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ABSTRACT

The key to the survival of a species lies in understanding its evolution in an ever-changing environment. We report a theoretical model that
integrates frequency-dependent selection, mutation, and asexual reproduction for understanding the biological evolution of a host species
in the presence of parasites. We study the host–parasite coevolution in a one-dimensional genotypic space by considering a dynamic and
heterogeneous environment modeled using a fitness landscape. It is observed that the presence of parasites facilitates a faster evolution of the
host population toward its fitness maximum. We also find that the time required to reach the maximum fitness (optimization time) decreases
with increased infection from the parasites. However, the overall fitness of the host population declines due to the parasitic infection. In the
limit where parasites are considered to evolve much faster than the hosts, the optimization time reduces even further. Our findings indicate
that parasites can play a crucial role in the survival of its host in a rapidly changing environment.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0010057

Understanding the mechanism that drives the biological evolu-
tion of a species plays a significant role in its survival under
an extreme and fast-changing environment. In this manuscript,
we consider the ecological interaction between the host and the
parasite populations that often influence each other’s evolution.
We thus formulate a mathematical model that describes the
key features of host–parasite coevolution in terms of the cou-
pled partial differential equations. The role of selection, muta-
tion, and asexual reproduction is studied on the dynamics of
a host population, which evolves in the presence of parasites.
A swift response to a rapidly changing environment is cru-
cial for the survival of any species. The idealized mathemati-
cal model formulated in the paper indicates that the evolution
of host species in the presence of parasites can speed up its
evolution toward a global fitness peak, though at lower fitness
values.

I. INTRODUCTION

Biological evolution of organisms is a complex phenomenon
that usually proceeds toward increasing complexity over successive
generations. Understanding the underlying processes responsible
for promoting the complexity has been an active area of research
since the last century.1–6 A theory on this evolutionary dynamics
was first proposed by Darwin and Wallace7,8 and has been applied
successfully in understanding a variety of biological phenomena.
Darwinian dynamics formulates the theory, though qualitatively
only, for the evolution of populations with time and is primarily
based on selection, mutation, and reproduction.9 However, using
mathematical models and statistical techniques, more quantitative
descriptions of the resulting evolution have been proposed.10–20

Smith described natural selection in evolutionary game the-
ory, where the reproduction rate (or fitness) of an individual
with a fixed strategy is considered dependent on the frequency of

Chaos 30, 073103 (2020); doi: 10.1063/5.0010057 30, 073103-1

Published under license by AIP Publishing.



Chaos ARTICLE scitation.org/journal/cha

strategies of others in the population.14 Schuster and Sigmund incor-
porated replication and selection by using the replicator equation
to describe the evolution of traits.21 An immediate consequence of
this model was the dominance of the individuals with larger fit-
ness as compared to those having smaller fitness. For describing the
effect of mutations and frequency-dependent selection, the replica-
tor–mutator equation was proposed.22 In an attempt to unify vari-
ous formulations on evolution dynamics, Page and Nowak showed
equivalence between the replicator–mutator equation and the Price
equation describing any form of selection.9,23 These equations find
applications in population genetics, language evolution, ecological
diversity, etc. There have also been attempts to correlate the stochas-
tic nature of Darwin’s evolutionary dynamics with thermodynamics
and statistical mechanics.15,16,24,25 This connection is due to the emer-
gence of Fisher’s fundamental theorem of natural selection10 and the
concept of adaptive landscape (also known as fitness landscape) in
the genotypic space coined by Wright.26 These two ideas include the
randomness and the selection appearing in Darwin’s theory. The
landscape idea has also been applied to explain glass dynamics and
protein folding dynamics.27

A key concept, namely, coevolution, has emerged in under-
standing the biodiversity through early works on the genetics of flax
and rust;28 Mode’s mathematical model on short-term evolutionary
dynamics of interacting species;29 and the work of Ehrlich–Raven
on mutual influences of butterfly species and host plants.30 When
one species exerts selective pressures on the other species, it feels
selection in return. Due to this reciprocal selection, the species
undergoes mutual evolutionary change known as coevolution.31–33

