). Assuming that

the contact surface is a disk of area A = π(θRF )2/3 [15], the corresponding maximum

compression force is roughly FY ≃ 470 N, which corresponds to an overlap δY ≃ 11 µm.

Forces inside the chain are monitored by a flat dynamic impulse sensor (PCB 200B02 with

sensitivity 11.24 mV/N) that is inserted inside one of the beads, cut in two parts. The total

mass of the bead sensor system has been compensated to match the mass of an original bead.

This system allows achieving non intrusive force measurement by preserving both contact

and inertial properties of the bead-sensor system. The stiffness of the sensor ks = 1.9 kN/µm

being greater than the stiffness of the Hertzian contact (ks ≫ kH ∝ κδ1/2), means the

coupling between the chain and the sensor is consequently negligible. To relate the force Fs
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registered by the sensor with the actual force at the beads contact, we write the Newton’s

law for both masses, respectively, located in front (+) and in the back (−) of the sensor.

Thus, F± = Fs±m±∂
2
ttx±, with Fs = ks(x+−x−). This set of equations can be summarized

as

∂2ttFs + ω2

0Fs = ω2

0 [(1− β)F+ + βF−] , (4)

where we have introduced the resonant angular frequency of the system ω0 = [ks(m
−1
+ +

m−1
−
)]1/2, and the mass ratio β = m+/(m++m−). Experimentally β = 0.11 and the resonant

frequency, f0 = ω0/(2π) ≃ 85 kHz, indicates that safe measurements can be obtained for

signal whose period is greater than τ0 = 1/f0 ≃ 12 µs. However, a relation between F±(t)

is needed to invert Eq. 4 and then determine the force F+(t) or F−(t) from the force Fs(t).

Assuming that the pulse travels at a velocity v, this relation reads F−(t) = F+(t+ t0), where

t0 = (x+−x−)/v. An estimate of the velocity v is obtained from the time of flight of the pulse

and the deconvolution of Eq. 4 by means of Fast Fourier Transform, then provides the actual

force F+(t) felt exactly at the interface between two beads. Notice that the improvement

introduced here represents a correction of the order of β, i.e. about 10%. Signals from

sensors are amplified by a conditioner (PCB 482A16), recorded by a two channels numeric

oscilloscope (Tektronix TDS340), and transferred to a computer. The acquisition is triggered

by the contact between the small impacting bead and the chain; both being in contact with

soft wires they cause the discharge of a capacitor in a resistor (1/RC ≃ 1 µs). This circuit

allows high repeatability, e.g. for time of flight measurements. In Fig. 1a, a solitary wave

propagates along the chain of beads. The central peak corresponds to the impulse detected

at the end, whereas the two peaks on the sides are the incident and reflected waves measured

inside the chain. Notice that the central peak is much higher and broader than the actual

solitary wave propagating along the chain, thus no quantitative information can be extracted

from it without a detailed description of the interaction between the solitary wave and the

wall. In order to characterize solitary waves, we look both for velocity and duration of

incident pulses recorded at one contact far from the wall. According to Eq. 3, we map

experiments to F (t) = Fm cos6[(t− t0)/τ ], to obtain the amplitude Fm, the duration 2τ , and

the time of flight t0 of a pulse. To provide more accurate data for the velocity, we perform

flight time measurements for different positions of the active bead. In addition, for every

experimental configuration we record three sets of data and check repeatability, and the

whole experiment is repeated three times. According to Eq. 3, we first look for the best fit
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in a least squares sense for the experimental velocity of the pulse, in the form v = CF 1/6
m ,

and we find an experimental value Ce = 203.6±8.9 in standard units. This value agrees with

the theoretical prediction Ct = 198.9, derived from Eq. 3, within an error less than 3%. The

fit is plotted in straight line in Fig. 2a. For sake of comparison, we also plot (the straight line

on Fig. 2b) the duration 2τ = 2R
√
10/v, also obtained from Eq. 3. The velocity is thus in a

satisfactory agreement with the theoretical prediction, which also appears at first glance to

predict in a good manner the duration of the pulse. However, energy dissipation is expected

to produce a broader solitary wave. Dissipation is characterized by the restitution coefficient

