Header menu link for other important links
X
Growth and Characterization of ZnO Nanostructures: Materials for CO and Ethanol Sensing
S. Choudhary, , V. Saini, A. Hazra, S. Gangopadhyay
Published in Springer
2021
Volume: 342
   
Pages: 137 - 149
Abstract
Controlled growth of ZnO-based nanostructures, starting from a vertical nanowall surface morphology to laterally grown highly anisotropic nanorods/wires formation has successfully been achieved by controlled thermal oxidation of thin Zn films for a temperature range of 100–700 °C. The as-grown ZnO nanorods were further used for carbon monoxide gas sensing at low temperatures (down to 150 °C) as well as ethanol vapour sensing at room temperatures. Thin films of Zn were deposited on glass and silicon substrate at room temperature, using a vacuum-assisted thermal evaporation technique. Structure, morphology and chemical property of ZnO layers were investigated using various surface characterization techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoemission spectroscopy (XPS) and Raman spectroscopy. The XRD and SEM results are in very good correlation and showed vertical growth morphology of ZnO nanowall/sheet structures at a relatively lower oxidation temperature up to 400 °C. However, at higher oxidation temperature, lateral growths started to dominate over the vertical growth. Oxidation at 700 °C appeared with laterally grown one-dimensional (1D) ZnO nanowires/rods of high density. Raman spectroscopy and XPS results suggested that the vertical growth is mainly initiated by the metallic Zn film morphology, whereas the lateral growth is strongly dominated by the oxide (ZnO) formation. Finally, laterally grown ZnO nanorods could successfully sense CO gas and ethanol vapour. A drastic enhancement in CO gas sensitivity for a concentration of 230 ppm was clearly observed in dynamic gas flow mode even for a wide range of operating temperature. © 2021, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About the journal
JournalData powered by TypesetSpringer Proceedings in Mathematics and Statistics
PublisherData powered by TypesetSpringer
ISSN21941009