Therefore, the term coevolution implies that the environment that
stimulates variation in one species due to ecological feedback is
itself responsive to that variation. Examples of coevolution usually
include mutualism as in plant–pollinator, competition as in preda-
tor–prey, and antagonism as in host–parasite interactions between
species and within species as well. How to measure the strength of
selection in quantifying such coevolutionary dynamics is the key
to understanding the selection itself.34 Typically, the coevolution-
ary dynamics exhibited by mutualism, competition, and antago-
nism are quite different. Using modeling and computer simulations,
it has been argued that such coevolution can produce biological
diversity.35,36

The ecological interaction between host and parasite has been
classically termed as host–parasite coevolution.32 Here, hosts are
under selection pressure to resist parasitic infection. Reciprocally,
parasites are under selection stress to evade host defenses. This evo-
lutionary arms race leads to a frequency-dependent selection, where
hosts and parasites are coevolving through countless evolutionary
cycles, a phenomenon known as Red Queen effect.37 The mechanism
of fluctuating selection has been considered a critical factor in driv-
ing the spatial and temporal diversity in nature.11,38 The coevolution
of a host or a parasite from one genotype to another is driven by
a dynamic genotype-fitness mapping.9 The natural selection drives a
population from a genotype of lower fitness to genotypes with higher
fitness.

Our focus in this work is to develop a mathematical model
where we can observe the role of selection, mutation, and asexual
reproduction on the dynamics of a finite host population, which
evolves in the presence of a finite population of parasites. We explore

the effect of the genotype-fitness map on the evolutionary dynam-
ics of the host species when it evolves in the presence of parasites,
which gives a dynamic component to the otherwise static fitness
landscape of hosts. The parasite population also evolves under a
dynamic fitness landscape due to evolving hosts. Thus, the geno-
typic alteration in host and parasite populations is due to mutation
and a dynamic fitness landscape. Furthermore, we also consider an
adiabatic limit where the timescales of the evolution of hosts are con-
sidered much slower than that of the parasites. The genotypic space
usually is high-dimensional, and, thus, a complete understanding of
the evolution of species considering the genotype-fitness mapping
in higher dimensions is a complex task. We reduce the complexity
of the problem by considering a one-dimensional genotypic space.
The interaction between the hosts and the parasites is modeled by
using a frequency-dependent selection. The strength of the interac-
tion is tuned by introducing a coupling parameter, which we refer
to as the degree of virulence. We discuss results on the evolution of
fitness of the host population for different mutation rates and differ-
ent degrees of virulence. We also compute the time required for the
host population to reach the global peak of the fitness landscape.

This paper is organized as follows. In Sec. II, we present the
formulation of the model in terms of two coupled partial differential
equations corresponding to the coevolution of hosts and parasites.
These coupled dynamical equations are obtained by incorporat-
ing selection, mutation, and asexual reproduction. In Sec. III, we
numerically solve the proposed mathematical model for a few rep-
resentative cases and discuss the implications. Finally, in Sec. IV, we
summarize our conclusions.

II. MATHEMATICAL MODEL

In the model presented here, we consider that hosts and par-
asites evolve with different fitness goals. The fitness landscape for
each is considered to be in one dimension, i.e., the genotypic space
is taken to be one-dimensional. The host and parasite populations
are modeled to evolve under selection, mutation, and asexual repro-
duction. As mutations are like a random walk in genotypic space,
the equation for the evolution of a population under mutations with
a mutation rate µ̃ can be modeled using the master equation,39–41

M(i, N + 1) = M(i, N) +
µ̃

2
[M(i + 1, N) + M(i − 1, N) − 2M(i, N)] .

(1)
In Eq. (1), M(i, N + 1) represents the number of individuals having
a genotype i in the (N + 1)th generation. Equation (1) allows equal
probability µ̃ to an individual with genotype i, to either acquire a
genotype i − 1 or i + 1 in the next generation. Similarly, individuals
with either genotype i + 1 or i − 1 can be converted to genotype i
in one generation with equal probability µ̃. In the continuum limit,
the generation N is replaced by time t = Nh and the genotype i is
replaced by a continuous genotypic space x such that x = iǫ, where
h → 0 and ǫ → 0. In the model, selection is taken into account by
considering a fitness landscape g(x), which is a distribution function
representing the fitness of a genotype x. Therefore, in this limit, the
evolution of a population M(x) at time t can be written as