(see Fig. 2c) defined as ǫ = (Un+1/Un)
1/2 = (Fn+1/Fn)

5/6 (Un is the Hertz potential, i.e.,

the work done by the Hertz force Fn at the contact n). Here we consider two mechanisms

responsible for the dissipation; internal viscoelasticity and solid friction of beads submitted

to their weight mg (g is the gravity), on the track. A third mechanism, the solid friction

between beads due to thwarted rotations [18], may also be taken into account. However,

the contribution of a friction force of the form F ∗

s = µ∗κδ3/2 into Eq. 1 reduces simply

to considering an equivalent nonlinear stiffness κ∗ = (1 + µ∗)κ. Viscoelastic dissipation is

included by using the simplest approximation [19, 20] for which the dissipative force at the

contact of two beads reads, Fv = ηκ∂t(δ
3/2), where η includes unknown coefficients due to

internal friction of the material [15, 20]. Solid friction is taken into account by considering

a frictional force Fs = µmg [18]. The potential energy difference (Un − Un+1) being equal

to the work done by both previous dissipative forces allows us to estimate the restitution

coefficient to be force dependent, ǫ = (Un+1/Un)
1/2 ≃ 1−CvF

1/6−Cs/F . Simple calculations

provide the relation of η and µ with the new constants Cv and Cs as, η ≈ 2
√
10RCv/5C

and µ ≈ 4Cs/5mg respectively. Experimentally, we determine that Cv = 1.9 × 10−2 and

Cs = 1.7× 10−1 in standard units, see Fig. 2c. Then, ηe ≈ 1.8 µs and µe ≈ 0.19.

Numerical simulations based on a Velocity-Verlet algorithm allow to explore the main

features of solitary waves by solving Eq. 1 directly. We first run numerical calculation

without dissipation, plotted in dashed lines on Fig. 2a and 2b. Looking for least square fit

for the velocity, as previously done, we find Cn = 201.5± 0.1. Compared to the theoretical

value Ct, simulations improve the agreement with experiments (relative error on velocity is

about 1%), but a noteworthy disagreement is now observed for the duration of the pulse (see

Fig. 2b), which is about 10% lower than experimental values. This lag is consistent with

the presence of a weak dissipation. At this stage, we only consider the effect of viscoelastic
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dissipation in numerical simulations. We thus adjust the coefficients, and for ηn = 2 µs and

µ = 0, a good agreement can be obtained both for the velocity and the duration, in the range

of amplitude where viscoelastic dissipation dominates over solid friction (Fm > 50 N). Notice

that ηn differs from the experimental value ηe only by 20%. Since solid friction has not yet

been included in simulations, the experimental pulse is still broader than in simulations at

low force amplitude (Fm < 20 N) where this mechanism dominates.

We now check how simulations reproduce the features of the reflection process. Figure 1b

shows the corresponding numerical simulations for the incident and the reflected solitary

wave as well as the force registered at the wall. Although simulations include only viscous

dissipation, ηn = 2 µs, the agreement between Fig. 1a and Fig. 1b is very good. Notice that

momentum is conserved, i.e., the area of the central peak in Fig. 1a is equal to the area of the

incident plus the reflected solitary wave. Figure 1c presents the corresponding calculations

of the time evolution of the potential and kinetic energy when a solitary wave interacts with

the wall sensor. The solitary wave is initiated at t = 0 by a purely kinetic impact. At

t = 1 ms the pulse reaches the rigid sensor and the energy is stored into potential. The

pulse is then reflected and propagates backward to the free end until leading to ejection of

beads after t = 2 ms.