M(x, t + h) = g(x)

[

M(x, t) +
µ̃ǫ2

2

∂2

∂x2
M(x, t)

]

. (2)
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To keep the increment in the overall population size low in suc-
cessive generations, g(x) is considered to be very close to 1. Thus, we
write

g(x) = 1 + hf(x), (3)

where f(x) is of O(1). Substituting this form of fitness g(x) in Eq. (2),

∂

∂t
M(x, t) ≈ f(x)M(x, t) + µ

∂2

∂x2
M(x, t), (4)

where µ = µ̃ǫ2/2h. We transform the above equation involving
population M(x, t) to an equation involving frequencies m(x, t)
by normalizing the number of individuals having a genotype x
with the total number of individuals in the population, m(x, t)
= M(x, t)/

∫ ∞
−∞ M(y, t)dy. Equation (4) then becomes

∂

∂t
m(x, t) = f(x)m(x, t) + µ

∂2

∂x2
m(x, t) − m(x, t)

∫ ∞

−∞
f(y)m(y, t)dy.

(5)
The last term appearing on the right hand side of the above
equation keeps the population constant. The above set of equations
are derived generally for any population evolving under selection,
mutation, and asexual reproduction.25

Next, we apply this formalism to coevolving host and parasite
populations. In this model, we only consider inhibitory effects of
parasites on hosts. By taking this into account, the fitness landscape
of hosts is replaced by an effective fitness landscape feff,

feff(x, t) = 1 + hf(x) − hα fH(x, t), (6)

where α is the degree of virulence from parasites and fH(x, t) is a fit-
ness function related to parasite population. Notice that the last term
involving α in the above equation also appears, though in a different
context, in the epidemiological model proposed by Anderson and
May for studying the population dynamics of infectious diseases.42,43

The form of fH(x, t) is assumed to be

fH(x, t) = c1

∫ ∞

−∞
dy exp[−β1(x − y)2]mP(y, t), (7)

where mP(y, t) is the frequency of parasites with genotype y. In writ-
ing down the above function, it is considered that the parasites can
infect the hosts more effectively when they are closer to them in the
genotypic space. The function also increases when the frequency of
parasites closer to the hosts in genotypic space is higher. Therefore,
a host, to be fit, will try to escape the most common parasites. For
a given host genotype x, the pool of parasite genotypes y, which will
infect that particular x, depends on the parameter β1. For smaller
values of β1, a large number of parasite genotypes can infect the
hosts and vice versa.

The fitness function for parasites fP(x, t) is written based on the
fact that a parasite will evolve to match the most common host so
that it can infect a host population more effectively.35,38,44,45 Hence,
the form of the function fP(x, t) is

fP(x, t) = c2

∫ ∞

−∞
dy exp[−β2(x − y)2]mH(y, t). (8)

The role of the parameter β2 is similar to β1, i.e., it controls the types
of host genotype y that will be infected by the parasites of genotype

x. Thus, according to the fitness functions fH(x, t) and fP(x, t), the
hosts will evolve to escape the most common parasite species, while
the parasites will evolve toward infecting the most common host
genotypes. Finally, the equations for evolution of hosts and parasites
are

∂

∂t
mH(x, t) = f̃H(x, t)mH(x, t) + µH

∂2

∂x2
mH(x, t)

− mH(x, t)

∫ ∞

−∞
dyf̃H(y, t)mH(y, t), (9)

∂

∂t
mP(x, t) = fP(x, t)mP(x, t) + µP

∂2

∂x2
mP(x, t)

− mP(x, t)

∫ ∞

−∞
dyfP(y, t)]mP(y, t), (10)

where in Eq. (9), f̃H(x, t) = f(x) − αfH(x, t). The average fitness of
the host and parasite populations is given by

FH(t) =
∫ ∞

−∞
dxf̃H(x, t) mH(x, t), (11)

FP(t) =
∫ ∞

−∞
dxfP(x, t) mP(x, t). (12)

III. RESULTS AND DISCUSSION

In this section, we report a few representative cases for the
mathematical model discussed in Sec. II. As discussed in Secs. I
and II, the host population evolves under a dynamic fitness land-
scape, which has a static contribution f(x) and a dynamic contribu-
tion fH(x, t) due to rapidly evolving parasites. The static part of the
fitness landscape of hosts is taken to be a double Gaussian with one
peak higher than the other peak, f(x) = A1 exp[−(x − x1)

2/2σ1
2]

+ A2 exp [−(x − x2)
2/2σ2

2]. In principle, there can be many more
peaks in the fitness landscape. However, this work aims to observe
the dynamics involved in the evolution of the host population from
a lower (local) peak to a higher (global) peak in the absence and
presence of parasites. Thus, we consider the simplest possible case
with only one local and one global fitness peak in the landscape. The
role of a suitable σ1 and σ2 in the fitness landscape f(x) is to provide
an environment that selects a more diverse pool of genes, thereby
selecting at least few genes of an existing population. This represents
the evolution of a species in response to environmental changes that
are gradual and prevalent in nature and thus leads to a stable evo-
lutionary dynamics. From Eq. (6), it can be seen that f(x) has the
unit of inverse time and so are the parameters A1 and A2 (related
to the height of the peaks in the fitness landscape). The parameters
σ1 and σ2 corresponding to the width of the peaks have dimensions
of (genotypic) space. Therefore, for all the results presented here,
the unit of time is taken as τ ∗ = 1/(2.5A1) [A1 is the amplitude of
the smaller peak of f(x)] while the parameter σ1 sets the scale of the
genotypic space. The value of A2 in units of τ ∗ is chosen as 0.6 and
that of σ2 in units of σ1 is taken to be unity. The function f(x) for
which the results are presented in this section is shown in Fig. 1(a).
The initial genotype frequencies of the host and the parasite popu-
lations are also provided in Fig. 1(a). The smaller and higher peaks
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FIG. 1. (a) Static fitness landscape f(x) driving the evolution of hosts vs genotype x (blue curve). The plots for the initial distribution of host (green) and parasite (red)
frequencies are also shown. The finite overlap of the population distribution of the hosts with fitness landscape is shown in the yellow-filled region, whereas the region of
overlap of the parasite with the host is shown in cyan color. (b) Evolution of hosts with time in the absence and presence of parasites is shown forµH = 0 andµH = 0.2. The

value of the degree of virulence α is taken as 0.06, and µP = 0.9 is considered for the evolution of parasites. The time evolution of (c) fitness landscape of hosts f̃H(x, t),
(d) fitness landscape of parasites fP(x, t), (e) distribution of the host population mH(x, t), and (f) distribution of the parasite population mP(x, t).

of f(x) are located at x = 18 and x = 26, respectively, while the host
frequencies mH(x, t) and parasite frequencies mP(x, t) are both con-
sidered to have a Gaussian distribution around x = 15 and x = 7
with widths

√
3/2 and

√
10, respectively.

The choice of the above parameters does not change the results
qualitatively but influences the timescales related to the dynamics.
We choose these parameters to consider a finite overlap between

parasite and host population as well as a finite overlap between
the host population and the static part of the fitness landscape. In
general, any population evolves with a finite mutation rate, and
thus even if it starts with a finite pool of genes, the population will
explore all the genotypes in subsequent generations depending on
its mutation rate. This will, however, require diffusive timescales
[∼〈x2〉/(2µH)], which can be large if mutation rates are small. Thus,
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FIG. 2. (a) Initial distribution of the host and the parasite populations with increased diversity. Inset: the initial distribution of the host population covering the complete
genotypic space. (b) Evolution of fitness of the host population at α = 0.06 and µP = 0.9. Inset: FH(t) vs t is plotted for the distribution of the host population shown in the
inset of Fig. 2(a). The corresponding evolution of (c) host population distribution and (d) parasite population distribution.

we start by considering a finite overlap between the populations and
thereby reducing the simulation time. To implement that the host
and parasite populations have a finite pool of genes at t = 0, geno-
type frequencies of hosts and parasites smaller than 10−8 are taken
to be zero.