We further investigated the solitary wave reflection by varying the mechanical properties

of the flat part of sensor in contact with the last bead. This is done by locating polished

disks of 1 mm thickness and 5 mm diameter of different known materials on the active part

of the sensor. These samples are made of plexiglass, Mg, Cu, Si, Fe, and W. For materials

softer than the beads, unexpected features arise. For instance, in Fig. 3b, the experimental

force on the wall exhibits a well defined secondary peak. The break of symmetry implied

by the change of elastic properties leads to the generation of a so-called secondary solitary

wave in the reflected impulse predicted recently via simulations in [11, 12]. Dissipationless

numerical simulations in Fig. 3c reproduce well the experimental finding of Fig. 3b without

adjustable parameter. Better agreement can be achieved but it requires the knowledge of

the mechanism dominating dissipation of the samples. Fig 3a is the ratio of the maximum

force measured at the wall and the respective maximum force of the incident solitary wave.

Despite the peculiar form of the force, the ratio of maximum forces follows a well defined

law that is characteristic of the kinetic to potential energy conversion at the wall. This

interesting feature should prove valuable to determine the Young modulus of materials of
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unknown nature, when the sample size is a practical limitation.

To understand the underlying physics of solitary wave reflection, we focus on the kinetic-

potential energy conversion when a solitary wave interacts with a rigid wall. As shown on

Fig. 1c and [2, 7], when solitary wave propagates freely in the chain, the kinetic energy

Kchain is about 56% and the potential energy Uchain is about 44% of the total energy (for

a rough estimation we assume Kchain ≃ Uchain). However, when a solitary wave reaches the

end of the chain, the potential energy stored at the sensor-bead contact equals the total

energy carried by the solitary wave. The kinetic energy is thus transformed into potential

at the contact. Then, Umax
end ≃ 2Uchain. On the other hand, the solitary wave extends on a

few beads, and the potential energy stored in the chain is roughly supported by the most

compressed contact (Uchain ≃ Umax
bead ). It finally becomes,

Umax
end

Umax
bead

≃ 2 →
Fmax
end

Fmax
bead

≃ 26/5
(

1 +
Ybead
Yend

)−2/5

(5)

which is a function of Young modulus of beads and the sensor plane. In Fig. 3a, we com-

pare experiments, numerical simulation, and the above estimate. Within the error bars, a

satisfactory agreement is obtained.

In conclusion, we have developed a non intrusive reliable method to investigate solitary

wave propagation and solitary wave reflection at walls. Our measurements in conjunction

with our numerical simulations provide a powerful tool to accurately investigate a variety of

related problems such as the main features of solitary waves reaching impedance mismatch,

the generation of the recently predicted secondary solitary waves at the boundaries, and the

solitary wave interactions, among others.
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French.

[16] A. Chatterjee, Phys. Rev. E 59, 005912 (1999).

[17] See, for instance, http://www.wsb.co.th/.

[18] J. Duran, Sables, Poudres et Grains (Eyrolles, Paris, 1997).

[19] G. Kuwabara and K. Kono, Jpn. J. Appl. Phys. 26, 1230 (1987).

[20] N. V. Brilliantov, F. Spahn, J. M. Hertzsch, and T. Pöschel, Phys. Rev. E 53, 5382 (1996).
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FIG. 1: (top) Schematic view of experimental setup. (a) Experiments: middle peak indicates the

force signal at the end of the chain, whereas lateral peaks are the incident and reflected solitary

wave. The solid line represents the force at a single contact extrapolated from Eq. 4. (b) and (c)

The numerical simulations of the contact forces and energy, respectively, for ηn = 2µs.
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FIG. 2: (a) Velocity v and (b) duration 2τ of the solitary wave, measured inside the chain, vs

force amplitude. Theoretical predictions from Eq. 3, and numerical simulations are contrasted to

experimental data. (c) Restitution coefficient vs force amplitude.
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FIG. 3: (a) Ratio of force amplitudes at the end of the chain and of the incident impulse vs Young’s

modulus of the sample placed on the rigid sensor. Inset (b) force measurements when a solitary

wave collides on the softer sample (Y = 5 GPa), and (c) corresponding simulation reproducing all

the experimental features for ηn = 0. Dashed lines indicate forces at the end of the chain. The last

peaks on the right represent the secondary solitary waves.
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