In Fig. 1(b), the evolution of fitness of host population FH(t)
[defined in Eq. (11)] in the absence and presence of parasites
are compared for cases with zero and finite host mutation rate
(µH = 0.2). For µH = 0, when the host population evolves in the
absence of parasites, it can only detect the local peak at x = 18 with
which it had a finite overlap at t = 0. It is to be noted that the pop-
ulation genetics models are often constructed using deterministic
equations with an infinite population or using stochastic equations
with a finite population. Here, the case with µH = 0 implies a deter-
ministic dynamics, which in principle must be considered with an
infinite population. Nevertheless, we consider a zero mutation rate
for reference. For µH = 0.2, a two-step relaxation for fitness FH(t)
is observed. At first, the host population detects the local peak and
evolves in time to get dispersed around it (at t ≈ 50 ). The host
population stays around the local peak for a duration given by the
length of the first plateau [∼〈x2〉/(2µH)] and then it reaches the

global peak (at t ≈ 530), which is evident by the second plateau in
the plot.

We note that the host population gets dispersed around the
local fitness peak in a short time, which is almost the same as the
µH = 0 case. This is because the host population already had the
genotypes corresponding to the local fitness distribution, and, thus,
its population is drifted toward those genotypes (activated dynam-
ics) due to selection. The evolution of hosts from the local peak
at x = 18 to the global peak at x = 26 is slower as it requires the
host population to diffuse in genotypic space for which the timescale
depends on the corresponding mutation rate as ∼〈x2〉/(2µH). Once
the host population acquires the genotypes corresponding to the
global fitness peak, the dynamics becomes activated again (a sharp
increase in average fitness). We refer to the time required to reach
the global fitness peak as optimization time τ . Similar behavior is
observed for all other mutation rates (results not shown) with the
optimization time depending inversely on the mutation rates.

As parasites are introduced to coevolve with the host popula-
tion, the fitness landscape f(x) for hosts gets modified and is replaced
by the fitness function feff(x, t) given by Eq. (6). The evolution of
fitness of the host population with a fixed degree of virulence or
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parasitic infection α = 0.06 is also reported in Fig. 1(b). For this,
we set the parameters c1, c2, β1, and β2 to be 1, 0.1, 1, and 1, respec-
tively, in Eqs. (7) and (8). These parameters are required to calculate
the dynamic fitness landscape of hosts and parasites. The value of
parasite mutation rate µP in Eq. (10) is fixed at 0.9 for all the cases
investigated hereafter. We emphasize here that the choice of param-
eters c1, c2, and µP influence the timescales only while the qualitative
trends reported in the manuscript are independent of these partic-
ular parameters. As discussed in Sec. II, the parameters β1 and β2

control the extent of genotypic interaction between hosts and para-
sites. For zero mutation rate, even in the presence of parasites (which
mutate with a finite rate), the host population is unable to reach
the global fitness peak. The reduction in fitness by an amount of
approximately 0.06 for the hosts is due to exposure to parasites with
α = 0.06.

For further discussion, we refer to the evolution of hosts in the
absence and presence of parasites at µH = 0.2 as in cases I and II,
respectively. The dynamics in case II is observed to be significantly
faster as compared to case I. It is seen that for both cases, the host
population finds the local peak in almost the same duration, while
for the global peak, the host population in case II arrives around
it earlier. Furthermore, the value of average fitness achieved by the
host population in case II also stays the same as the case I for some
time interval (that depends on the mutation rate of parasite µP)
after which it decays to a fixed value depending on the degree of
virulence of the parasites. The decrease in fitness of hosts is due to
the evolution of parasites toward infecting it. Therefore, when the
host population gets localized around the global peak, the parasite
population follows it. This leads to the dispersion of the parasite
population around the same fitness peak as the hosts, which reduces
the host fitness. Thus, we see that the asymptotic fitness achieved by
the host population that evolves in the presence of parasites is lower
as compared to the hosts that evolve in the absence of parasites with
non-zero mutation rates. Therefore, we conclude that the faster opti-
mization of host fitness in the presence of parasites comes with the
cost of having a lower fitness. Moreover, we also observe that the
average fitness of the host population FH(t) decreases monotoni-
cally with increasing mutation rate µH (results not shown), except
for the case with µH = 0. As higher mutation rates give higher dis-
persion of a population around a fitness peak, the average fitness of a
population decreases. However, we also observe that the asymptotic
fitness of the host population for zero mutation rate is the lowest.
This implies that finite mutation rates are essential for the optimiza-
tion of fitness when the global fitness peak for a finite population
exists far from its existing location in the genotypic space.

To further elucidate the observations made in Fig. 1(b), we ana-

lyze the temporal evolution of the fitness landscape of hosts f̃H(x, t),
the fitness landscape of parasites fP(x, t), the population distribu-
tion of hosts mH(x, t), and the population distribution of parasites
mP(x, t) in Figs. 1(c), 1(d), 1(e), and 1(f), respectively. At t = 0,

the dip in f̃H(x, t) for 0 < x < 15 is due to the negative contribu-
tion coming from the parasites located around x = 7 as shown in
Fig. 1(c). However, fP(x, t), which is solely determined using the pop-
ulation distribution of hosts [Eq. (8)] is located around the peak at

x = 15 [Fig. 1(d)]. In response to the fitness peak f̃H(x, t), mH(x, t)
at t = 10 is observed to be drifting toward the local fitness peak

of f̃H(x, t) at x = 18 as can be seen in Fig. 1(e). Subsequently, at
t = 50, mH(x, t) is localized around the local peak. Furthermore, at
t = 415, the host population is in the transient state [as is evident
from Fig. 1(b)] and is gradually drifting toward the global fitness
peak. Finally, the host population distribution reaches a steady state
by dispersing around the global maximum as is seen for t = 620 and
650. By definition, fP(x, t)/c1 plotted in Fig. 1(d) shows the same
time dependence. As a result, the parasite population distribution
is seen to be drifting toward the host population at all times. It is
observed that at t = 620, mP(x, t) is starting to build up around the
global fitness peak of the hosts, which leads to a decrease in the aver-
age fitness of the hosts [see Fig. 1(b)]. Once mP(x, t) is completely

localized (t = 650), f̃H(x, t) attains a constant value.
In Fig. 2(a), we investigate the evolution of a more diverse host

and parasite populations by considering the initial distributions so
that the role of mutations can be minimized in the host–parasite
coevolutionary dynamics. We consider two types of distribution for
the host population. In the first case, the host population does not
contain the genes corresponding to the global fitness peak, whereas
in the second case, we consider its distribution in the full range of
genotypic space (inset). However, for both the cases, the dynamics of
the host–parasite coevolution is obtained by taking the parasite pop-
ulation distribution in the whole genotypic space. Corresponding
to these two cases, we present the temporal evolution of the fitness
of the host population in the absence and presence of parasites in
Fig. 2(b). It can be observed that the qualitative behavior of FH(t)
remains unchanged for the first case, while for the second case, a dif-
ferent behavior is observed (inset). It is to be noted that in the latter,
the optimization time for the case with parasites is marginally higher
than the case without the parasites. This is in contrast to the other
cases considered so far and indicates that if the genes corresponding
to a higher fitness peak is already present in a population, the pres-
ence of parasites hinders the evolution of the hosts toward the fitness
maximum. Moreover, a single-step relaxation is observed instead of
a two-step relaxation, which is expected due to the presence of fittest
genes already at t = 0.

The time dependence of mH(x, t) and mP(x, t) for the case
shown in Fig. 2(a) is presented in Figs. 2(c) and 2(d), respectively.
In Fig. 2(c), we observe that most of the peaks for mH(x, t) are
already vanishing at t = 20, except for the peak near the local fitness
maximum. At t = 300, the host population is completely localized
around the local peak, while at t = 800, mH(x, t) is found to be con-
centrated around the global peak. A similar behavior is observed for
mP(x, t) as seen in Fig. 2(d).

Next, we investigate the dependence of optimization time τ

on host mutation rate µH and degree of virulence α, as shown in
Figs. 3(a) and 3(b), respectively. From Fig. 3(a), we observe that the
time τ is inversely related to µH for different α values. The optimiza-
tion time shows a nonlinear decrease with the increase in µH with
similar qualitative behavior for all the cases. The time ln(τ ) is found
to be linearly related with ln(µH) until µH = 0.9. This suggests that
a decrease in τ with the increase in µH follows a power-law behav-
ior µ−δ

H , where the exponent δ depends on α. The fitting to these
plots in the range µH ∈ [0, 0.9] gives the following relation among

τ , µH, and α: τ = (−710 α + 285) µ
−(0.37−0.18 α)
H . We note that the

proposed fitting relation is valid only for weak coupling α ≤ 0.1.
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FIG. 3. (a) Optimization time τ vs the host mutation rate µH for different degrees of virulence α = 0, 0.02, 0.04, 0.06, 0.08, and 0.1 at µP = 0.9. (b) Plot of τ vs degree
of virulence α at µH = 0.2, 0.4, 0.6, 0.8, 1.0, and µP = 0.9.

For α = 0, the optimization time τ ∝ µ−0.37
H . However, for non-zero

α, the exponent is modified by an additional factor dependent on
α, though this contribution is negligible for this regime. The ori-
gin of linear part of the fitting form is due to the linear decrease in
τ with the virulence, i.e., τ ∝ −α. The inverse power-law depen-
dence on µH is due to the diffusive nature of mutations. The value
of power-law exponent for µH is determined by the curve fitting.

The dependence of τ on the degree of virulence α for a fixed
mutation rate is shown in Fig. 3(b). From this plot, it can be inferred
that as the parasitic infection is increased, the time τ required by
the host population to reach the global fitness peak decreases. It is
also found that the decrease in τ with increasing α is nonlinear.
The fitting relation obtained from Fig. 3(a) can be further veri-
fied from Fig. 3(b) in the weak coupling regime α ≤ 0.1. To this
end, we investigate the dependence of τ on α by fitting the plots
in Fig. 3(b). As a result, we get a general fitting form τ = k0α

+ k1 exp(−k2α), where k1, k2, k3 are fitting parameters (all positive)
dependent on µH and µP. From this, we can access the small α

behavior readily and recover τ ∝ −α as obtained previously. We
analyze the effect of virulence on the asymptotic fitness of the host
population FH(t) for different µH values in Fig. 4. The findings are
consistent with the expectation that the increased parasitic infection
will decrease the fitness of the host population. The asymptotic fit-
ness of hosts is found to decrease linearly with the increase in the
degree of virulence.

In Fig. 5(a), the fitness of host population FH(t) and the fitness
of parasite population FP(t) are plotted with time t for very high
infection obtained by setting α = 0.4. For such a high parasitic infec-
tion, the fitness of the host population does not reach a fixed value
within the simulation time and exhibits an oscillatory behavior. In
this case, the host population reaches the global peak of the fitness
landscape very fast. However, the parasite population follows the
host population to its global peak, and once the parasites reach the
peak, the fitness of the host population gets reduced. Due to a high
degree of infection from parasites, the effective fitness landscape of

hosts changes in a way that the local peak becomes higher than the
global peak at that instant. Thus, the host population starts evolving
toward the local peak again. Once the host population gets localized
around the local peak, the parasites again follow and decrease the
fitness of hosts in the local peak. This again triggers the evolution of
hosts toward the global peak. Hence, a time-dependent oscillatory
fitness for host and parasite populations is observed. We also note
that the time interval of oscillation between two successive peaks as
well as the amplitude of oscillation decay with time. This only hap-
pens beyond a critical value of the virulence parameter αc for which

FIG. 4. The fitness of host population FH(t) at t = 1000 is plotted for α range
0–0.2 at host mutation rates µH = 0.2, 0.4, 0.6, 0.8, 1.0, and µP = 0.9.
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FIG. 5. Fitness of host population FH(t) and fitness of parasite population FP(t) are shown for parameters α = 0.4, µH = 0.9, and µP = 0.9. (a) Corresponding to the
oscillatory regime. (b) Corresponding to the adiabatic limit. The time evolution of distribution of the host population mH(x, t) is plotted for (c) oscillatory dynamics shown in
Figs. 5(a) and 5(d) adiabatic limit shown in Fig. 5(b). Evolution of distribution of parasite population mP(x, t) for (e) oscillatory regime and (f) adiabatic limit.

the average fitness of the host population around the global maxi-
mum is less than the average fitness of the host population around
the local peak. In our simulation, we find αc ≈ 0.24, which roughly
corresponds to the difference in heights of the global and the local
peaks.

So far, we have assumed that the hosts and parasites evolve
on the same timescales. However, timescales for the evolution of

parasites in nature are often found to be faster than their respec-
tive hosts, and, hence, in many cases, parasites are found to reach a
steady state in between successive generations of hosts. We imple-
ment this in our model and refer to this as the adiabatic limit. To
achieve this limit in our simulation, we solve the dynamical equation
[Eq. (10)] of the parasites for 5000 time units for the evolution of
the hosts in one time unit. This essentially means that between each
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FIG. 6. Evolution of fitness of the host population from the model where hosts
and parasites evolve in the same timescale (solid curve) is compared with the
adiabatic limit (dashed curve) at α = 0.1, µH = 0.9, and µP = 0.9.

generation of hosts, the parasites have evolved for 5000 generations.
The fitness of the host population FH(t) and the parasite population
FP(t), in the adiabatic limit, is plotted in Fig. 5(b). The set of param-
eters chosen for this plot is the same as that in Fig. 5(a). It is observed
that when parasites reach a stationary state in between the successive
generations of hosts, the fitness of the host population relaxes much
faster as compared to the non-adiabatic case [see Fig. 5(a)].

The time dependence of mH(x, t) for the oscillatory regime and
the adiabatic limit is presented in Figs. 5(c) and 5(d), respectively. In
Figs. 5(e) and 5(f), we plot the corresponding mP(x, t). In Fig. 5(c), at
t = 200, the host population is seen to be already distributed around
the global peak. However, the parasite population is still around the
local peak [see Fig. 5(e)]. The parasite population mP(x, t) at t = 600
is observed to be completely concentrated around the global fitness
maximum. As discussed earlier, this reduces the average fitness of
the host population around the global peak. The reduced value of
FH(t) is less than the fitness attained by the hosts at the local peak in
the absence of parasites. Hence, it triggers the evolution of mH(x, t)
toward the local peak as can be seen at t = 1000. The parasite pop-
ulation again starts to drift toward the hosts and thus the peak of its
distribution around the global maximum reduces (for instance, at
t = 1000). This again triggers the evolution of mH(x, t) toward the
global peak at t = 1180. As expected, the parasites follow [mP(x, t)
at t = 1180], pushing mH(x, t) toward the local peak again [mH(x, t)
at t = 1250]. This continues resulting in an oscillatory behavior for
FH(t) and FP(t) as shown in Fig. 5(a). In Figs. 5(d) and 5(f), at
t = 0, mH(x, t) and mP(x, t) are both located around x = 15. This
is because mP(x, t) reaches the steady state between the successive
generations of the hosts in the adiabatic limit. Similarly, for all other
cases, the spatial location of mP(x, t) is found to be synchronized
with that of mH(x, t).

We also check whether considering parasites in the adiabatic
limit further reduces the optimization time τ in Fig. 6. We observe
that, indeed, the optimization time τ decreases for the adiabatic case
as compared to the non-adiabatic case. Nevertheless, the decrease is
not very significant in this parameter regime.

IV. CONCLUSION

In this paper, we have developed a mathematical model to
investigate the coevolution of hosts and parasites by incorporating
selection, mutation, and asexual reproduction. The dynamical fit-
ness landscapes for the hosts and parasites are constructed in terms
of their genotypic distance and frequencies, which are evolving with
time. These considerations for a fluctuating selection are in agree-
ment with the existing literature.35,38,44 It is observed that when the
location of a population in genotypic space lies far from its global
peak, the role of mutations becomes critical in optimizing its fit-
ness. Next, we studied the evolution of host fitness in the presence
of parasites for different mutation rates and varying strengths of
parasitic infection. It was found that after the introduction of par-
asites, the host population can detect the global peak of the fitness
landscape more quickly. However, the parasites follow the host pop-
ulation and reduce its fitness, once the latter gets localized around
the global maximum. Therefore, faster optimization of the host fit-
ness in the presence of parasites results in lower fitness. We also
observe a decrease in the time required by the host population to
reach its global peak as the parasitic infection is increased. For a high
degree of virulence, the fitness of the host population exhibits an
oscillatory behavior. Finally, we discuss the adiabatic limit in which
the parasites evolve much more quickly as compared to the hosts.
We find that in this limit, the optimization time is reduced even
further.
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